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1. Introduction

This is the second of a series of three papers on constructing crystallographic
groups and their subgroups. In the first paper ([9]) partially periodic groups were
classified and a dimension-independent algorithm for their censtruction was derived
that can be regarded as a generalization of Zassenhaus' algorithm for space groups
{[171).

In this paper we shall study subgroups of crystallographic groups. During the last
years the investigation of phase-trans{tions has brought along increasing interest
in the determination of subgroups of crystallographic groups ([3]). In most cases
only such subgroups of space groups have been studied that are themselves space
groups . However, there seems to be a growing interest in partially periodic sub-
groups, as well. Therefore, in this paper the problem of finding the subgroups of a
given crystallographic group is discussed in full generality.

We use the terminology and the notations from [9]. In particular,an (n,r)-group C is
an n-dimensional crystallographic group with an r-dimensional translation lattice
L(C). The corresponding translation subgroup is denoted by T(C), and the linear
constituent of C is denoted by P(C).

We show in Chapter 2 that the problem of finding all subgroups of the crystallographic
groups of a given crystal system can be reduced to the determination of the maximal
subgroups of the following three types.

1.1 Definition: Let C be an (n,r)-group. A subgroup U of C, which must be an (n,s)-
group with s<r, is called of
type 1 ("zellengleich", translation-equivalent) if L(C)=L(U), and
hence the index C: U is finite,
type IT  ("klassengleich", class-equivalent) if P(C) =P(U) and s=r, and
hence C: U is finite,
type III if P(C)=P(U) and L(U) is a direct factor of (the Z-module)
L(C), and hence U=C or s<r and C:U is infinite. o

The type I-subgroups of a crystallographic group C are in l-l-correspondence with
the subgroups of its finite linear constituent P(C) and thus can easily be found
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with existing computer programs. Moreover, for n<4 the subgroup Tattices of the
n-dimensional point groups are well-known ([7]1,[1]1,[5]). Therefore, we only treat
the type II- and type IIT-subgroups.

In Chapter 3 we derive methods for determining all type II- or type IlI-subgroups
with a given translation lattice. Therefore,all subgroups of a crystallographic
group C can be found if one knows the ZP(C)-submodules of L(C).

The ZP(C)-submodules which yield type III-subgroups correspond to QP(C)-submodules
of QL(C) and can be determined by classical representation theory.

The ZP(C)-submodules of L(C) which yield type [I-subgroups could be determined by
methods developed by W.Plesken ([16]).

Instead of determining the type II-subgroups via the ZP(C)-submodules of L(C), we
use a method due to J.Neubiiser and H.Wondratschek ([13],[14],[15)). Maximal type II-
subgroups of an (n,r)-group C are of prime power index p*, 1<a<n, in C. For each
integer p* all subgroups U of C of index C:U=p* can be determined by computer
programs ([12]). We show in Chapter 4 that for n<3 only the prime divisers p of the
order of P(C) have to be considered if one neglects the subgroups of C which are
affinely equivalent to C.

The "name" of the subgroups, i.e. their affine type, can easily be determined using
a method proposed in [9].

In a subsequent paper we shall propose a dimension-independent algorithm for
determining all type II- and type III-subgroups of space groups and of partially
periodic groups.

[ Tike to thank Professor J. Neubliser and Dr. W. Plesken for their advice,
suggestions and corrections.

2. The Types of Subgroups of Crystallographic Groups

We Tist some more or less trivial properties of the three types of subgroups defined
in the introduction.

2.1 Proposition. Let C be an (n,r)-group with r>1.

a) The number of type I-subgroups of C is finite.
b) The number of (maximal) type II-subgroups of C is infinite.

Proof: a) follows from the finiteness of P(C).

b) Let p€ N be a prime number not dividing the order IP(C)| of the linear constituent
of C. Then p - T(C) :={(p-t,e) | (t,e)€T(C)} is a normal subgroup of C and the factor
group T(C)/ p - T(C) has a complement U,/ p-T(C) in C/p - T(C) (Schur-Zassenhaus
Theorem [6]). Thus U, is a type II-subgroup of C. As the index
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€Uy =T(C) : T(Uy) =T(C) : p - T(C) =

is finite, there is a maximal type II-subgroup M, of C containing U . For different
primes p and q the associated groups Mp and Mq must be different because they have
different indices in C. o

2.2 Remark. The number of type III-subgroups of a crystallographic group can be finite
or infinite (see Theorem 3.2). o

By the following proposition, which generalizes an observation of C.Hermann ([8]},
the problem of finding all subgroups of a crystallographic group is reduced to the
determination of (maximal) type I-, II-, and III-subgroups.

