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1. Introduction

Let G be a discrete group. By a projective unitary representation
of G of dimension n we mesn & map D: G -U(n) together with a unit

circle-valued function w on G x G which satisfies

b(g,) Diga) =wlg, B2) D pa)y ab)

for all g,, g,€ G. w is called a multiplier (or factor system) lor G,

and, if we wish to emphasize w , D is said to be an w-representation.
The associative law for group multiplication forces w to satisfy

w(gp g:)“(?ﬁ B2y 33) =w(g, 685 @(Bas gs)v (2)

for all g,, B,s B,¢€0G.

If « is any unit circle-valued function on G we can obtain a new
projective representation D' by defining D‘(g) = a(g) D(g), for all
g € Go. We soon check that D’ is an w’-representation, where

a
w'(e,, 8,) =J'§(EL‘:‘§G‘E§)- wg, » B, (2

for all g, g,€¢ G. Ve say that w' is equivalent to w with gauge
function a . DNote tnat a is not unique in that we can multiply it by
any unitary linear character of G without changing « . Within each
equivalence class of multipliers there are some which satisfy w(e, g)
=w(g, e) =1, for all g,, g,€G. Henceforth we shall only deal
with such normalized multipliers.

If we express a multiplier in the form w(g,, g2) = exp[2miug,, £,
where ¢(g, g,)¢€ [0, 1), for g,, g, €6, then the condition (2) and
the normality condition become

#(5,5 8+ #(8 82> B)Z 0 8, 6,80 +¢(8,, 5,), mod 2, @)

for all g,, §,5 B,€G, and
¢(e, g) = ¢(g, e) =0, (5



for all g ¢ G.

Using pointwise multiplication of multipliers the equivalence
classes form an Abelian group called the Schur Multiplicatog I1(G).
In this group the identity element is the class consisting of the so-
called trivial multipliers, which are of the form

we, &) = RELD— (6)

for some gauge function « and for all g, g,€G. Note that two multi-
pliers are equivalent if their quotient is trivial. IExpressing the
gauge function in the form alg ) = exp [ 2ri6(g) ] , g €G, the condition
for triviality becomes

¢(g,s 8202 0(g,82) - 6(g1) - 0(gs), mod 7, (7

for all g,, g, €G.

There are numerous applications of projective representations, some
of which are indicated in [ 3 ] , as well as a pure theory. However,
the main motivation for the present paper is connected with the con-
struction of irreducible representations of crystalleographic space
groups. In the theory, as expounded by Bradley and Cracknell [ 7] end
summarized by the present author elsewhere in these proceedings, the
computation of projective representations of certain point groups for
given multipliers is required. Without any special simplifying
features this can be quite an onerous task, and certainly will be if
increasing use is to be made of the 4-dimensional space groups - recall
that the largest 4-dimensional crystallographic peint group has
order 1152. However, as years go by, an increasing number of multi-
pliers and associated projective representations of various groups
are being computed - for a recent survey of results in this field
see [ 5 ]. Therefore the following situation can arise: We wish
to find the irreducible w -representations of a given group G for a
known multiplier w . Suppose we already know a representative or
standard set of multipliers and their associated irreducible projec-
tive representations. w must be equivalent to one such standard
multiplier via some ;auge function. It follows that we can write down
the irreducible w -rewresentations of G provided we can identify to
which standard multiplier wis equivalent and also that we can compute
a gauge function., Yquivalently we can pose the question: Wwnen is a
function ¢ satisfying (4) and (5) representable in the form (7), and
if so how can we determine the gauge function 67 YThe answer to these
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questions, where G is a finite solvable proup, is a speciul case of the
solution to a problem discussed in the author's doctoral thesis
(Oxford, ﬂ97ﬂ, but previcusly unpublished.

There are in fact other applications of the more general gepara-
tion problem, namely: 1) The detcrmination of non-primitive translations
for non-symmorphic space groups: 2) The deternination of the multipliers
of symmorphic space groups, see Backhouse [2 | and IJradley [ 6 ] .

