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Dedicated %o B. Dey Jy Be Muy o Ls Cas o+ Fu Ds and A, 3. Tor their

friendship in many circumstances,

uaany papers covering space-subgroup derivations, zroup-
subgroup relations and space-subgroup tables have been published (NEU-
SER & WCNDRATSCHEK, 1986 a, »j 20VLE & LAVRENSON, 1972 z, b3 BARNIGHAU-
SEN 1975; BERTAUT 1976 24 D; .s.). Unfortunately the existing tabl
subgroups list in moSt cases maximal suzgroups only. Moreover, for "klas-
sengleiche" subgroups often only the tyve of sudbgroups is listed, not the
suberoups themselves; however several maximal subgroups of a space group
may belong to the same space-group type,

Let us look at an example, Consider a space group of type
pemm characterized by its conventional coordinate system (Q, A, B: origin
and basis vectors) and let be the maximal subgroups of type c2mm of index
2 (0o, 2, b: conventional coordinate system}, The most part o the tables
point cut that the subgroup type c¢2mm is obtained when Jdoubling the con-
ventional cell parameters (a = 2a, b = 2B); indeed there are four dis-
tinet subgroups c2mm of index 2, they correspond to the following non-
redundant dispositions of origin o (XD, YO: coordinates of o with resgpect
to 0, A, B)(Ficures 1 and 2):

Xo =Y° = 0; X0=0, Yo=1/2; X0= 1/2, YO=O;X0 :Yo = 1/2,
These four origin dispositions are not equivalent as to the relationship
between Structure and derivative structures, For instance, consider the
next 2-dimensional structure, the Space group of which is p2mm (Figur2 1)

(0f, Intermational Tables for X-ray Crystallography, 1952):
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d) c2mm: a = 2A, b = 2B, X, =Y, = 1/2, (0, 03 1/2, 1/2)+

0
8 £ 1 Xy ¥5 Xy Y5 Xy ¥5 Xy Ve
(x = 1/4 + X/2, Y = 1/4 + Y/2)
: 8 £ 1 Xy ¥ Xy Y5 X5 V3 X, ¥
(x = 1/4 + X/2, Y = 1/4 - Y/2)
} 4 d m Xy G Xy Ou (x % 174 + X/2)
g d m x, 05 X, 0 (x = 3/4 + X/2)
A 4 ¢ 2 1/4, 1/45 1/4, 3/4.

Indeed these four derivative structures are very different, The first is
consistent with a double ordering through positions T and A together with
slight shiftings of positions T and F, The second results from a double
ordering on positions I and F together with slight shiftings of positions
I, F and A, As to the third, it follows from an ordering through pos-
itions T together with slight shiftings of positions I, F and A, The
later is consistent with a double ordering of positions I and ¥ together

with slight shiftings of only positions I and F,

(o) B, ;[)me
m ®
==Kt
A@®
c2mm
:
i

Figure 1.
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ary to obtain 211 distinet sudsroups of a apace graoup (2), This may he

done in two staps,

FIRST STEPt DETERVINE ALL TCIT/RYTICNAL CCORDIVATE SYSTZNS OF ALL SUB-

GRCUPS C™ A SPACE SRCUP.

Tor 311 the stack oroups of eseh Bpacd.-crolp tine 2 frpe
of conventisnal coordinate systsms is used in the International Tables
for X-ray Crystallography (1952), Instead of deriving all possible sub-
groups g of 2 certain type 5 from & spaces group 5 of type 3, one may
derive 211 possible conventional coordinate systems {o, a, b} of sub-
groups g from the conventional coordinate system (0, A, B) of G, There
may be o»tained, however, several of these coordinate systems (an infin-
ite number in fact) which belong to the same subgroup, This is done in
our previous papers (BILLIET, 1973; 3SaYARI & BILIT®T, 1£77; BILLIET,
1977; BILLIET, SAYARI & ZARRCUK, 1978 a; SAVARTI, BILLTET & ZARRCUK, 19783
BILLIET, 1978; BERTAUT & BILLIET, 1278; BILLIET, 1979; BERTAUT & BILLIET,
19793 BILLIET & RCLLEY - LE CGZ, 1980) where sre determined all nossible

dispositions of wvectors a, b and origin o,
XO

(a, b) = (A, B}T; DetT > O; 5
Yo

There are two Special cases:

s = &, DetT > 1: the subgroups g are sald to be isosymbolic to the
space group G (BILLIET, 1973);

s = 8, DetT = 1: then g = G and the coordinate systems {0y a, b)
are other conventional coordinate systzms of Gj any space group possesses
an infinity of distinct conventionsl coordinate systems,
Example 1: G(0, A, B) is & space group c2mm, All conveniional cocordinate
systems (o, a, b) of 2ll subgroups p& are given by the following condi-

tions (SAVARI, BILLIET & ZARROUK, 1a78):

