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SELECTION RULES FOR MAGNETIC GROUPS
APPLICATION TO TYPE II SHUBNIKOV SPACE GROUPS

R. Dirl

Institut fir Theoretische Physik, TU Wien
A-1040 Wien, Karlsplatz 13; Austria

A general method for calculating subduction matrices for corepresentations of a ma-
gnetic group is discussed and the results are then specified to compute with them
Clebsch-Gordan matrices for type II Shubnikov space groups.
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I. Preliminaries

Let G = {H,sH} be a coset decomposition of a finite magnetic ("antiunitary") grou
G with respect to the normal ("unitary") subgroup H. Unitary corepresentations of G
are matrix representations satisfying **

B*(s"'hs) = B(s)" B(h) B(s)  for all heH (1.1)
B(s) B*(s) = B(s?) with s2eH (1.2)
B(s) B*(h) = B(sh) for all heH (1.3),

where B(h); heH forms an ordinary vector representation of H. (Projective corepre-
sentations will not be discussed for the sake of simplicity). We call two unitary co-
representations B(g); geG and B'(g):; geG as equivalent, if and only if there
exists an unitary matrix W with the property

W B(g) W9 = B'(q) for all geG (1.4)

where the superscript ge sH implies complex conjugation of W, whereas geH that W re-
mains unchanged.

Concerning the unitary irreducible corepresentations (counirreps) of G one distin-
gquishes three different types, which read in standard form as follows.

type I:  D%(h) = D"(h) (1.5)
Ds) = U° 5 U U = p%(sD) (1.6)
p*(s Thsy* = Ut Do) U (1.7)
L7700 CHRV (I
p¥(h) = | 5 (I.8)
|0 D"(h)
L
DB(s) - l P 08(s%) (1.9)
-uf o (
08¢s Thsy* = uBt pB(h) UB (1.10)
type I11: |0¥(h) © 1 _
S DVRY e 4 3 DY(s hs)* = 2T o7(h) 77 (1.11)
lo 0¥ (s ths)*
o 0v(sd)|
D'(s) = (1.12)
10

Thereby the symbols DY(g); geG denote counirreps of G, D¥(h); heH the correspon-
ding nu-dimensional vector unirreps of H and ;; equivalence classes.
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I1. Subduction matrices for corepresentations

Starting from a N-dimensional reducible corepresentation B(g); geG, we call a
unitary matrix W a "subduction matrix", if

W' B(g) W9 = Jen D'(g) for all ge6 (11.1)
u

is satisfied, at which the quantity Mu ("multiplicity") indicates how many times the
counirrep D" is contained in B. {In this connection we remark that the name subduc-
tion matrix originates therefrom that in general B forms a representation of a larger
group M which contain G as subgroup).

Now the problem is to determine a unitary matrix W as systematic as possible,
which satisfies (I[.1). A first step towards a solution of this prablem is done by re-
writing (II.1) in the following manner.

Blg) (W"™1% =7 D! () W (11.2)
p q qp q

This implies that we consider the columns W:¥ ({Wgw}k = Mg e where k = 1,2, .. N
and € AG; w=1,2, .. MU; b= Tuls Nu) of W as G-adapted vectors of a N-dimen-
sional Euclidean space V. For obvious reasons we devide the procedure of determining
W into two steps. First we compute a subduction matrix S which decompose B(h); heH
into a direct sum of its irreducible constituents (with respect to H) and secondly we
use (parts of) this matrix § in order to compute W.

II.a. Subduction matrices for ordinary representations

Let us start from

stB(h) s =7 en 0'(h) for all heH (11.3)
u

B(h) 8} = g Dp,(n) 347 v=1,2, ..m3b=1,2, ..n (11.4)

by considering the columns of S as H-adapted vectors of V, at which the multiplicities
My have to be computed by means of the usual character formula. When calculating sub-
duction matrices it is known, that the main difficulties arise from the problem how

to fix the "multiplicity index" v, if LM is greater than one. But Egs.(II.4) toge-
ther with the unitarity of S suggest how the multiplicity index v can be determined.
Namely by utilizing the usual projection techniques.
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For this purpose we introduce a N-dimensional matrix representation of the group
algebra A(H). The corresponding "units"