It therefore seems worthwhile making a statement of the general probler
and its solution - this we do in § 2, We have not included procf of
our main result, for it is in fact only a little more involved fthan
the proof given in [ 2 ] . Finully in § % we specialize to the tri-

vial multiplier problem explained above.

2. The peneral separation problem for sclwvable proups

Let P be a finite group. An Abelian group A, written additively,
is said te be a F-proup if for each pair (p, a) € Px A there exists
an element pa € A, which satisfies

(i) ea = a, for all a € &, where e is the identity in F;
(ii) pi(pea) = (p p2la, for all p,, pye P, a € A
(iii) p(a + b) = pa + pb, for all p ¢ P, a, b € A.

We have some further definitions

(a) A mapping u: P » 4 is a J-cocycle if

u(p,p,) = ulp,) + pulp,} , (8)

for all p,, p.€P, and where u(e} = O.
(b) A& 1-coeycle u is a 1-coboundary if there exists a fixed element
a€ A, 1s a O-cochain, such that

u(p) = a - pa, (92
for B1L p € B,
(c) A mapping v : P xP -4 is a 2-cocycle if
vi(p,s o + V(P Dy Py) = VP, PP + bR, D, (10)

for all p, p,, P,€F, and where v(p, ¢) = v(e, p) = O for all pe P,
(@) A 2-cocycle v is a 2-coboundary if there exists a map u: P-oh, a
d-cochain,such that
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v(p,» p,) = ulpp) -ulp) - pulpy), 1)

for all p,, p,e F.

In these terms a set of non-primitive translations for a non-sym-
morphic space group is a ‘1-cocycle where P is the point group, A is
the additive group of all real translation vectors modulo the discrete
lattice translations, and the action of P on A is the one induced by
the natural action of the point group on vectors. HNote that if the
origin is shifted then the set of non-primitive translations is altered
by the addition of a 1-coboundary. 3Such considerations are developed
more fully by Ascher and Jamner [1] .

Multipliers also fit into this scheme. In fact (4) and (5) say
that ¢ is a 2-cocycle where A is the additive group of reals modulo
the integers 2 and the action of P on A is trivial. Also (7) says
that ¢ is trivial if it is a 2-coboundary and the associated 1-cochain
gives the gauge function @6 . It should be noted that the 1-cochain is
only unique up to the addition of a ‘-cocycle.

Thus the question posed in §1 is a special case of: How tc recog-
nize when a 2-cocycle is a 2-coboundary and if so how to determine an
associated 1-cochain? This we can do when P is solvable.

We say that a finite group P is solvable if there is a subnormal
series

fe] =B P AP, +..4P ,dP_ =P,

where Pi/Pi—1 is a cyclic group of order ng, i= 1y 25 ses Ts AlL
of the 32 three-dimensional crystallographic point groups satisfy this
condition. Ilowever, in higher dimensions this is not always true.
The simplest example is the alternating group Ay , of order 60, which
is the proper symmetry group of the regular pentahedroid in 4-dimensions
- see Backhouse and Gard [ 4 ] .

If P is solvable it can be built up from a finite set of generators
{ Py i=7,2, coor | of finite order. We mean this in the following
sense: Theelements of Pi can be expressed uniquely in the form ppis,
for 0< s< ny; - 1, where p €P,

q:
generates Pi frow Pi 4+ Generators are not unique, but we assume

iy L= 1, 2, ses s We say that Py

that some definite choice has been made.
We can now state our algorithm for the separation of a 2-cocycle
as the 2-coboundary of a ‘1-cochain, where this is possible.
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Algorithm

Let v be a 2-cocycle. We can decide whether or not v is a 2-co-
boundary by employing the following construction for the separations
of wv:

(i) Choose u(e) = O.