(%) Conjugated subgroups are related to equivslent Jerivative structures,
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vector 2onditions:

(3, ) = (a, 3 |11 (3

a = = . - .

’ Ay B ; : t11t9a 21t 2 1/2;
21 22

gither 1) 2111, 2t21, 2:12, 2t2:2 are all =ven,

o %Y 2t)4, 275, 2r2 both sven =rd 2tq5, 2t,, are both odd,

or iii) 2t,5, 2ty; arve both ¢3¢ and 2t;5y 2ty 2re both evan,
or i) 2ty,, 2%y, 2ty 2tgy are all odd,
origin conditions:

sither v) 2X gy, are integers,

ot
or i) 4X3, 4y, are odd intesers,

Txample 2 Consider now the space group = (p2) of convantional coordinate

system (o, a, b}, All comventional csordinate systems (o', a', b'; of all

isosymbolic sabsroups z' (p2) =2re given by the following conditions:

t, ot
" _ 11 2. ' ' . ’ B
(a', ¥) = (a, b) o 11'z2 - tzatiz > 13

all cozfficients tij are integers, 2xo, and Zyo. are integers, I{ the

matrix is unimodular (t - = 1)}, the conventional coordinste

¢4y o
11%22 ~ 21tz
system belongs to g (p2) not to a proper subgzroup of g (p2).

SECCHD STEP! SELICT ONE CONVENTIONAL CCCRDINATE SYSTEN FOR IACH SURSGRCUR.

A standard conventional coordinete system is defined for
each subrroup and the listing is restiricted to these standard coordinate
systems, In this way by evaluating the formulae for the possible starfarg
coordinate systems of subzroups one gets a2 1list of all nossible subgroups
of that type and a ziven index, The process is illustrated by the next
example,

Example 3: Suppose a subzroup g (p2) of 5 (c2mm) civen by a matrix T of
example 1,

1/ This subcroup only possesses conventional coordinate sys-
tems, defined in veclor dispositions, eiiher by conditions i, or by con-

ditions ii, iii and iv at once. Indeed stariinz from a coordinate systen
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M1 Mgl [t fiz] | |maatin ot miethr mpatis

x| ; = . . ) E Zle
fg1 Tgol Ity thg To1%11 * Pagtzy Tortie
0n the stker hand, starting from a systam of type iii 5y &

suitable change a system of type ii:

nq - 1/2 n B 0 1 SRy Mgt 1/2

-1 ¢

12
nyy * 1/2 LI "Ry Mgy 7 1/2

Sterting from a system of type iv, one obtains a system of tyre ii:

n + 1/2 + 1 1 -n
g A g % L o Wy ™ gy TS| L s
0. +1/2 n 1/ - - T ) Fiest
oy ¥ /2 1, + 12| -1 1 %1 T Tag Top t 12
11/ #e consider now a subgroup g (p2) giver by a system of

type i. By an appropriaste change into g one can obtain a new coordinats

system eciven by a triangular matrix (BILLIET & ROLLEY - LE CCZ, 1080):

M1 Mo, [Pee/DiNys ) T
Pa1 Mgl I=mpy/Ding,y, ny,) e
(nyyfgg = Pypfpy)/P(ngys Npo) D f # mppe| Ipy 9 4
p3
e Ny T + nmope 0 by )

w t . ivi r . y
with D(nal' ny,) grestest common divisor of ngy and ngu; naz/h(ngl, ngo)
and nzl/D(n217 n22) are coprime; then it is possible to find two integ-
ers e, £ at least such that (Bezout reiation):

enyo/Dingyy Myl + f1yy/D(ny,, nyp) = 13
furthermore e and f may be chosen in such a way that the coefficients

of the matrix T, fulfil the following conditions:

I
Py» Py Qp integers; py, py > 0 and -py/2 < q) £ py/2. (D)