2.3 Proposition. Let U be a subgroup of a crystallographic group C. Then there are
uniquely determined subgroups V and W of C such that

() U<v<W<e
FE TIL

W is a type I-subgroup of C,
V is a type III-subgroup of W,
U is a type II-subgroup of V.

Proof: The groups
Wi=¢U,T(C)
and
) '=(U,QT(U)f\T(C)
:=(U,(t,e) | teqL(U)NL(C))
s= s t,e) | teL(C), m- teL(U) for a suitable me€ N}
trivially fulfill the first and the last condition.

Since the pure Z-submodule L(V) =QL(U)NL(C) of L(C) is a direct factor of L(C)
([6,p.100]), V is a type III-subgroup of W.

To prove the uniqueness of V and W, we show that all groups V and W fulfilling (x)
coincide with <U,QT{U)NT(C)> and (U,T(C)}, respectively. Since L(W)=L(C) and
P(N) =P(V) =P(U), W=CU,T(C)>. As U is of finite index in V, QL(U) =0QL(V). Since
L(V) is a direct factor of L(W), L(V)=QL{V)NL(W)=QL(U)NL(C) {[6,p.100-1011}),
and therefore V=(U,QT(U})NT(C)>. o

The position of these groups in the subgroup lattice of C is represented by the
following diagram, the double lines indicating finite indices:



T(C) =T(W) o v ={U,pT(UNT(C))

2.4 Corollary. A subgroup U of a crystallographic group C is maximal if and only
if U is a maximal type I- or type II-subgroup of C.

Proof: The type IlI-subgroup V of W in Proposition 2.3 cannot be maximal in W as
for V+ W the group Z:=(V,2-K>, where K is a Z-complement of T(V)=qT(U)nT(C)
in T(C), is properly contained in W and Z properly contains V. Therefore, the group
U of Proposition 2.3 can be a maximal subgroup of C only if U=W or C=V.

The converse is obvious. o

Since a type III-subgroup is never maximal, the term maximal type I11- subgrowp
denotes a proper type II[-subgroup not contained in any other proper type 11I-sub-
group.

As the group W of Proposition 2.3 is of finite index in C, there is only a finite
number of subgroups of C containing W. The same holds for the pair of groups V and U.
Since, moreover, the dimension of L(W) is finite, every subgroup U of C can be
reached from C through a finite chain of subgroups

C=U>U;>...>U0=U
such that for i=0 ... 1-1 the group Uj,y is maximal of type I, II, or III in U;.
Thus, to find all subgroups of the crystallographic groups of R®, it is sufficient to

determine the maximal type I-, [I-,and [II-subgroups of all (n,r)-groups with
0<srsn,
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2.5 Proposition. Let C and U be crystallographic groups.

a) U is a maximal type I-subgroup of C if and only if U is a type I-subgroup of C

and P(U) is a maximal subgroup of P(C).

b) U is a maximal type II-subgroup of C if and only if U is a type II-subgroup of C
and its translation lattice L(U) is a maximal ZP(C)-submodule of L(C).

¢) U is a maximal type III-subgroup of C if and only if P(U)=P(C) and

QL(U) = {t€R" |m- tEL(U) for a suitable me N} is a maximal QP(C)-submodule of QL(C)
and L(U) = QL(U) " L(C).

The proof is straight-forward. o

He prepare the method for finding the maximal type II-subgroups described in Chapter
4 by the following

2.6 Proposition. Let U be a maximal subgroup of C of type II. Then there exists a
prime number p such that
p-L(C)<L(U)
holds, i.e. the factor group L{C)/L(U) is elementary abelian and
C:U=L{C):L(U)=p* with l<a<r=dim L(C)=dim L{U).
Proof: Since U is a maximal type II-subgroup of C, L(U) is a maximal ZP({C)-submodule
of L(C). Let pe N be a prime divisor of the index L(C):L(U). Then p -L(C) is a
Ip-submodule of L(C) and thus p - L(C)<L(U). By the isomorphism theorem C/T(C) is
isomorphic to U/ T(U) and hence C: U=L(C):L(U). o

If one has found a subgroup of a crystallographic group, one usually does not know
its "name", i.e. its affine class. This name can be obtained by first determining
the Z x @-class of the subgroup and then applying the method of [2, footnote in
Chapter 5].