B t Ug
Ejy = nu\HI X Dyx(h) B(h) (I1.5)
satisfying well known rules are because of

L L

u'v
abi ok | = By Bge 5 (11.6)

especially suited to simplify the computation of S, since now we can apply the usual
projection techniques. In doing so we start for fixed u and appropriated chosen index
a from the subspace

v _ U “ : no_
Ve BNV dim V) = m_ (11.7)

Obviously any orthonormal basis

v — = _
{Za i e & B= Ll oW (11.8)
of V: represents already a part of the columns of S. In this connection we have to
note that the arbitrareness of choosing a basis of V: reflects the difficulties con-
cerning "phase conventions" etc. Apart from this the remaining columns of S (which be-
long to u) must be computed by

= BB 1 Y=Ll wwd b2 s (11.9),

otherwise the defining equation (II.4) (or (II.3)) cannot be satisfied.

Hence it follows that the only problem of this method consists of determining for
each subspace Vi (a = fixed for a given ) an orthonormal basis. This can be done in
any way by Schmidt's procedure. But instead of applying this procedure immediately,
we consider in more detail the m -dimensional subspace V” In order to obtain a basis
of v“, it suffices to apply the correspond1ng projection matr1x E" to each element
of the orthonormalized basis Eq' q = 1,2, (gq}p pq) of V.

{2 . % g, *
B; = E:a Bq ; {E; bp=m tHf y Db¥(h) B (11.10)

Our approach of computing subduction matrices is now as follows: In case we can
find m, vectors B:V; v =1,2, .. m satisfying

1]

(B2 o B L E B s o=n HTLT 0Mn h 11.11
By | éqv aa Bq, = NN T Dy3(h) By o () >0 (11.11)
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HQy uqy', _ u @
<§a N Ea > <§qv 5 Eaa Eqv‘>

_ =1 1 o
=n [H] E Di*(h) Bo.q (h)=0&=>q, #q, (11.12)

V!

the following vectors with their components

3 = B 1t 4, Ega‘s’qv> = ||Buav 7! nu!H|_1 % D2%(h) quv(h) (11.13)
are already a part of the desired columns of S, which form an orthonormal basis of V:
and where the remaining columns are immediately cbtained by {II.9}. However this ap-
proach requires that (11.12) is satisfied. Provided this is true, our method allows to
identify in a systematic way the multiplicity index v in terms of special column in-
dices ay of B, what is called in the following "special solution of the multiplicity
problem". But in general we shall find only m, (mﬂ < mu)vectors satisfying (I1.11,12)
what implies that mu 5 mu vectors have to be determined by Schmidt's procedure. But
even for this most complicated situation, it is reasonable to consider Eqs.(I11.11,12),
since their use lead to computational simplifications. In order to understand this
‘proposition, one has to remember that there exists just m Tlinear independent vectors
ﬁ;q; q=1,2, .. N and that ”E:q HZ = 0 (for some q) requires {Ezp}q = 0 for all
p=1,2, .. N. Hence if the norm of the vectors (II.10) disappears for some q the cor-
respending components of the columns of the subduction matrices must be zero.

I1.b. Subduction matrices for corepresentations

Since there exists three different types of counirreps we have to consider them se-
parately by inserting their special form (standard form) into (II.2)

Subductions of type I: According to (I1.5,6) Eqs.(II.2) turn out to be

w

B(h) W3" - % Dy, (M) WY (11.18)
oW o paw - -
B(s) (0" = E Upa Wy~ s w= | T M, and a = 1,2, .. n, (I1.15)

where Ma =m has to be taken into account. Utilizing Schur's Lemma with respect to H
we have

WwW-ys 3V (11.16)
N:
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ip §ZV; VB L2 s mosa= j i O n, is H-adapted. Consequently B must be a mu—dr

mensional unitary matrix. Otherwise, if knowing an orthonnormal basis of V:, the ge-

neral problem is reduced to the task of determining a ma-dimensional unitary matrix B
so that (I11.15) is satisfied. For this purpose we compute

aV - a av'
B(s) (3% = % Upe g B, o (11.17)

where F is unitary and uniquely fixed through (§:V}.

v' v -1
Fory = <Sa' » B(s) (E ue SEVim = B, n {H| gn:;(hs)sths){ﬁg"m (11.18).
Consequently it suffices to know the vectors §;V; v =12, .. m (a = fixed for a gi-
ven o) in order to be able to compute the matrix F. Since F satisfies F = B B! = F',
respectively F F* = 1m , it follows from (11.15)

a

# _ B . * -
F B B i FF 1M

o

(11.19).

