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Introduction

The theory of groups has been the mathematical background of all the
well-egtablished parts of symmetry theory in crystallography. This is
valid not only for the classical symmetry consideration in 3-dimension-
al space., It holds, however, for such well-known generalizations as sym
metry in spaces of higher dimensions, black and white symmetry, colour
synmetry.

The aim of this paper is to show that there are serious reasons to
introduce other algebraic notions into crystallographic symmetry theory

The classical symmetry of a crystal structure is given by the coin-
cidence operations of this structure. The set of motions which bring
the crystal structure into coincidence with itself constitutes a group,
the symmebtry group of the crystal structure. In addition to the clas-
gical (total) symmetry operations, there may exist partial symmetry op-
erations: motions which bring only a part of the crystal structure intc
coincidence with itself or with another part of the crystal structure.

In order to illustrate this, a very simple example will be given,
For the fictitious molecule of Fig.1, the regularity of the dlstribu-
tion of atoms is only partly reflected by the symmetry group. Obvious-
ly, the molecule consists of two parts, and three kinds of coincidence
operations may be considered:

1., Total symmetry operations transforming the whole molecule into
itself, e.g. the inversion in the centre of gravity of the mole-
cule.

2. Local symmetry operations transforming one of the two parts into
itself, e.g. 3-fold rotations.

3, Partial coincidence operations transforming one of the parts in-
to the other one, e.g. & rotation by an angle of 60 degrees.

The term "symmetry operations" of an object is used for the (total)
coincidence operations. Accordingly, for a partial coincidence opera-
tion, the term partial symmetry operation is used. This notion refers
to the coincidence operations of the second and third type, although
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Fig. 1 A fictitious molecule consisting of two parts

it is sometimes avoided to use the word "symmetry" in connection with
operations of the third type.

Partial symmetry operations have been considered in crystallography
for different reasons. The main part of this paper is concerned with
the OD theory of Dornberger-Schiff for polytypic structures. In this
theory, the notion of a groupoid has been successfully used for more
than 20 years. Moreover, some other examples are given, where partial
symmetries play an important role, and the notion of a groupoid seems

to be adequate. In an appendix, rigorous mathematical definitions are given.

Polytypic structures. The OD theory of Dormberger-~Schiff

The OD theory of Dornberger-Schiff (see /4,6,7/) deals with polytypic
structures, i.e. structures consisting of layers periodic in two dimen-
sions. The layers may be stacked in different ways. Ordered as well as
disordered structures may result from the different kinds of stacking.
Often the OD theory has been mis-understood as a theory restricted to
disordered structures. Nevertheless, for a substance having an OD struec
ture there may exist many different arrangements periodic in three di-
mensions. In this way OD theory is closely related to traditional crys-
tallography.

The 0D theory explains the phenomenon of polytypism by the presence
of partial symmetry operations and uses these partial symmetry opera-
tions as a powerful tool in solving such structures.

To illustrate an OD structure, let us regard the most typical poly~-
typic structure, silicon carbide. In SiC any layer of the structure con
sists of the close packed layer of C-atoms with one Si-atom below each
C-atom at a distance of 1.89 f. (see Fig.2)., If one layer, say Lo is
fixed, then the atoms of the next layer may occupy one of the two pos—
sible positions. Any layer is transformed into the next one by a trans-
lation either to the left or to the right. The symmetry re—
lations of neighbouring layers may be seen in Fig.3. Any layer has the
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symetry P(6)mm, The threefold axes and one of the two mirror planes
are common to all layers. But the other mirror plane is valid only for
one particular layer. It is a partial symmetry operation. This partial
reflection transforms the two possible positions of L,] into each other.
Thus the existence of the partial reflection may be considered as the
reason for the fact that the position of the next layer is not unique-
1y determined.

More than 100 different ordered SiC polytypes have been described so
far (see /24/). Polycrystalline samples investigated in our institute
contained mainly the polytypes 3C, 4H, 6H, and 15R (see Fig.2), but in
addition to these ordered polytypes about 20 per cent thoroughly disor=
dered SiC.