If now we consider a subgroup g (p2) given by a system of type ii, it

is possible to obtain e new sSysStem expressed by a trianguler matrix:

9 My + i/2

Ny Mgy + 1/2

(2n22 + 1)/D(n21, 2ngy + 1 f

b 4

-2n21/‘D(n21, 20y, + ) 3
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(3nyyngg * Pyy - 2pphyy - 1)) Bnyy, 2mp, + 1 npyf o+ (ngpe 1/20e)
S
0 25,0 + (nggt 1/2)e
Py G * 12

Tr1i

o] Py + 1/2
it is poszible *to find two interers e and f s» that:

- - .
e(2n22 + 1) /Din 2n_.., + 1) - zangl/D(n2l, 2n__+ 1) = 1;

21 “Taz 22
e is necessarily odd; moreover e and f may be chosen so thzt the coeff-

icients of the matrix T f11¢1i1 the foliowing conditions:

TE
Pps Doy G 2re intecersy py > C% Py > ¢ and
il <! -
(pp + 132 < ay S {py - Lsz.
As 2 conclusion, sach sudsroup z (p2) is connected with exactly gne
standard conventional coordinate system, the vectors of +which ar
elther by matrix T, and conditions (1

€I1).

), or by matrix T;; and conditions

IS We are zoing to select one origin for each subgroup,
Firstly consider a subgroup g (p2) defined by the vector corditions (I}
Supvose an origin o of g, The coordinates of any other possible origin
o' of g fulfil the following relations (BILLIET, 1973; SILLIET, SAYARI
& ZARROUK, 1978 aj:

_|p1 9
0

Xo'

Yo‘

X
o

¥
o

X
[e]

¥
o

- Py¥or * quo'

xl
x| °f +

Y I

Now 2x°, and 2y°, are intezers (Cf, example 2), then the origins of g art

p2y0|

either all relevant to conditions ¥, or all relevant to conditions vi
of example 1, If o is relevant to conditions v it is possible to choose

¥or 8md then x , so that:

< B
0 £ Yo' < p2/2 and then 0 = ‘{o' < p1/2

(II71)
with 2X vy 2Y , integers.

If o is relevant to conditions vi it is possible to choose Yor and then

x so that:

0'

h 1 <

1/4 £ Y, < 1/4 + py/2 and then 1/4 £ X, < 1/4 + p,/2 -
with 4}(0. y 4Y°, odd integers.
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AS 2 conel

exactly one stardard

defined either by conditions (TII) or by cond

As to the suboroups I (p2) “hose vector Jisnesition is deined

o~

ditions (TI), each of them noasesses orising relevant =3 conditions v

3nd orizins relevant %o comditions ¥i,

xo' By Qg 172 ” Xo! . Ko 5 X, 2, P¥gr * A¥or * Vgr /2
Yool 1o pp+ 272l vl Iy b ¥, b dppyg + yge/2
Inceed if 2y , 1s evern, o and o' are both relevant to the szme condi-

o]

tions ¥ or wij if Eyo, is odd, o belongs to conditions v {resp, vi)
while o' belongs to conditions yi (resp, ¥}, Thus it is possible to
consider only origins of type v and it 1s possitle to choose Yy (even)
end then Xy SO that

< 4 3 4 < ¢
[o] Yo. < pz/a + 1/4 and then 0 £ xo, < pl/a

- on
with 2Xb,, 2Y0, integers.,
To conclnde, each subgroup g (p2) of type (II) is connected with exactly

one standard coordipats system whose origin is defined by conditions (V).

The process we have illustrated by examole 3 may be exten-
ded to any space group: for gach subgzroup, it is possible to select, in
vector disposition and origin disposition, exactly one standard comwen-
tional coordinate system relevant to special conditions,

Exémple _4: List of the standerd coordinste systems (o, a, b) of all subd-

groups of a space group c2mm of conventional coordinate system (0, A, B),
each standsrd coordinate system representing "its"” subgroups; Pys Bgy Gy
u, v are integers,

pl

1) a=pja, b= (q; + /2)a+ (py + 1/2)By, X, =Y, =0 [py > 05 py 2 03

-(p; + 1)/2 < q; £ (py - 1)/2]

)

2) a = pjA; b= QA+ pyB, X =Y, =C [p)y Py > 05 -py/2 < qy £ py/2]
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p2
1) a = PyAy b = (:‘1 + 1/2)a + 5532 + 1/2)3, Xo = u/2, ‘_’O = v/2 (3 > 3
P, 2 Cj -(py + 1}/2 < g, € (p, - W)/25¢ £ v < Pyj