Thus any solution of (II.19) provides corresponding parts of W. Assuming that the vec-
tors §:V can be fixed through a special solution of the multiplicity problem (see
(I1.13)) Eqs.(I1.18) turn out to be

_ogeav' -1 gedy -1 =1 o
Fory =B35BS 77 n [HY rz‘na;;(m-.uaqv'qv(hs) (11.20)

which show that it suffices to know merely the multiplicity indices q, in order to be
able to compute the matrix elements (I1.20).

Subductions of type II: Starting from

TBW 8 LU - g = -
B(h) W] = E Dba(h) Wy 5 W= 1% s MB’ z=1,2and a = 1,2, .. n, (11.21)

[0 for z

Mz) = L for z

B(s) (WEMye = (-1)2(z*1) ty) T (11.22)

won
—

1,b

where 2MB = mB and a double index (z,a) has been introduced to enumerate row and co-
Tumns of Ds(g); g€ G. Schur's Lemma with respect to H yields to

TEW _ v
Hza = % 8v;za §a (11.23)

if §gv; Va2 e mB, a=1,2, .. n, is H-adapted. By similar arguments as in the

foregoing case we obtain for
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BV % _ B8 By
B(s) (3.1 = L Use 5‘ Pk, B (11.

where the 2Mg—d1mensiona1 unitary matrix B is uniquely fixed through §§V , hame

_ gv' -1 8 B.x BV _
AWEE L ng Hl % (0%(h) UPy*_ B(hs) (57V1%> =
_nEBay -1 geay -1 -1 B B
BE™" 75 NBZW NI gl L (0%(h) V), By g, (M) (11.

Analoguously to the previous case the second line of (I1.25) is only valid, if
vectors §§V are given by {I1I.13). Furthermore we have F = B GT BT = - FT, where

= (-I)A(Z) § Conversly (I1.22) yields to

sz;z'w‘ z,2'+1 5ww"

FB* =86 5  FF*=-1, (11.
B

which is in agreement with the former considerations and which has to be solved
order to obtain the corresponding parts of W.

Subductions of type III: According to (1.11,12) we have to consider

B(h) W{: = E Df, (h) ﬁ{z (1I.
B(h) W) - E ALY oy (11.
B(s) (W[3)* = WYY (11.
B(s) (WM - E oY, (s%) . (11.

where MY = mY = m? and a double index (z,a) have been introduced. Obviously
YW _ v YW _ YV
Wa = ) Bow §; and Moy = I va ga (It
v v
presupposed {ggv} and {gzv} are H-adapted. On the other hand we obtain for

YVog _ v !
B(s) (31'1* = E. R 5 (II.

where the unitary matrix F is uniquely fixed through (37"} and {§$V}-
a a

B SR o nYrH[_l E 2 0V(h) 23, B(hs) (31'1% -
_RYav!' p-logvay ) -1 -1 ¥t o¥ o
BT B g @ T 20z, B g )

24)

1y

25).

the

26)

in

.33)
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The second line of (I1.33) is only valid, if special solutions of the corresponding
multiplicity problems can be found. Apart from this special situation we obtain as
consequence of (I11.29,30)

+

FB*=C 3 FF =1, (11.34)

Y

which can be solved directly. We choose as possible solution

B=1, ¢>C=F (11.35)

¥
by which the corresponding columns of W are immediately obtained.