The description of the symmetry of any SiC polytype may be split in-
to two parts. One part describes the stacking of the layers. Different
notations to characterize the stacking have been developed . Hégg's no-
tation describes the two stacking possibilities by + and - , so that
for instance €6H i1s characterized by +++--- or shorter in the Zhdanov
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symbol by (33), (see /23/). The second part describes the symmetry data
common to all SiC polytypes. This second part is formed by the layer
group, the net constants, and the possible translational vectors lead-
inéfron one layer to the next one. An appropriate description of any
polytypic substance will be discussed later.

SiC is the classic example of a polytypic substance. Other polytypic
substances as for instance ZnS or CdI2 may also be described as con=
sisting of close packed layers., An increasing number of other polytypit
substances with completely different symmetry relations has been stu-
died. Examples may be found among layer silicates, framework silicates,
oxalates as well as among organic substances as polymethins and bio-
logically important substances (compare /8,16/).

Generally speaking, the phenomenon of polytypism is connected with
two conditions:

1. Energetical condition
The influence of next but one layers on the position of a layer may be
neglected.

2, Geometrical condition
There are two or more geometrically equivalent ways in which neighbor-
ing layers may be arranged with respect to one another.

Let us consider the geometrical condition in more detail. We suppost
that a layer of the structure is fixed, say Lo‘ Let L, and L3 be two
possible positions of the first layer. Then the geometrical condition
means that there is a motion transforming the pair (Lo' Lq) into the
pair of layers (Lo, L4). This transformation of layers mey be performe
by one of the following possibilities.

L, —> L Iy, — I,

W  ° ° @)
L, — L} o — 14

In either case, there exist partial symmetry operations. In the first

case, there is a motion transforming Lo into itself, but this motion

is not a coincidence operation of the layer Lq. In the second case L1

is transformed into L, but this motion transforms L  into a new posi-

tion of the first layer.

Let us consider two different layers of the same kind, say Li’ L.e
For a polytypic structure, it is a reasonable condition that the rela-
tive position of the layer Ly to its adjacent layers is the same as ti
relative position of the layer Lj to its adjacent layers,
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In detail: L1 is of the same kind as L. means that there is a coinci-
dence operation transforming L:i. into Lj. Let us suppose (Fig. 4a) that
the upper side of Iri is transformed into the upper side of L.. Then
there exists a motion that brings the pair (Li-'l’Li) into coincidence
with (Lj-'I'I"')‘ Moreover, there exists a motion that brings the pair
(I‘i’I"iM) into the pair (Lj,Lj+,|). If on the other hand, a partial sym-
metry operation from L; into L, transforms the upper side of L; into
the lower side of I";j (Fig. 4b), then there exist motions which trans=-
form (Ly_4,Ly) into (Lj,ij) and (Dy,L; 4) into (Lj-’l ’Ld)' respectively
From these considerations we may draw the following conclusion.

-~ For a polytypic structure, always (strictly) partial symmetry op-

erations exist.
- The phenomenon of polytyplsm may be understood on the basis of par-

tial symmetry operations.

Polytypic structures as discussed so far are OD structures in the sense
of Dornberger-Schiff. They are defined as follows.

An OD structure consists of an infinite number of layers stacked one
onto another, All the layers are the same kind. Further we suppose that
the layers are numbered according to the stacking. The following condi=-
tions are fulfilled:

(i) The layers are periodic in two different directions. Any transla-
tion of a particular layer is a translation of the whole structure

(ii) Let Li’ Lj be two layers of the structure. Then the pairs of ad-
jacent layers (Ly_qsDy)s (LysLy,4) are of the same kind(s) as the
pairs of adjacent layers (Lj-’l’L;j)’ (LJ,Ljﬂ).
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Remarks: (1) The notion OD structure may be generalized, The building
units may be periodic only in one direction. That means, they are rods.
Further the structure may be built of different kinds of building units,
Layer silicates, for instance, are known as beeing built of two or three
kinds of layers.