On the other hand, the announced algorithm in [10] automatically yields the affine
classes of the subgroups.

3. Finding subgroups with a given translation lattice

Throughout this chapter let C={{v, +t,p) | peP, teZ¥} be an (n,r)-group and M
a IP-submodule of Z¥ of dimension s<r such that either s=r or M is a Z-direct
factor of ZF.

There is a type I1I- or type III-subgroup U of C with L(U) =M if and only if the
factor group C/ Ty :=C/ {(t,e) [t€M} is a split extension of T(C) /Ty, i.e. there
is a complement U/ Ty of T(C) /Ty in C/T,.*

% In cohomological terms: The cocycle defining the extension C of T(C) by P

induces a coboundary on T(C) /TM.



T(U) -'TM:M

Different subgroups U and U* need not be affinely equivalent, but there are only
finitely many conjugacy classes because the number of conjugacy classes of complements
U/ Ty of T(C) /Ty in the factor group C/TM js finite® and U is conjugate to U™ din e
if and only if U/ Ty and U"/TM are conjugate subgroups of C/Ty,.

3.1 Proposition. The number of subgroups U of the (n,r)-group C with L(U)=M is
a) finite if the dimension s of M equals r,
b} 0,1, or infinite if M is a direct factor of Zr.

Proof: a) Since C is finitely generated and M is of finite index in C, there are
only finitely many type II-subgroups of C with L(U) =M.

b) Let U* be a type III-subgroup of C with L(U*)=M and Tet v*:P->Q¥ be a vector
system of U*. The vector systems of C form a coset v¥+T :=v*+{t| t:P-Z¥} and the
vector systems of type III-subgroups U with L(U) =M form a coset v*+S, where S is a
subgroup of the free abelian group T. Hence S is free abelian. Different vector
systems in v*+S define the same type III-subgroup U if and only if their difference
is a vector system s€{t|t:P-M}=:R, i.e. the type III-subgroups U of C with

L{U) =M are in 1-1-correspondence to the elements of S/R. Since M is a direct factor
of Z*, R is a direct factor of T and thus a direct factor of S, as well, i.e. S/R is
free abelian and its order must be one or infinite. o

The following examples illustrate Proposition 3.1. They show that there need not
exist a type IlI-subgroup U of C with L{U})=M and in case it exists, it need not be
unique. Similar examples for type II-subgroups can easily be constructed (see Chapter ¢

3.2 Examples. Let C={(vp+t,p) I peP, teZ3) be the space group defined by

#) The conjugate classes of complements correspond to the elements of Hl(P,Zr/M)

and this cohomology group is finite as P is finite and 2% /M is finitely
generated.
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100 1/2 0
P=(a=1010 s Vy= | 0 and v.= |0] .
00-1 0 0

a) There is no type III-subgroup U of C with

L(U) =M := {[g] | x.yeL}

because
X 2 2x +1 2x +1 X
vt lyl|sal = 2y |, el and 2y | &M for any |y| €23,
z 1} 0 z

X

b) For M:= { [yJ | x,yel} there is an infinite number of (translationally
0

equivalent) type III-subgroups U; of C with L{U;) =M, namely

) ) 1/2
Ui:={(v;+t,P)IDEP, teMl with v;=0 and v;={ 0 ] , €.

i
X
¢) For M:= {[o}
y

is the only one with L(U) =M, because

X 2 2x +1 X
Vot |yps @ = 2y ,e| €U implies y=0, i.e. Y EM o
z 0 z

Different type II- or type III-subgroups with the same translation lattice M need
not be affinely equivalent, as Example 3.4 shows for type III-subgroups. If, however,

x,yel} the type III-subgroup U= l(vp+t,p) | peEP, teM}

M is not only a Z-direct factor but has even a ZP-complement, then we get

3.3 Proposition. Let C={(v,+t,p) | pEP, teZ"} be an (n,r)-group and let
I*=M @ K be a decomposition of Z* into ZP-submodules M and K. Then all type I1I-
subgroups U of C with L{U)=M are translationally equivalent.

