pp. 15-20

A mathematical note on Koptsik's definition of imperfect crystals

by Andreas W.M. Dress, Bielefeld

In the following note I would like to give a formal mathematical definition of generalized wreath products and, then, to apply this concept towards the problem of how to define imperfect crystals and their symmetry groups, -both according to what I learned from Koptsik.

§ 1 Generalized wreath products.

Let G and H be groups with neutral elements 1 G and 1 H, such that G acts on H by automorphisms, i.e. there exists a map

(2)
$$g(h_1h_2) = g_{h_1} \cdot g_{h_2}, (g_1g_2)_{h} = g_1(g_2h), G_h = h.$$

Let A be a G-set, i.e. a set A together with a map

$$G \times A \rightarrow A : (g,a) \mapsto ga ,$$

such that for g1,g2 ∈ G, a ∈ A

(4)
$$(g_1g_2)a = g_1(g_2a)$$
, $1_{G} \cdot a = a$.

Let B be a H-set on which G acts compatible with its action on H, i.e. a set B together with two maps

(5)
$$H \times B \to B : (h,b) \mapsto h \cdot b; G \times B \to B : (g,b) \mapsto {}^{g}b$$

such that for $h_1, h_2, h \in H$; $g_1, g_2, g \in G$, $b \in B$

$$(6) \ (h_1h_2) \cdot b = h_1 \cdot (h_2 \cdot b), \ l_H \cdot b = b, \ ^{(g_1g_2)}b = ^{g_1(g_2)}b, \ ^{1}G_b = b, \ ^{g}(h \cdot b) = ^{g_h \cdot g_b} \ .$$

In this situation we want to define a generalized wreath product $H \cap A = H \cap A$ of $H \cap A = H \cap A$ of $H \cap A = H \cap A$ of $H \cap A = H \cap A$ of all maps from $H \cap A = H \cap A$ into $H \cap A = H$ into H

We do not exclude the case, in which G acts trivially on H and B, in which case our definitions reduce to that of ordinary wreath products.

At first we define the group H^A of all maps $f:A\to H$ from A into H with multiplication defined as usual argument wise, i.e. - with $f_1,f_2\in H^A$, $a\in A$ - by

(7)
$$(f_1 \cdot f_2)(a) = f_1(a) \cdot f_2(a)$$
.

G acts on $\mbox{H}^{\mbox{A}}$ in a natural way by automorphisms: for $\mbox{g} \in \mbox{G, f} \in \mbox{H}^{\mbox{A}}$ and a $\in \mbox{A}$

we put

(8)
$$({}^{g}f)(a) = {}^{g}f(g^{-1}a).$$

Then we have for $g_1, g_2, g \in G$; $f, f_1, f_2 \in H^A$

(9)
$$g_1g_2 = g_1(g_2), \quad g_1g_2 = g_1 \cdot g_2$$

since for all a E A:

(10)
$${\binom{g_1}{g_2}} (a) = {\binom{g_2}{g_1}} ({\binom{g_2}{g_1}} ({g_1^{-1}}a)) = {\binom{g_2}{g_1^{-1}}} {\binom{g_2}{g_1^{-1}}} a)$$

$$= {\binom{(g_1g_2)}{f}} (a), {\binom{1}{g_f}} (a) = f(a)$$

and

Thus we can define the semi-direct product $\mathbb{H}^A \rtimes G$ of \mathbb{H}^A and G, consisting of all pairs (f,g) with $f \in \mathbb{H}^A$ and $g \in G$, and the multiplication, defined for $(f_1,g_1),(f_2,g_2) \in \mathbb{H}^A \rtimes G$ by

(12)
$$(f_1,g_1) \cdot (f_2,g_2) = (f_1 \cdot {}^{g_1}f_2, g_1g_2).$$

We also write $H \int_A G$ instead of $H^A \bowtie G$.

The group H^A , identified with the set $H^A \times 1_G$ of pairs $(f,1_G)$, is normal in $H \int_A G$ and its factorgroup is canonically isomorphic to G. In H^A the group H^A of all constant maps $A \to H$, being identifiable with H, is G-invariant, (though not necessarily normal in H^A), thus $H \int_A G$ contains the semi-direct product $H \bowtie G$ in a canonical way as a subgroup. Further interesting G-invariant subgroups of H^A are for infinite A the subgroup $(H^A)_{fin}$ of all maps $f: A \to H$ with $f(a) = 1_H$ for all but finitely many $a \in A$ and the group $(H^A)_{alm.const}$ of all almost constant maps $f: A \to H$, i.e. all maps f, for which there exists $h \in H$ with f(a) = h for all but finitely many $a \in A$. Obviously