(2) The condition (i) can be weakened supposing that all layers have a
common set of translational vectors into two direction. Any layer, how-
ever, may have additional translations.

The symmetry of an OD structure may be characterized by the set of
all partial coincidence operations transforming the layers into one an-
other. This set of partial coincidence operations does not form a group.
A more general notion is necessary. In mathematics there are several ap-
propriate notions:

Groupoid (Brandt /2/, Ehresmann /10/)
Mischgruppe (Loewy /17/)
Category with invertible morphisms

(Eilenberg, MacLamne /11/, compare /22/)
Inverse semigroup (Preston, Clifford /3/)
Inductive groupoid (Bhresmann /10/)

From the mathematical point of view, these notions are equivalent or
closely related. The definition used here is a mixture between the no-
tions"groupoid" and "category". From the content it is the same as a
groupoid, but the language used is taken mainly from category theory.
It seems that this definition is the most appropriate one for the ap=
plication to polytypic structures.

A groupoid G consists of

(i) ob G , the get of objects of G
(object: building unit of the crystal structure, e.g. layer)
(ii) [i, jl , 1, Je ob G , sets of morphisms leading from the object
i to the object j.
(morphism: partial coincidence operation)

(1ii) a partial composition of morphisms. The morphisms gqeliq, 31] and
gzﬁ.[iz, jé] may be composed then and only then, if Jq = 12. The
product 8584 belongs to [11, j2]

(The composition is the usual composition of mappings)

For these data the following axioms have to be fulfilled

(1) Existence of identical morphisms
Por amy i ¢ ob G there is an 1, € [1, i] with
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‘Ii =1 ) g e 11 = & ’
whenever the left sides are defined.
('liz identical map of the object i)

(2) Existence of inverse morphisms
For any g ¢ {i, j] there is a g'1€ I i , and
gg—" :1‘-] 5-g=1i
(As the partial symmetry operations are 1:1 mappings, the inverse
mepping is again a partial gymmetry operation).

(3) Associative law
83(8281) = (8382)81
if the products are defined
(For mappings, the associative law is always fulfilled)

Obviously, the set of all partial symmetry operations transforming the
layers of an OD structure into each other forms a groupoid.

In the following we shall consider two problems: How to describe the
symetry of an OD structure? How to classify OD structures?

Description of the symmetry of an 0D structure

¥e know that this symmetry may be described by a groupoid. But this
groupoid is infinite and it is necessary to characterize it by & finite
number of data. For comparison, let us consider the classical case of
normal crystal structures, The symmetry of a crystal structure is fully
described by the group of coincidence operations. This group is also in=-
finite and has to be described by a finite data set. The data commonly
used are the space group and the lattice constants.

Symme try
{(group of motions)

/ \

space group lattice constants
(asb»c-"‘lﬁlf)

Now let us return to OD structures. For the example of SiC, we have seen
that the stacking may be separated. The idea of stacking is, which of
the possible positions of a layer is really occupied. The first notation
for the stacking have been developed for SiC and may be used for guite
a number of other polytypic substances. More general symbols have been
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developed by Zvyagin /27/ for layer silicates. General rules for the
construction of polytype symbols are the result of discussions between
Dornberger-Schiff, Durovi® and Zvyagin and have been submitted to Acta
Cryst.

With the stacking, a great part of infinity of the groupoid is sepa-
rated. Here we will deal only with the remaining part. This part has
been named symmetry principle, because it describes the features common
to all structures of a polytypic substance, ordered as well as disor-
dered structures. To this second part belongs the symmetry of a single
layer. It may be described by the layer group and the net constants.
Over this, to the second part belong all partial symmetry operations
transforming adjacent layers one into another. Any partial symmetry op-
eration may be split into a homogeneous part and into parameters de-
scribing the translational part.