(ii) Assume all separations of v on Pi_l are known.,
For each such separation find all possible valucs of u(p;) satisfying
m; !

ulp; © ) = [ V(pi"“". i) + eee + V(pys By) ]

+[p; 7" eee #p; v e T ulpy), (a1)

n- n.
where u(pi‘ ) is known because pi“c Pi_|.
(iii) From the possible values of u(pi) satisfying (A1) select
those which are compatible with the corresponding separation for v on

Pi—l by insisting that
_ =) -
v(pyy py) + ulpy) + poulpy) = v(pg, p;7'pypy) + ulpy) + pyulp; ' pyp;
(42)
for j =1, 2, eee i - 1.
(iv) Yor each separation on Pi_l which successfully passes the
test (A2) and for each of the corresponding values u(pi), extend
the separation to Pi by defining
ulpp;®) = v(p, p;%) + ulp) + pulp;®) (43)
where pe P, | and
s ¢ S=1
U-(Pi ) = [V(pi ) pi) + ... + v(pi’ pi)_‘l
s=1 .
+ [p; +eee +p; + e ] ulpgd, (an)

for 05 s = nye.

(v) ™The index i is allowed to run irom 7 to r, except that, if
for some value we can find no solutions to both (41) and (42), then
we will have shown that v is not a 2-coboundary. Utherwise we will
have found all separations of v on 1.

liow let us look at the épecialization of tais algorithn to the
multiplier problem.

) k]
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3. The multiplier algorithm

We recall that for a multiplier the action of P on A is trivial.
An important consequence of this is that u(pi) cancels from condition
(42), implying that this compatibility relation can be tested before
u(pi) is constructed.

Let ¢ be a multiplier for P. We can decide whether or not ¢ is
trivial by carrying out the following construction:

(i) Choose 6 (e) = O

(ii) ¥rom the known separations of ¢ on Pi—
which satisfy

I select those, if any,

‘ib(Pjv Pi) + 5(Pj) ‘P(Pii pi_l Pjpi) * O(Pi- ijpi) mod % (1)

for § = 4y 2y wes 1 = 9a

(iii) For each separation of ¢ on P,_, which satisfies (B1), a(pﬁ
can take any of the ny values
[‘(p-%b ) - (p-n:q s Pi) eee = ¢{p;y P+ k ] /n, mod 2, (B2)
i i i i bt i
for k=005 My e n; - e
Now extend ¢ to the whole of Pi by the formulae

6 (op;%)= ¢(p, p;%) + 0(p) +6(p;®) mod %, (B3)

where p ¢ Pi_ , and

ﬂ(piS)E ¢(pis—', Pi) + oeee + ¢(pi, pi) +s6 (pi) mod %,
(34)

< < e
for O s n;

Iteration of this determines whether or not ¢ is trivial, and if
so, produces all gauge functions @ . Some comments on the practicali-
ties of the algorithm are worth making. For example, in certain circum-
stances, a modification to tne way in which we apply (B1) can lead to
saving of effort. As set out above we think of i as being temporarily
fixed and then we apply (B1) for j = 1, 2, «.. i - 1. On the other
hand, for a given j, there may be values of i > Jj + 1 for which
pi—|pjpi € Pj’ In such cases (B1) can be applied before we get to the
i1th stage and certain separations eliminated earlier than they would be
if we applied the algorithm as it stands. A more significant economy

of effort, however, derives from the observation that two separations of
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the same multiplier can differ only by a linear caaracter. 7To take
adventapge of this we should prepare the ground by computing the linear
characters of all groups in the subnormal series for P. at the ith

stage of the algorithm we do not have to test all separations of ¢ on

Pi-' . In foct if a particulsr separation falls the test (B1), then
50 will a’l separations which differ from it by & linear character of
Pi—| - On the other hand, once we have found a separation which passes

the test (B1), we can immediately write down all others by the addition
of linear characters.

Finally we remark that our algorithm could be adapted for use cn
an electronic computer.
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