¢ £ v < py+1/2]

2)3:;)A,'3=q1h+p23,}( ='uygs ¥ =v/2[131,132> Cs

1

o
-p1/2< qlé p1/2;O £ a < pl;O v < 02]
3) 2 = pqA, D T a3a 4 Py3s X, = 1/4 + /2, Y = 1/4 + v/2 [pyy 5 > O

-cl/a <’J.1éf-*1/2;c§u<pl;o_g_v<pz]

pm

=G[pl,p2>0;ogu<pl]

13 & = DAy D = DaBy X = u/2, 7

2) a2 =By 3= -pA, X, =0, ¥, =v/2 [p), By > 030 L v < 4]

1) 3=p1A,b=(2p2+1)3, Xo=1/4+u/2, Yo=0[pl> 0F ‘B & G}
C<u<pl]I

2) a = ph; D =2p,B; X = w2, ¥ =0 [p, P, > 0;0 2 uc< pl]
3)a=plB,b=-(2p2+l)B,X =03 Yy =1/4 +v/2 [p; > 0y P 2 0j

0 )
< p1]

(o)
7N
<

4) 2 = pyBy b = -2p,A, X°=0,Yo=v/2 [pys by > 050 2w < P4}
cm

1) a= (2p1 + 1)A, b = f2p2 + 1)By X, = u/2, ¥ =0 [pl, Py 2 05

¢ £ u < 2p + 1]

2) o= 2p1A, H= 2p2B, )(o = /gy Yo =0 [pl, Py > 0 0 2 u < 2p1]
3) 2 = {(2py + 1)B, b = -(sz + DAy X =05 ¥, =v/2 [Py Py 2 0

C gv <a2p 1]

4)a=2p13,b=-2pli-\, X, =0y Y = v/2 [pl,p2 > 050 2 v <‘2p1]

(o]
pmm
a =D, b=pB X = w2, Y =v/R [Pyr Py > C50 S u < pys

0O £ v <p2]
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pmE

1) 8 = (2p; + 1JA, b = pgB, X = 1/4 + /2, ¥ = /4 +v/2 [p; 2 C;
Py > C; 0 £ u < 2p1+1;0é v < pyl

2)a = 2plA, B2 ng, xo = u/2, ¥, = v/2 [pl, Py > gyg 58 8 ¥ 2:-1;

¢ 2 v < pyl
3) a = (2py + 1)3, b = -PpA, X = /4 4+ u/2, ¥ = 1/4 + v/2 [p] 2z Cj
> 03 0 §u<p2;0§rr<2pl+1]

4) a = 2;;13, B -pEA, Xo = B8y Yo = v/2 [pl, oy > 3 8 2 4 < Py3

0 g v < 2p2]

PEgE

1) 2= (2p; + DA, b = (Bpy + 1)3, X, = u/2, ¥, =v/2 [Py Pz 2 O3
0% u <2pl+1;0 e 2p2+l}

2) a = (Z’pl + 1)A, b = 20,8, X = 1/4 + u/2, Y =1/4 + v/2 [p; 2 O
Dy > 0; 0 £ u <2py +150 =N % 2p2]

3) a =2pjA, b= (2py + 1)B, X, = 1/4 + u/2, ¥, = 1/4 + v/2 [p; > 0

p2;0;0§u<2p1;0§v<2p2+11
4) a = 2p1A, B = '2pv3'a, Xo = u/3, ¥, = v/2 [pl, P, > 050 2 u < 2oy 3
0 g v« 2p2]

(=]
w
n

(zpl + 1A, b = (21:2 + 1)8, X = u/2, Y = v/2 [pys Dy 2 05

(2p1+1)(2p1+1)> 1;0§u<2pl+1;0§v <2p2+1]

[
~—
[
l

= 2pqAy b = 2pgBy X, = w/2, Y, = v/2 [Pyy Py > 05 O £ U < 3py

o
WA
<

< 2p2]

As an application of these tables, it is poszible to det-
ermine e2asily the number of sudberoups of a ziven index relevant to a
given type.
ww: Suppose that we want to determine the suberoups of tyce p2 of
index 4 of a group c2mm, The index i of & space subgroup g (o, 2, b)