The notion OD groupoid family covers the layer group and the homoge-
neous parts of the partial symmetry coperations transforming different
layers one into another. Thus, the symmetry principle consists of two
parts, OD groupoid family and parameters as shown in the scheme:

Symmetry of an OD structure
(groupoid of partial symmetry operations)

/ 3

symmetry principle stacking
0D groupoid family parameters

(a,b,y,co,r,s,r',s')
el b b

The notion OD groupoid family may be compared with the notion space
group. As in the case of space groups, the number of OD groupoid fami-
lies is also finite. Two problems arise immediatly:how many essentially
different OD groupoid families exist? How to characterize them by sym-
bols? We will return to these problems after a more detailed discussion
of the classification of 0D groupoids.

Classification of OD groupoids

In order to have/reasonable classification, we have to arrange within
a class all those groupoids which do not differ with respect to certain
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features. The classifications of 0D groupoids partly correspond to the
classifications of normal crystallographic groups. In addition, there
are classifications resulting from the fact that we have not the symme-
try relations of a single object, but the symmetry relations of a set
of objects.

The most simple classification considers the number of kinds of objects
In the language of category theory: how many connectivity components
exist in the groupoid, In the following we refer only to OD structures
of one kind of layers, Then we have the following hierarchy of notions:

80 5 3
layer group net type
88 27
symmorphic point group

LGN \
276
symmorphic

0D groupoid family

400
0D groupoid family

Every OD groupoid is associated with one of the 80 layer groups. The
net of an OD groupoid is determined not only by the layer group, but
alse by the restrictions following from the partial symmetry operations
transforning different layers one into another.

For an OD structure consisting of one kind of layers, there are thre¢
cases how neighbouring layers may be transformed into each other. Ac-
cordingly, three types of CD groupcids exist (Fig.5). In the first case
the layers are apolar, Hence, there are transformations bringing the
upper side of L, into the upper side of L, as well as transformaticns
bringing the upper sode of Lo into the lower side of L4+ In the second
and third cases the layers are polar. In the second case there is a
transformation bringing the upper side of I'o into the upper side of L."

but there 1s no coincidence operation bringing the upper side of I'o intc
the lower side of L,. In the third case we have coincidence operations
bringing the upper side of L0 into the lower side of I,, but no coinei-
dence operation brings the upper side of I'o into the upper side of L,.
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Remark: Instead of the notion type, in other papers (e.g. /6,9/), the
notion category is used.
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A |, Fig. 5 The three types
of OD structures

For any OD groupoid there is a point group. It is the group generated
by the homogeneous parts of all partial symmetry operations of the group
oid. It is easy to see that there occur all non~cubic point groups.

The notion OD groupoid family has already been introduced. It is that
part of an OD groupoid which remeins if we abstract from the stacking
and from the parameters. An exact mathematical definition of the notiorn
0D groupoid family has been developed on the basis of category theory
(see /13/).

The other notions 1n the scheme are of interest only in connection
with the derivation of a complete list of 0D groupoid families.

Dornberger-Schiff and Grell-Niemann /9/ reported on a first list of
OD groupoid families in 1961. On the basis of mainly geometrical consid-
erations they obtained 333 OD groupoid families. A second list /6/ pub-
lished by Dornberger-Schiff in 1964 contained 339 OD groupoid families,
but was still incomplete. In order to obtain a complete list and to
avoid errors, I have generated a new list with an algebraically based
method and by means of a computer (compare /12,14/). The method consists
of three steps. In the first step the possible combinations of net and
layer group have been derived. This combination of layer group and net
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has been indicated by the three letters LGN. Then in a second step, for
0D groupoid families the symmorphic layer groups have been calculated,
This is the most complicated step. In a last step the list was extended
to all layer groups.