Proof: Let U and U* be type III-subgroups of C with L(U)=L(U*) =M. Since their
vector systems v' and v* are defined only up to vectors in M, we can assume that
vé-v;E K for all p€P. We have to show that the vector system t:P-K, tp ::vl‘)- v;,
defines a split extension of M by P. From t €K and
T

tpq = Vpq ™ Vpa
for all p,q€P we obtain

tpq = tp+p g tq, p.q€P,

= y! T - 5 =
FVLEP VgV o Pt Vg mod M to+p thK

i.e. t defines a symmorphic group. o

We reformulate the above results in terms of the generalized Zassenhaus algorithm
(see [9] for the following). This will yield algorithms for finding ail type II- or
type III-subgroups U of C with L(U) =M. Let
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P=(ps..uaby | rl(pj)= ...:rm(pj)=e)
be a presentation of P<GL(r,Z)xGL(n-r,Z) and Tet REZ ™ ¥ ¥ be the matrix
corresponding to the defining relations Fiaeeesly of P. Then, for the vector VE Qr'k
consisting of the components vpl,...,vpkeuzZ the congruence

R-V=0 mod Z* ™™
holds. There exists a subgroup U of C with P(U)=P and L(U) =M if and only if there
is a vector system v+t, t:P=Z%, of C such that for the corresponding vector
V+T, TEZX, the congruence

R+ (V+T)=0 mod M"

holds. The solutions of this system of diophantic equations can be found by methods
similar to those used in the Zassenhaus algorithm (see [4]). If there is a solution
V0=V+TD, all solutions form a coset

Vo +{TEZEF [R-T=0 mod M.

Different solutions define the same type II- or type III-subgroup U if their difference
lies in M, because a vector system of U is determined by U only up to M.

Therefore, the factor group
(TeZ" ¥ |R-T=0 mod M} / ¥
corresponds to the subgroups U, i.e. for a representative set 7T of this factor group
the vectors
VO+T, Ter
uniquely define the type II- or type III-subgroups U of C with L(U}=M.

If s=r, then a representative set 7 can easily be calculated by constructing
compatible bases of the finitely generated Z-modules {TElr'k |R-T=0 mod M0} and
Mk
For s<r a set T can be determined as follows. As Z" is a direct sum of M and a
complement K, say, we can assume that the elements of P are of the reduced form
M -
p- [0 BFo ) | BRsdfed), prezs’ O
00 pn  prEGL(r-s,l}, p"EGL(n—rl)
G _ 2 . ¢ 3 ' (r-s)*mx (r-s)k
Now the condition R+ T=0 mod M is equivalent to R' - T' =0, where R'€Z
and T' €27}k ape obtained from R and T, respectively, by cancelling the rows and
columns corresponding to M (see Example 3.4). The set 7 is in l-l-correspondence to
Pre {Thap el | pr s o).

3.4 Examg]e. Let n=r=2, s=1,

P'= (p— r(p) =p -e> , and C the symmorphic (n,r)-group with linear

constituent P and vector system v:P->(0), i.e. V=vp= [8] . The lattice M= <[[1)]>

is a ZP-submodule of Z%, and K= <[1 is a Z-complement of M. As C is symmorphic,
there is a type III-subgroup U of C with L(U) =M, and we have only to determine the
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set 7' to get all such subgroups. We get R=(e+p)= (g é) = (g é) and
T [1] er" 72, Now

Tr= (T €ZY | RY « TV =0} =AT &€Z | 0- T" =0} =Z,
and 7' corresponds to

r={ [g] c P’ T er.

The type III-subgroups U,l defined by v; :vp + {?J , ier'=F, are symmorphic if and
only if 1 is even, i.e. we have two affine classes of subgroups. o

The above derived methods reduce the problem of finding all type II- and type III-
subgroups of C to the problem of determining the maximal ZP-submodules of Z° (of
dimension s=r) and the ZP-submodules of Z* that are direct factors of Z°. The maximal
ZP-submodules can be determined by methods developed in [16], while the direct factors
Mof Z¥ are in 1-1-correspondence to the QP-submodules 0 of @ via

M=QnZ", Q=QM
{Proposition 2.5c).
The number of QP-submodules of Q" is finite if and only if the homogeneous components
of @ are irreducible {[61). The homogeneous components can be determined by means of
representation theory. Therefore, all QP-submodules of §" can easily be found if the
homegeneous components are irreducible, while the problem of finding all irreducible
constituents of a reducible homogeneous component need not be trivial.

For r<3, however, all non-trivial QP-submodules of Q° can easily be found, as they
must be of dimension one or two, and thus they are Q-subspaces of the intersection of
eigenspaces of all elements of P or orthogonal complements of these intersections.

4. Maximal Type II-Subgroups

We propose a method for deriving maximal type II-subgreoups of a crystallographic
group which is essentially due to J.Neubliser and H.Wondratschek ([131, [14]1, [15]).