Concluding this Section we recall that the crucial point of this method is te con-
sider the columns of W as H-adapted vectors, but which have to satisfy additional
transformation properties originating from a special representative of the "antiuni-
tary" group elements. This lead us to the main result that it suffices to know only
parts of S in order to be able to determine the corresponding parts of W, respectively
to utilize (I1.9) in order to obtain the whole subduction matrix W. (In this connection
we remark that other approaches of computing Clebsch-Gordan coefficients for corepre-
sentations are described within the papers which are listed in Ref.3).
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III. CG-matrices for corepresentations

Since Clebsch-Gordan matrices (CG-matrices) are a special case of subduction matri-
ces (the supergroup is the direct product group G xG and the subgroup the Kronecker
product G(x1G = G), it is obvious due to our approach to consider at first the simpler
task of determining (parts of) CG-matrices for ordinary representations of H. For this
purpose the formulas of Sec.II.a. have to be transfered correspondingly by replacing
B(h) through the Kronecker product D““‘(h) = p'(h) @ D“'(h) being composed of vector
unirreps of H, whose dimensions are n and nu. respectively. Consequently the single
index p (p = 1,2, .. N) has to be replaced by the double index p,r (p = 1,2, .. n

u’

r=1,2, .. nu.). Nevertheless the formulas and results of Sec.Il.a. remain valid and
in case we can find a "special solution of the multiplicity problem" the former index
qV is now a double index qv’sv; V=425 s muu';uc . (For a detailed discussion the

reader is refered to Ref.4).

Now let us turn to the task of determining CG-matrices for G. Accordingly we have
to replace B(g) through the Kronecker product D““‘(g) =D"(g) @ D“I(g) which is com-
posed of counirreps. Remembering that D”“‘(h) is already a direct sum of Kronecker
products D”“I(h), if at least one of the two constituents of D““‘(g} is of type II or
111, the first step must be to compute parts of CG-matrices decomposing D““l(h) into
direct sums. This can be done by means of the method described in Sec.Il.a. Provided
parts of convenient CG-matrices for H have been calculated we have to find only solu-
tions B of (I11.19) and (I1.26) for the six possible combinations of Dpul(g); usu' =
[,II,111, since (II.34) has already been solved quite generally through (II1.35}. Now
we can imagine that depending on the six different types of Kronecker products of G,
the structure of the corresponding matrices F (see (I1.18), (I1.25) and (II.33)) are
quite different, since they split up into well-defined submatrices. Consequently the
solutions of the corresponding defining equations (11.19), (I1.26) and (II.34) are
also quite different. Nevertheless we are able to solve these equations without refer-
ence to a special magnetic group, presupposed convenient CG-matrices for H are known.
This problem has been extensivly discussed in Ref.5.

In order to gain more insight into this problem let us discuss briefly and without
any proof two examples.

(I ® I)-CG-matrices: Because of
D™ (h) = 0**' (h) (111.1)
it suffices to know (parts of) that CG-matrix M which decompose D*® (h) into a direct

sum of its irreducible constituents. Hence CG-coefficients of type Py (}b = I,I11,1II)
for G are obtained from (I1.16,23,31), if solutions of (I1.19,26,34) are found. The
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corresponding matrices F have to be computed with (I11.18,25,33).

(I ® III)-CG-matrices: Because of

D% (h) = D*'(h) @ D*7(h) (111.2)

we have to determine (parts of) that CG-matrices M and N by which a decomposition of
D*¥(h) and D“?(h) into a direct sum is achieved. CG-coefficients of type I for G are
obtained in principle in the same manner as before, but where the following modifica:
tions have to be carried out: Due to the block structure of D®Y(h) we have

a V axa VZ, o, v1 N v . o, V2
e e I L by (3, (111.3)

v
a i32'] sl = 5z'Z{n:o Yij

J

Inserting these special vectors into (I11.18) we obtain

_ AV’ ay a vz
Fv‘v Fz‘v‘;zv - ‘620 2B s (E Uag 6:” P .4
0 Fo
F i Pl = F% ; fo% Foox - | (s
o o n
Q@, = v' a Y, 2 Ay PESV g
Feo, = Mo L 0" @ 0Y(s%) (t{) U2 fte" (L11.6)

from what immediately the following solution of {II.19) can be found.