The new list contains 400 OD groupoid families. This number may be
reduced, if those OD groupoid families are excluded, for which the po-
sition of a layer is uniquely determined with respect to the preceeding
lgyer. Among the remaining OD groupoid families there are 14 enantio-
morphic pairs, so that the number may be further reduced to 363,

Symbols for the OD groupoid families have been developed in the late
fifties by Dormberger-Schiff (compare /6,7,15/). The symbols give in
the first 1line the layer group and in the second line all possible trans
formations from a layer to an adjacent layer. For the example of Fig.6
the symbol is

P m m (n)
21,25 24,5 - L
"0.5,2 P2,0.25 ™.,25,1.5

In many cases these full symbols are rather complicated. Therefore, in
/15/ short symbols have been proposed. In these short symbols only one
of the possible transformations from layer to layer is given. In our ex-
emple the layers are translationally equivalent. Therefore, the symbol
may be given as

Pmm (n) | 1, r=0.125, s=0.25

b

Lias
}

F

—
Y|

fig. 6 Schematic example of an OD groupoid with translationally equi-
valent layers.
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Diffraction enhancement of symmebtry due to partial symmetry

Whereas the basic idea of OD theory is to express the features common
to a whole set of polytypes, partial symmetries may be of importance,
if we consider only one particular crystal structure. It is supposed
to be periodic in three dimensions. Therefore, a space group for the
cheracterization of symmetry exists. But in addition to the total sym-
metries partial symmetries are present, and they may influence the sym=-
metry of physical properties of a structure. The notion "Diffraction
enhancement of symmetry", introduced in /21/, has been used for the fol-
lowing phenomenon. The symmetry of the diffraction pattern of a crystal
is higher than expected from the point group symmetry of the crystal
and Friedel's law. A number of Japanese crystallographers has theoreti-
cally dealt with this problem (compare /20/). Although rather compli-
cated theoretical examples may be constructed, the actually known exam-
ples are among polytypes of SiC, ZnS, mica etc. In these examples the
diffraction enhancement of symmetry may be understood as & result of
the existing partial symmetries. The OD theory provides a very good
tool to understand the phenomenon.

As an example, let us take the polytype 10H of SiC (see /19/). This
polytype is trigonal (space group P 3m1), but the diffraction symmetry
is strietly hexagonal (point group 6/mmm), This may be understood as a
result of partial symmetries. The single layer has the symmetry P(6)mm,
For any stacking, the 3-fold axes and the mirror plane perpendicular to
the main axes are total., From Friedel's law it follows that the diffrac-
tion symmetry is at least 3m1., Enhancement of the symme try of the dif-

Fig. 7 Stacking sequence in the polytype

-5 10H. The structure is strictly tri-
-4 gonal, but the symmetry of the dif-
-3 fraction pattern is 6/mmm. The vec~
2 tor P;F, is transformed into P{F}
1 by a twofold (screw) rotation,
0 Byt Gy Foy 8900
+1 Py (129 Tos 22)(m)
+2 Pft Gy, Fgo @
4'3 Pé= (i2s 521 22)(n)
+4
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fraction pattern to 6/mmm occurs for all polytypes, for which the
stacking sequence is symmetric as for 10H.

Fig. 8 Theoretical example for dif- B C
fraction enhancement of sym-
metry (after /20/).
OABC indicates a unit cell.
The total symmetry is p 13
the diffraction symmetry is
4.

From the existence of two-fold symmetry axes for any layer and the sym-
metry of the stacking, it follows that there is a 1:1 correspondence
between interatomic vectors in this structure (Fig.?7). Every vector is
transformed into its counterpart by a twofold rotation around an axis
perpendicular to the layers. This correspondence of interatomic vectors
is a sufficient condition for the symmetry of the diffraction pattern.

In /20/ the term "enhancement due to local symmetry" has been used

in a far more general sence. Let us consider the theoretical example of
the plane structure given in /20/ (see Fig.8). OACB indicates a unit
cell, Obviously, the symmetry of the whole structure is p 1, but it can
be proved that the diffraction symmetry is 4. The structure mey be con=-
sidered as consisting of several substructures, each formed by the or-
bits of the vertices of a square. All the substructures have the symme-
try p 4. From this higher symmetry of the substructures originates the
enhancement of symmetry of the diffraction pattern.