Let C be an (n,r)-group. To obtain all maximal type II-subgroups of C, one only has

to find all subgroups of index p® for each prime number p and l1<a<r and select the
maximal type II-subgroups from this set (Proposition 2.6). For each fixed prime p this
can be done by existing computer programs ([12]).

By the proof of Proposition 2.1b) there is a maximal type Il-subgroup of index p*
for every prime p not dividing [P(C)|. So we really have to take into account all
primes. However, concentrating on the maximal type II-subgroups that are affinely
inequivalent to C, we have to consider - at least for n<3 - only the prime divisors
of IP(C)I because of

4,1 Theorem. Let U be a maximal type II-subgroup of the (n,r)-group C with index
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C:U ;p“. If n<3 and p does not divide IP(C)I, then C and U are affinely equivalent.

The rest of the paper is essentially the proof of this theorem, that was conjectured
and partla11¥ proved by J.Neubliser and H.Wondratschek. They observed that for n<éa
maximal type II-subgroup U of a space group C whose index C: U= p is relatively
prime to [P(C)l is always arithmetically equivalent to C ([5]). In other words, a
maximal ZP(C)-submodule M of L(C) with L(C) : M relatively prime to IP(C)| is Z-
equivalent to L(C). Of course, this observationholds also for (n,r)-groups with
I<r<n<4, i.e. if C:U is relatively prime to IP(C)! then P(C) is Z x Q-equivalent
to P(U*), where U* is the natural representation of U with L{U*)=Z". Therefore, we
can assume that the subgroup U of Theorem 4.1 has a translation lattice L(U) which
is Z-equivalent to the ZP-module L(C).

We shall prove Theorem 4.1 by derivinga series of sufficient conditions which, when
imposed upon C, yield the affine equivalence of C and U. For n<3 every (n,r)-group
C fulfills at least one of these conditions.

Before we prove Theorem 4.1, we cite two counterexamples which show that it does not
hold for arbitrary n.

First, an example by W.Gaschiitz ([5]) shows, that for n=22 L(C) and L(U) need not
be Z-equivalent ZP-modules.

Second, C and U can be affinely inequivalent even if their Tinear constituents are

Z x Q-equivalent as the following unpublished example by W.Plesken shows for n=11.

4.2 Example. For i —l,...,lO Tet e, €Z'© be the column with 1 in the i-th row and 0
otherwise, and let e, =~ Ele Let p;,pge GL(10,Z) be matrices composed of the

columns e; €Z' as follows
o .
py=(ey..eep )y py=leje eie eeceqe, ee).

(The matrices p; and p; correspend via a group isomorphism to the permutations

1234567891011 1234567891011
(234567891{]11 1)3"" (147102 58113 6 9)-”“99”“’
. (10
P=(p.p)s P = (g p;), S) 1.2y <a(ion),

is a semidirect product of (p,) and <p2 def1ned by the relations
N A R

and thus IP]=11-5=55.

The (11,1)-group
C=¢([01,p,), ([1/51,p,)> with L(C)=2Z

has a maximal type II-subgroup

=(([01,p,}, ([6/51.p,), ([2],e)? with L(U)=2Z
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of index € :U=2 relatively prime to [P| =55. Obviously, U is affinely equivalent to

pe= 0, (3O - w0, (30) - (100p ) (13/51m,) (111 ) with L(ut) =2,

Although P(C) =P(U*) =P and L(C) =L{U*)=Z, C and U* are not affinely equivalent as
we shall show now.

By the generalized Zassenhaus algorithm ([9]) the vector systems vi:pP-=Q defined by

- . Fhes
vlf,l-(}, vp2~1/5, == —

represent the classes of translationally equivalent (11,1)-groups U; with linear
constituent P.

. _ 40 , "
The centralizer szl(P) = ((0 e)) yields the orbits

(v}, {v!,v4}, and {v?,v3},

i.e. vl and v4 define affinely equivalent groups and so do v? and v3.

The automorphism group of P is generated by

2
Py P PLp

[0 ! and ) : ! ! 5
P2=py P2y Pi=Py Pyt PTte

This can be shown by group theoretic methods.

The automorphisms ¢ and ¢ are induced by the matrices p'll and x = ((1) E,,) ENzxqg(P)

with x" = (eleTezeseEegeqeloeseu) {x" corresponds to the permutation

“ ‘; g g g g 11%2 ]i? 161) .) As ¥ is an inner automorphism and ¢ fixes p,, the

corresponding matrices pzl and x act trivially on the vector systems vi.