L 1':lm lm
8 =% L.y
2 ]-if% f% ( )

Summarizing the main points of this example, we see that the former index v is repla-
ced by the double index z,v which take also the role of the multiplicity index w of
the whole problem. The index v originates now from the corresponding CG-matrices M
and N. Consequently we have found a general solution of (II.19) without reference to
a special magnetic group G.

(I ® II1:11)-CG-coefficients are obtained in a similar way (see Ref.§). Finally
(I @ ITI:[I1)-CG-coefficients follow from (I[.31) by inserting (II.35) and taking ind
account, that F has as row and column indices double indices z,v where v originates
from M and W.

Concluding this section we mention that in case both constituents ®"(g) and
D"‘(g) of D"“|(g) are of type II or III, the matrices F are enumerated by triplet in
dices (z,z',v) which originate from the special block structure of D““I(g) (see
Ref.5).
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IV. CG-matrices for type II Shubnikov space groups

Let G = {H,sH} = {E,0} x H be a type Il Shubnikov space group, where € represents
the time reversal operaticn and H an ordinary space group. The multiplication law of
G reads as

(RIF(R) + T[e¥)
T(R,S) = T(R) +

(sl

si3(s) + T'1e") = (Rs|3(Rs) + T(R,S) + T+ RE16™)  (1v.1)
RT(S) - T(RS) 5  R,S€P = H/T (IV.2)

where T denotes the translation and P the point group of the crystal, t primitive and
T(R) nonprimitive lattice translations and R either an abstract element of P or a
faithful matrix representation of the corresponding group element. Due to our approach
the first step will be the computation (of parts) of convenient CG-matrices for the
normal subgroup H.

IV.a. CG-matrices for H

In order to be able to transfer the general formulas of Sec.Il.a. to space group
representations, we recall briefly the form of their vector unirreps

DEa,’éb(R\?(R) + 1) - AE(B,RE) oTa(R). Bgé(m R;b(R-1R§)

T g (K,E)+H 3 qeaBZ , KEAP(E)

ab=1,2, ..n ; RSeP:P(q) (1v.3)
P(4) = (ReP| RG =g + B(a(R)I} € P (IV.4)
Aa(R,S) = SRR(3),5P(3) {1v.5)
BE’S(R) = exp[-1q(R).(T(R) + RT(S) - T(R)}) (1V.6)

Thereby aBZ denotes the fundamental (representation) domain of the corresponding Bril-

louin zone, P(q) = H(E)/T the Tittle cogroup, 5{3 1 reciprocal lattice vectors;

RsS EP'P(E) left coset representatives and R°(R); Re P(q) N -dimensicnal projective

unirreps of P({q) which belong to the factor system Sq(R S) = exp( iq.(R - 1)7 7(S)).
Inserting (IV.3) into (II.10), where B(h) - D" (R{7(R) + t) with : <> («,q)+H and

TR (K‘,E‘)+H. we consider fhy, (KO,GO)wH by choosing appropriatedly the index a as
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R =eand a = fixed. A simple calculation yields for

o . . guo(5,d;S',d") wo(R,csR',c')
<§§,d;§',d' * Fea,ea gB.c‘.ﬂ'.c' B L =

%a(s) + §'(5).9, + US43

n P T aN(sRR) 6T (st RRY) X
%o Re P(g,)
ao-n- q q' Ko < (571 x! clop
Baoo(R) BéaB_(R) Bé.,ﬁ-(R) RO(RRy (S "RR) Ry, . (S' "RR')
R,S€P:P(d) ; R',S'e P:P(3') (1v.7)

where the orthogonality relations for the unirreps of the translation group T have
been already taken into account. Obviously Eqs.(IV.7) contain all informations to loc
for "special solutions of the multiplicity problem". In case we can findm ,  or-
thogonal vectors, the corresponding column indices of D““I(R\¥(R) + f) can be, ¢
chosen as multiplicity index

v <+ (R ,cv;B;,cv) 5 Vo 352 (Iv.8)

m
v uu';u0

and the corresponding CG-coefficients follow from (II.13). Inspecting (IV.7) for all
possible cases which may occur, we obtain simple defining equations for v, because of
the "wave vector selection rules" and the last two lines of (IV.7). In this connectio
we remark that we succeeded in solving these equations quite generally (for nearly al
cases) without reference to a special space group H (see Refs.6.7,8).