This example is more general compared with the previous one with regard
to three points.

1. Any two squares of different substructures are different in size
and may be transformed one into the other only by an affine trans-
formation.

2. Different substructures have common atoms.

3. The transformation of one substrueture into another one is possi-
ble only by a rather complex transformation.
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The notion of a groupoid may also be used for this example. The differ-
ent substructures are the objectsof the groupoid. The transformations

of substructures are the morphisms. The axioms of a groupoid are ful=-

filled. It should be pointed out that the morphisms between different

substructures are no longer p&%ial symmetry operations (compare point

1 and 3).

Non-crystallographic symmetry in proteins

Other examples of non-traditional symmetries in crystallography are the
socalled non-crystallographic symmetries. For many proteins, each crys-
tal asymmetric unit contains several identical or closely related sub-
units. The operation which superimposes one of these subunits onto an-
other one is only a partial symmetry operation. It is not in agreement
with the crystal lattice and therefore it has been named a "non-crys-
tallographic" symmetry. But these partial symmetries may facilitate the
determination of such a structure, In some extend the effect of non-
crystallographic symmetry is the same as the effect of normal crystal-
lographic symmetry. It results in decreasing the size of the structural
unit to be determined.

By Blow /1/ some important cases of non-crystallographic symmetry
have been quoted:

1. Particle symmetry is not that of a crystallographic point group
(a) non-crystallographic point group
(b) helical symmetry

2. Particle has exact point group symmetry which is not incorporated
into the lattice.

3. Several identical particles are in crystallographic unit, without
systematic relationship.

4, Particle symmetry is approximate.

It is obvious that such partial symmetries may occur not only in case
of proteins and viruses, but also in less complicated structures. Exam-
ples have been given by Watanabe /25/ and by Zorkii /26/.

Let us now consider the question how the symmetry of a structure of
this kind may be described. The aim is to include the total symmetries
as well as the partial symmetries. The structure may be divided into
appropriatly chosen building units. These units may be, for instance,
molecules or parts of molecules. The building units are considered as
the objects of a groupoid, and the coincidence operations of the objects
are the morphisms of the groupoid. The groupoid includes the total and
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the partial coincidence operations of the structure,

Let Uy be one of the building units and M the set of sll coincidence
operations which start from ug e Then any total symmetry operation be~
longs to M, and we may consider M as the sum of the group G of total
symmetry operations and a set H of strictly partial symmetry operations,
H=M\G. Only the total symmetry operations g fulfill the following
condition: The composition of any h of M with g is again a motion h' of
M. M= G + H is a "Mischgruppe" as defined by Loewy /17/. G is the ker-
nel or nucleus of this Mischgruppe and H its shell.

The great advantage of this characterization of total and partial
symmetries is that the total symmetries obviously play a special role.
The classical crystallographic groups are included into this character-
ization. For them, the shell is emty. As building unit, the asymmetric
unit of the crystal structure may be chosen. The investigation and ap-
plication of groupoids or Mischgruppen of this kind is in its starting
rhase. In the abstract /18/ of a lecture given in 1978 W.Nowacki infor-
pmed that the derivation of all 3-dimensional crystallographic space
groupoids is being performed.

The survey on the application of groupoids in crystallography is stil
incomplete. Modulated structures form an example for which partial sym-
metries play an important role. Up to now the groupoid theory has not
been applied to modulated structures, although an applicatlon seems to
be pessible., The symmetry of all kinds of composite crystals as twins,
for instance, may also be described by groupoids.

Summary
Finally, I would like to summarize the main ideas on groupoids in crys-
tallography
- There are various branches of crystallography, in which partial
symmetries are of relevance in addition to normal (total) symmetrie

- Structure determinations are facilitated, if partial symmetries are
taken into account.