Therefore v! and v3 define affinely inequivalent groups, i.e. C and U* are not
affinely equivalent.

The same arguments hold for the space group C* :=(C,(t,e) | teZy , o

We prepare the proof of Thecrem 4.1 by a definition and some remarks.

4.3 Definition. Let P be a finite subgroup of GL(r,Z)xGL(n-r,Z).

a) The number of classes of translationally equivalent (n,r)-groups with Tinear
constituent P and translation lattice L is denoted by h(P,L).

b) Let C={v,+t,p) | pEP, tEZ"} be an (n,r)-group.

The order |v| of its vector system v : P—-RY is defined by the least pasitive integer

ie N such that the (n,r)-groupf{(i -vp+t,p) | peP, teZ} is syn'morphic.*) o

*) The vector system v :P-R' induces a l-cocycle v : P=R*/L which maps p onto

Vp :=vp+L. The l-cocycles, i.e. functions ¥:P~R/L with ¥, . =¥,+p* vy, form
an abelian group Cl!(P,RY/L). The cocycles of symmorphic groups form the subgroup
of coboundaries Bl(P,Rr/L) . The factor group H!(P,RY/L) :=cl(p,RY/L) /Bl(p,RY/L)

is called cohomology group. The elements of H!(P,RY/L) are in 1-1-correspondence
to the classes of translationally equivalent (n,r)-groups with linear constituent
P and translation lattice L. So h(P,L) 15 the order of_ the abelian group ul (p,RY/L)
and |v| is the order of the element v +B!(P,RY/L) of H!(P,RY/L) (see e.g. [2]).
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The order |v| divides h(P,Z") as well as |Pl, and each prime divisor of h(P,Z¥) is
also a divisor of [Pl ([9]).

By Proposition 2.5 a type II-subgroup U of an (n,r)-group C is maximal if and only if
M:=L(U) is a maximal ZP-submodule of Z*.

From now on let C={(vy+t,p) I peP, teZ*} be an (n,r)-group with vector system
v:P->Q" and Tet M be a maximal ZP-submodule of Z*.

There need not exist a type II-subgroup U of C with L(U)=M, as Example 3.2 with
2%
M=M1 1= { y , x,y,zel} shows. Moreover, two type II-subgroups U and U* of C
z
with L(U) =L(U*) =M need not be affinely equivalent, as Example 3.2 shows for
0

UsC(vy+ta) I tem), UF=((v + [é] +t,a) [ teM,),
X
and M, := { 2y I x,y,zEI} . We get, however,
r4

4.4 Lemma. Let U and U* be type II-subgroups of C with L(U)=L(U*) =M. If h(P,M) and
the index Z* : M are relatively prime, then U and U* are translationally equivalent.

Proof: Since the vector systems of U and U* are vector systems of C, as well, their
difference is a vector system s : P>Z" of P with respect to M. The subgroups U and U*
are translationally equivalent if and only if s defines a split extension of M by P
(see [9]). So we only have to show that |s| =1. Since (Z*¥: M) - SPEM for all peP,
Isl divides Z* : M. As s is a vector system of P with respect to M, Is| divides
h(P,M), too, and thus Isl=1. o

The following special case of our main Theorem 4.1 is due to J.Neubiiser.

4.5 Proposition. Let C be symmorphic, i.e. a split extension of Z° by P, and let M be
a Z-equivalent ZP-submodule of Z®. If h(P,Z*) and ZF : M are relatively prime, then
every type II-subgroup U of C with L(U) =M is affinely equivalent to C.

Proof. Since C splits, we can assume that vp=0 for all peP. Therefore, the split
extension

U*x={(t,p) | pEP, tEM)
is a type II-subgroup of C with L(U*) =M. Being split extensions of Z-equivalent ZP-
modules Z* and M, respectively, C and U* must be affinely equivalent. Any other sub-
groups U of C with L(U)=M must be translationally equivalent to U* by Lemma 4.4 as
h(P,Z") = h(P,M). o