IV.b. CG-matrices for type II Shubnikov space groups

Since G is a direct product group, it suffices to determine unitary matrices U‘u
{u > (K,E)fH) which satisfy

M(RIT(R) + E)* = T DM(RIT(R) + E) 0¥ (1v.9)
in order to write down the corresponding counirreps for the time reversal operation.

type I: DH(e) = UM ; [TV 1 (1V.10)



type 1I: 0 Ut

S D(e) = | 3 e -T (Iv.11)
u 0

type III: 0 1

=== D¥(s) = 2 (Iv.12)
1.0

Presupposed the inversion I as point group operation belongs to P, closed expressions
for U can be derived (see Refs.%1m11). Apart from this we are now in the position

to compute by means of the general formulas of the foregoing sections the unitary ma-
trices which link CG-coefficients for H with those for G, since the solutions of
(I1.19,26,34) can be written down explicitely. Furthermore since the multiplicity pro-
blem for space groups is solved for nearly all cases in the sense of the former consi-
derations, we are able to give simple formulas, which have to be inspected in order to
obtain CG-matrices for G (see Ref.12).

IV.c. CG-matrices for Pn3'n

Let us write down some results concerning Pn3'n in order to get am impression how
the proposed method works. Thereby we shall 1ist F and the corresponding solution B.

Example 1: (I ® [:1)-CG-coefficients: This example is characterized through u <+
(0,9)tH (@ = m(x,y»z) € 6BZ) and u' <> (0,9')4H (q' = m(l-x,1-z,1-y) € 4BZ), respecti-
vely Wy (KO,EO)fH (EO =w(l,1,1) and K= (0)+0h), where the special symbols for «
are explained in Ref.13. Since a special solution of the multiplicity problem is known

(v (xv;xvﬂﬁf) s ¥ =152 o 6with X, € Gh, where superfluous indices are omitted)
we have to inspect a simple formula in order to obtain F.

004000
000 w00 L
wolmu') _lw 00 0 00 AT UE1e)
F S8 XN w=etld . (1V.13)
00000 u ' =exp{iq.fl+iq'(adf).(%2+%3)]
0000 o0 i, %
1 0 -i 0 0 0 3k ik
01 0-i 0 0
_1jw 0 -iw 0 0 O
B=7%00 o 0 -iw 0 0 (1v.14)
0 0 0 0 1 -i
00 0 0 o -iu

A comparison of dim M = dim W = 2304 with dim B = 6 demonstrates the utility of the
present method, since the computation of (IV.13) is very simple. The columns of the
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CG-matrix M for Pn3n have not been written down, but are easily obtained from (IV.7)
by inserting the special values for the multiplicity index (see Ref.13).

Example 2: (I ® II1:1)-CG-coefficients: This example is characterized through . <
(0,G)tH (§ = n(x,y,z)) and »' « (x',§"')4H (§' = n(0,1,0) and ' = (0,5)+P(3')), res-
pectively u (D,EO)1H (ﬁo = n(y,l-z,x) = 5(523) +4'). A special solution of the
multiplicity problem is given bylv o (Sg3;e,v); v = 1,2 (v on the right hand side re-

presents the column index of R“ ). A simple calculation yields

00 ¢ 0
00 0- 5o
F=10 5 & 6 e = exp(id.(£) + %)) (1V.15)
0-t 0 0f
P01 0
alo i 0 1
B=Z1l-ic o ¢ o (1v.16)
0 it 0 -

Comparing the dimensions of dim B = 4 with dim M = dim N = 288 = 1/2 dim W, we realize
once more the utility of this approach, since also for this case the computation of F
is very simple. Like in the previous case columns of the convenient CG-matrices M and
N for Pn3n are not listed (see Ref.13). The only demerit of Pn3'n is that type I] re-
presentations are not realized.
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