- Groupoids as well as scme other mathematical structures closely re-
lated to groupoids are adequate to describe partial symmetries.

- There is a profound mathematical background for the description of
partial symmetries. In addition to papers on groupoids parts of
category theory and the theory of semigroups are applicablée.
Nevertheless, this mathematical background has not been used
extensively so far.,



- If only one crystal structure with total and partial symmetries is
considered, the notion of a Mischgruppe equivalent to that of a
Brandt groupoid seems to express the symmetry of the structure in
the most appropriate way.

of
- The OD theory of Dornberger-Schiff explains the phenomenon/polyty-
pism by the existence of partial symmetries.

— In the OD theory groupoids are used
(i) to describe the symmetry of polytypes;

(ii) to split the symmetry of a polytype into a part characteris-
tic for an individual polytype and a second part describing
the common features of all polytypes of a polytypic substanc

(1ii) to classify all the polytypes consisting of equivalent layers
into a set of 400 families which essentially differ with re-
spect to their symmetry.

- The phenomenon that the symmetry of the diffraction pattern of a
crystal structure is higher than expected from the point group of
the structure is often a result of the presence of partial symme-
tries.

- For many proteins the asymmetric unit becomes less complex, if in
addition to normal crystallographic symmetries socalled non-crys=-
tallographic symmetries (i.e. partial symmetries) are considered.
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Appendix - 8-
The aim of this appendix is to give precise mathemeotical delinitions

of the notion of an OD groupoid and of the equivalence classes for CD
groupoids described in this paper. In more detail, the¢se notions have
been considered in /13/,/14/,8nd /2&/. At first, some notations znd some
useful auxiliary definitions will be ¢iven (1=7).

1. A dencotes the group of all affine transformations of the 3-dimen-
sional Euclidean space, BCA is the subgroup of all motions, and TCB
is the group of all trenslations. Z is the set of all integers.

2, A denotes the groupoid of affine transfor-

mations: obA=2Z

mor & = {(i,,j,q) | i,ie¢Z,0ch ]
composition: (J,kyos)e(i,dy0n) = (i,kye o)
3 The groupoid of motions B is a subgroupoid of
with

15

ob B = cb 4

(iyjy>)€emor B —~ = €B

4, yimor A— A is a mapping, which "forgets" the objects that are
connected by the morphisms of A: (Lydyx) = o,

5. The subgroupoids 21,112 B are geometrical equiv-
alent in GcA (notation: ¥, gEE ) then and only then, if
there exists a mapping w: ob ¥ — mor G such that

(i) w induces a bijective mapping (isomorphism of groupoids)
F: ¥, — VU, , defined by

if ieob ¥V, and m(i)e[i,i']G ; then F(i):=i'eob ¥, ;
if @ e{i,a’JV1 , then  F(@):=w(3)g w(@) e [F(i).F(J')]VE ;
(11) v(w(i)) = »(w(3)) for all i,j € ob ¥, .

The condition (ii) may be weakened. We say that the subgroupoids V,,V,
CBaregeometrical equivalent up to trans-
lations, if there exists a mapping w': ob \_r,l — mor G such
that the conditions (i) and (ii)' are fulfilled.

(ii)* The homogeneous parts of v(w (i)) and v(w (j)) are equal,
for all i,jeob ¥, .

6. EG(i,i+‘l,...,:j) denotes the full subgroupoid of G with {i,‘1+’l,

«ss3d} as set of objects.
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7. Let ¢ be & vector of the 3-dimensional space and 1, denote the
corrgsponding firanslation. Then we define a function x.: B — -{O,’I,—’]}

by +1 it BrE) =
=t
x'(B) | if BB = Tp (B e B)
(0] otherwise

ks for sny 0D proupoid G a vector r = o¢x ¢ exists, we may denote
the corresponding function Xp by x , or simply by x , if confusion

cannot arise.