To prove our main Theorem 4.1, we only have to show that for n<3 Proposition 4.5
holds even for non-symmorphic groups C, because for n<3 M is always Z-equivalent to
Z* if I¥ : M is relatively prime to |P| and hence relatively prime to h(P,ZX). We show
this generalization of Proposition 4.5 via a series of technical lemmata. The main
idea is as follows: Let U be a type II-subgroup of C with L(U) =M. Since Z* and M are
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I-equivalent ZP-modules, there is a ZP-endomorphism e : Z" —=ZX mapping Z' onto M.
(onjugation of C with the natural extension @* :IR"+R"™ of ¢ yields an affinely
equivalent {n,r)-groupC* :=p* - C -1 yith L{C*)=M. If C* is a subgroup of C, then
by Lenma 4.4 U and C* are translationally equivalent, and hence U is affinely
equivalent to C. The following lemmata yield sufficient conditions for the existence
of o€ Endzp(lf) with @(Z%) =M such that the corresponding (n,r)-group C* is a sub-
group of C. For n<3 every (n,r)-group C fulfills at least one of these conditions.

4.6 Lenma. Let h(P,Z") and Z* : M be relatively prime. If there is a ZP-endomorphism
wEEndzp(lr) mapping Z” onto M such that (for its natural extension to Q, which we
denote by ¢ again)

w(vy
then every type II-subgroup U of C with L(U) =M is affinely equivalent to C.

)’:vp mod Z*¥ for all peP,

Proof. Let @* be the natural extension of @ onto R™ acting on the orthogonal
complement of R™ as identity. Then the group

CFi=gé - Co@¥his ((w*(v,) +t,p) | pEP, tEo*(Z") =M}
is a subgroup of C affinely equivalent to C by construction. As Z¥ : M and h(P,Z") =h(P,M)
are relatively prime, every type II-subgroup U of C with L{U)=M is translationally
equivalent to C* by Lemma 4.4 and thus affinely equivalent to C. o

For the next lemma we need some definitions and notations.

lle define Q(v) to be the smallest QP-submodule of Q* containing all Vs PEP. (Note
that @(v) is not uniquely determined by C since v is determined by C only up to
vectors in Z%.)

By Maschke's theorem ([6]) there is a QP-complement Q  of Q(v) in 0.
Let
0" =H @ ... ®H
be the decomposition of the QP-module Q% intc its homogeneous compenents and let
Qi :=HiﬂQ(v) for i=1,...5Mm.
(hanging the indices, we can assume that for a suitable s<m
Qv)=0Q, @ ... @
is the decomposition of @(v) into its homogeneous components.
lie define ZP-submodules of Z% by
Ly:=ZXnQ; for 1=0,1,...,5.
let a€ N be the least positive integer such that
a "<, 0L ®...8 L,
i.e.
a=exp(Z"/ (L, @ ... L)),
the exponent of the abelian group 2" / (La d ... Ls).

4,7 Lemma. Let h(P,Z") and ZX : M be relatively prime. Let o€ Endn(/Z‘) be a ZP-
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endomorphism mapping Z° onto M such that the natural extension of ¢ onto @* has
eigenvalues

a;=1mod a- vl
and the homogeneous components Q, of Q(v) lie in corresponding eigenspaces. Then
every type II-subgroup U of C with L(U)=M is affinely equivalent to C.

Proof: The restriction of ¢ onto the homogeneous components of Q(v) is
W\Qi=ai' fd=(1+x, -a-Ivl)-id, i=1,...,s,
for suitable x; €Z. (We do not claim that a, # 3 for i+ j.) Representing vp, peP,
with respect to a lattice basis of
L1 @ ... B Ls
we see that
v,p(\.rp)E VPmod Z* for all pep.
Thus we can apply Lemma 4.6. o
We now derive some sufficient conditions for the existence of an endomorphism ¢ as

in Lemma 4.7.

4.8 Lemna. Let Z® and M be Z-equivalent ZP-modules and let h(P,Z*) and Z : M be
relatively prime. Then a type II-subgroup U of C with L(U)=M is affinely equivalent
to C if one of the following conditions a)...d) holds:
a) -lI=LO @... 8L (i.e. a=1),
- Li is absolutely irreducible for i=1,...,5 (i.e. Z*nQ(v) is the direct sum of
mutually inequivalent absolutely irreducible ZP-modules Ll,...,LS),
- the QP-module Q(v) = 01 ®...9® QS and its complement Q. have no common constituents.
- exp(Z*/M)=+ 1 mod Ivl.
b)-2-Z"<L,® ... 8L (i.e.a<2),
- L.L is absolutely irreducible for i=1,...,s.

- Q(v) and Q_ have no common constituents,
exp(Z7/M)=+ 1 mod 2 - |v].

c) - 2" is a direct sum of 1-dimensional ZP-submodules,
exp(Z*/M)=+ 1 mod|v].

d) - There are at most two affine classes of (n,r)-groups with translation lattice
Z" and linear constituent P.