/G
of & space group (O, A, B) is given by the following relstion:
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ig/g = ip/g.DetT/m ;5

ipyy is the index of the symmetry-class group h of g with reference to
the symmetry-class zroup H of G; M and m are the numbers of laitice
points of the Bravais lat*ices of 5 and g which are respectively contain
ed into the conventional unit cells (0, A, 3) and (o, 2, b») (BILLIET,
19735 3ILLIZT, SAYARI & ZARRCUK, 1978 a), In the present case i, = 2,
M =2, m=12and then the matrix determinant must be ecual to 1, Let us
now gvaluate the formulae giving the standard coordinate system associat
ed with each subgroup p2 of a group c2mm (Cf, Example 4},
Formula 1: Since DetT = 1, the values permissible for the parameters are
py = 25 pg = Cj ap = 0y =13 u =0y 13 v = O, Conscuently there are four
subgroups; each of them is given by "its" standard coordinate system:

No T a=24, b=AR+8R, X =Y, =C

No II a =24, b=A/2 +3/2, X =1/2,7, =¢C

No III a = 2h, b = -A/2 + 3/2, K, =Y, =¢C

No IV a=2a,b:-ﬂ/2+8/2,xo=l/2,’{°=0.
Formule 2: The values permissible for the parameters are: P = 03 P, =1
a; = 0; u = 03 v = 0, There is one subgroup given by the following coor-
dinate system:

No V a:A,b:B,XO=Y =0
Formula 3: The permissible parsmeters ares: py = 1; Py = 1; 9 =05 u=¢0

v = C. There is one subgroup of standard coordinate system:

No VI 2 =A,b=B, X =Y = 1l/4.

All considerations may te extended to 3-dimensional space

eroups (BILLIET, 1980),

References

BARNIGHAUSEN, H. (1975). Acta Cryst. A 31, S3.
BERTAUT, =. F. (1976 a). Acta Cryst. A 32, 380-387.



- 189 -

BERTAUT, I, F, (1275 b}. Acta Orvst. A 32 ©75-023,

BIRTAUT,

9]

« Ts & BILLIET, Vv, {1278). C. R, acad, Sc, Paris 287, e82-201,
BIRTAUT, E. F. & BILLIZT, Y. (1979). Acta Cryst. A 35, 733-715,

BILLIET, Y, (1973). Zuil, Soc, Fr, ¥inéral, Cristallssr, 98, 327-334.
3ILLIET, Y. (1277}. Acta Cryst. A 33, 1CC7-1CCs.

BILLIET, v, (1978). Acta Zryst. A 34, 1C23-102s.

BILZIET, Y. (1279). Acta Cryst, A 35, 485-406,

BILLIET, Y. (198C). In preparation,

BILLIST, Y. & ROLLZIY - LE CCZ, M, (1980). Acta Cryst, A 36, 242-248,
BILLIET, Y., SAYART, A. & ZARRCUK, H. (1978 2), Acts Cryst, A 34, 414-

421.

<

SILLIET, Y., SAYARI, A, & ZARROUK, K. (1978 b). Acta Cryst. A 34, 211-
glg,

BOYLE, L. L. & LA¥RENSON, J. E. (1872 a), Acta Cryst, A 28, 485-489.
BCYLE, L. L. & LAYVRTNSOW, J. E. {1272 b). acta Cryst. A 28, 489-493.
NEUBUSER, J. & WONDRATSTHEK, H. (1066 a). Krist. Tech, 1, 529-544,
NEUBUSER, J. & WONDRATSCHEK, H. (1966 b). List of maximal subgroups of
space groups (private communication),

SAYARI, A, & BILLIET, Y. (1977)}. actz Cryst, A 33, 985-986.

SAYARI, A,, BILLIET, Y, & ZARROUK, H, (1978). Acta Cryst. A 34, 553-355.




= 190 =

AbStract

This 7aper is relevant to phase-transition amnlications,
For the study of th2 relationship between a crystal siructure and is
derivative structurses, it is nacessary to exactly datermine eacsh space
subersuy of % specd zreup. A method 18 siven <o s5albet gog standard 853
ventisnal coordinate system for anvy subgroup: it 1s illustratied by the
tables o7 the selectad standard coordinate systems for all subzroups of
a 2-dimensional space zroup cE2rm, AIl considerations mav te 2xtended fo

3-dimensional space groups.,