8, A subpreoupcid GCB is said tobean OD groupoid,
if it satisfies the following conditions:

(1) If ieZ , then T, :={tv | (i,1,T)€G ,TeT} forms in T
a subgroup, generated by two non-parasllel translations. We sup-
pose Ti = TO for 211 i€ Z and denote the vectors of two
generating trancslations by o , & .

(ii) If (i,j,B)e G , then

G

RIGY

L(B)=+1 === Eg(i.i“) \_{g_(a“,;iﬂ) ~ \_f_g(i,i—’l) V_G_(.J',J-’l)

Ris>
RI2

’X.(B):—'I S==> ‘_fg(]‘_,l—’l) \_fﬁ(J’J+’i) ~N Eg(i'i’i',!) EQ(J)J—’I)
(iii) (1,J,B)e G A (i+1,j+1,B) e G === X (B) = +1 ;
(1,34B8)e G A (i+7,j~1,B)e G === %(B) =1 3

(1,0,B)e G A i3 A X(B) = 41 ===3 The translational

part of £ 1is linearly independent of &, ¢ .

(iv) G is connected, i.e. [i,j]G is nconempty for all pairs of
objects 1i,je Z. -

In a more general definition of the notion of an OD groupoid, the
condition (i) may be weakened and (iv) omitted.

9. The 0D groupoids Gq and (_}2 are of the same ¢t y p e then and
only then, if there exists & mapping ¢ : 2 — 2 with the following
properties:

(i) ¢ is an order-isomorphism or an order-anti-isomorphism (in
reference to the usual order in 2).

(ii) (i,3,8)€ G4 with x(B)=+1 exists if and only if there exists a
(p(i)y 9 (3),B)e G, with x(B)=+1; (i,3,B8)e G, with x(B)==1
exists if and only if there exists a (ga(i),(,a(j),ﬁ)egg with
x(B)==1 .
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10. In the followine, a erystulleprinii

¥y s 5 greun ol mo-—

tionsg, whose subzrour of trarslibionsg 2,

: ronercied by Swo linoarly
independent translations.

~

1. The crysssllopraphic groups 5., G2 selow to the s

£ r oupn (more exactly aifine layer groun tyne), il bhere is an

affine transforastion « ¢4 such that Gg= =G, o .

12. Let Tay TH be two translstionzl rcroups, each of tham generated
by two linesrly independent translifions. They belong tu the same
Brauvais net , i in each of the 82 layer rroups (tyves),
either both T4 and T2 or non of them ocear as subpyroups off all
translastions.

13, The crystallographic groups G, Gz belons bo the same LGN
il there exists an affine mapuving o such tbhab
(i) G-2 = o\G1 0--1
(ii) If G, is a crystallograrhic group with T = T and G
3 Gy 4, 4
is a crystallographic group with TG = 'I‘G s then m(}Bm =
i 74

and « G v»'1 are crystallographic grouns, too.
4

14, The crystallographic group G is called s ymmor ophic,
if it is the semidirect product of a subgroup GOC G and TG . Corre-
spondingly, we speak of a symmorphic OD groupoid, if the crystallo-—
graphic group belonging to a single object is symmorvhic. A layer
group is called symmorphic, if its members are symmorphic.

15, OD groupoid family
Let G4, G, be two OD groupoids, P a positive inteper, and (C,F,B) ¢ G,
satisfying x(B) = +1. G, G, belong to the same 0D groupoid
family, if and only if an 0D groupoid G and intepers 1i,je¢ 2
exist such that

EG(i, eees »i+P) 2nd EGq(O, sainr gD
as well as Vu(J, «us 4J+P) and EGE(O, G )

are geometrical equivalent in A up to translaftions.

This definition leads to 383 OD groupoid families, 17 of them split
into pairs of enantiomorphic families, if we accept only geometrical
equivalences which do not change the orientation of an aporopriatly

chosen triple of vectors (e.g. 014y €4, and the translational part
of B).