Proof: The conditions of a) and b) can be restated as follows:
- a€{1,2}
2 Li_ absolutely irreducible for i=1,...,s,
- @(v) and Q_ have no common constituents,
- exp(ZF/M)=+ 1 mod a - |v].

To apply Lemma 4.7,we have to construct o€ End&P(/Zr) such that
o) =M and u)JL1 =a; - id with a; =1 mod a - Ivl.
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Since Z¥ and M are Z-equivalent, there is a FP-endomorphism ¢'€ Endzp(lr) with
¢'(Z%) =M. The endomorphism ' maps L, into Li for 1=0,...,5, as neither (v) and G
nor Li and Lj, it j, have common constituents. Schur's Lemma ([6]) applied to the
absolutely irreducible ZP-modules Li,i =1,...,s, yields

o'l ma; 0 ids ag e+ 1.+ exp(ZT/M))
as exp(Zr/M) is prime.
We shall show that replacing a; by -a, again yields a ZP-endomorphism ¢ with @(Z")y =M
and thus we can assume that

aifl mod a -« |v| for 1=1,...,8
and the assertion follows from Lemma 4.7.

The mapping ¢ can be described as
P:i=0 § s
where wj acts as inversion -1'de on Qj and trivial on Gi for i+ j, i.e.
Yyi=idy @@ idy, @ -idy @ ddy @ ... @ idy_[grs
and j runs through the set
{JEN| 1=j<5s, ajf-l mod a - Jv|}.
As
2-1E<L, @ ... ®L_<Z,
each b, is a IP-automorphism of I and thus peEnd, (Z7) and ¢{Z%) =M.

¢) We shall deal with the homogeneous components H,,....,H  of 0" instead of using
0 and L;. Note that Lemma 4.7 remains valid when we replace Q(v) by @ and Q, by H,
for i>0.
I'=(I'oH)) & ... & (Z*NH))
as I” decomposes into a direct sum of irreducible ZP-modules. Since M is a maximal
and Z-equivalent ZP-submodule of Z7,
M=(Z'nH)® ... & (.ZrmHj_l) S Mx & (zanjH) @ ... ® (lrﬁHm)
for a suitable j and a maximal ZP-submodule M* of ZrﬂHj. Each Z-submodule of ZrﬂHj
is even a ZP-submodule because ZrﬂHj consists of similar one-dimensional constituents.

Now 25 0 Hj can be decomposed into a direct sum of Z-submodules (and thus ZP-sub-
nodules) M'f 0 and M" such that

.zrnHj =M @ M" and Mx=q-M @ M", q:= exp (ZE/M).
The ZP-endomorphism e Endzp(lr), defined by

| q - id for q= 1 modiv|
Olpr g, =1d for 14 j, ol e=1d, of , :{
“ . " " -q - id for g=-1 mod|vl|

is suitable to apply Lemma 4.7.

d) If U is a split extension, then C must split. If C splits, apply Proposition 4.5. o

4.9 Proposition. Let U be a maximal type II-subgroup of C with L(U) =M. If n=<3 and

if Z* and M are Z-equivalent ZP-modules and if h(P,Z") and Z¥ : M are relatively prime,
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then U is affinely equivalent to C.

Proof: A1l but two (n,r)-groups with n<3 fulfill at least one of the sufficient
conditions of Lemma 4.8. For the two exceptional space groups P 4/n and P 4,/n
Lemma 4.6 can be applied.

We do not discuss all 219+80+67+17+7 3- and 2-dimensional groups but only give
an idea of how to derive the congruence
exp(Z*/M)=+ 1 mod a - |vl.

We observed that for n<3

Ivl€{1,2,3,4,6} for the vector systems v of all {n,r)-groups C with P(C)=C
and L(C) =2%,

- as3,

if 3 or 4 divides |v| for the vector system v of some (n,r)-group C with P(C)=P
and L(C)=Z%, then a=1,

- if a=3 and [vI<2 for the vector systems v of all {(n,r)-groups C with P(C)=P
and L(C)=Z", then h(P,Z%)=2.

By straight forward calculations we find

exp(Z*/M)=+1 mod a - |vi
if Z¥ : M and h(P,ZF) are relatively prime and h(P,Z*)+ 2. (For h(P,ZF) =2 we can
apply Lemma 4.8 d).) o
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