(13)
$$(H^{A})_{\text{alm.const.}} = (H^{A})_{\text{fin.}} \cdot (H^{A})_{\text{const}} = (H^{A})_{\text{const}} \cdot (H^{A})_{\text{fin}} .$$

Moreover, if A possesses the structure of a topological space and each $g \in G$ acts continuously on A, the group $(H^A)_{\mbox{disc}}$ (or $(H^A)_{\mbox{comp}})$ of all maps f: A + H with $f(a) = I_H$ for all $a \in A$ except for a in some discrete (or compact) subset $A' \subseteq A$, is a G-invariant subgroup of H^A , which will be of some importance later on.

Finally, for any G-invariant subgroup $H' \leq H$ the group H'^A of all maps $A \to H'$ is a G-invariant subgroup of H^A and so are $(H'^A)_{const} = H'^A \cap (H^A)_{const}$,

$$(\mathrm{H}^{\mathrm{i}A})_{\mathrm{alm.const}} = \mathrm{H}^{\mathrm{i}A} \cap (\mathrm{H}^{\mathrm{A}})_{\mathrm{alm.const.}} (\mathrm{H}^{\mathrm{i}A})_{\mathrm{fin.}} = \mathrm{H}^{\mathrm{i}A} \cap (\mathrm{H}^{\mathrm{A}})_{\mathrm{fin}}$$
 and $(\mathrm{H}^{\mathrm{i}A})_{\mathrm{disc.}} = \mathrm{H}^{\mathrm{i}A} \cap (\mathrm{H}^{\mathrm{A}})_{\mathrm{disc.}}$

For all these G-invariant subgroups $V \leq H^A$ we can form the semi-direct product $V \rtimes G$ as a subgroup of $H \smallint_A G$. In particular, $H_1 \smallint_A G \leq H \smallint_A G$ for any G-invariant subgroup $H_1 \leq H$ of H.

Now let us define and study the action of H $\int\limits_A^G$ on A \times B and on B A . For $(f,g) \in H^A \hookrightarrow I$ G = H $\int\limits_A^G$ G and $(a,b) \in A \times B$ we put

(14)
$$(f,g) \cdot (a,b) = (ga,f(ga) \cdot {}^{g}b).$$

Obviously
$$^{1}_{H \int_{A}^{G}} \cdot (a,b) = (a,b)$$
 and for $(f_{1},g_{1}), (f_{2},g_{2}) \in H \int_{A}^{G} G$
(15) $(f_{1},g_{1})((f_{2},g_{2})(a,b)) = (f_{1},g_{1})(g_{2}a,f_{2}(g_{2}a) \cdot ^{g_{2}}b)$
 $= (g_{1}g_{2}a,f_{1}(g_{1}g_{2}a) \cdot ^{g_{1}}(f_{2}(g_{2}a) \cdot ^{g_{2}}b)) =$
 $= (g_{1}g_{2}a,f_{1}(g_{1}g_{2}a) \cdot ^{g_{1}}(f_{2}(g_{1}^{-1} \cdot g_{1}g_{2}a)) \cdot ^{g_{1}g_{2}}b) =$
 $= (g_{1}g_{2}a,f_{1}(g_{1}g_{2}a) \cdot (^{g_{1}}f_{2})(g_{1}g_{2}a) \cdot ^{g_{1}g_{2}}b) =$
 $= (f_{1} \cdot ^{g_{1}}f_{2},g_{1}g_{2}) \cdot (a,b) = ((f_{1},g_{1}) \cdot (f_{2},g_{2})) \cdot (a,b),$

so (14) defines indeed an action of $\mathbb{H}\int\limits_A^G G$ on $\mathbb{A}\times\mathbb{B}$. This implies an action of $\mathbb{H}\int\limits_A^G G$ on \mathbb{B}^A , considered as a subset of $P(\mathbb{A}\times\mathbb{B})$, the set of subsets of $\mathbb{A}\times\mathbb{B}$. More precisely, for $F:\mathbb{A}\to\mathbb{B}$ an element in \mathbb{B}^A , $(f,g)\in\mathbb{H}\int\limits_A^G G$ and $\mathbb{A}\in\mathbb{A}$ we put

(16)
$${}^{g}F:A \rightarrow B:a \mapsto {}^{g}(F(g^{-1}a)),$$

defining an action of G on BA, and get

(17)
$$((f,g)F) (a) = f(a) \cdot {}^{g}(F(g^{-1}a)) = f(a) \cdot ({}^{g}F) (a).$$

Our first result is

Theorem 1: If H acts transitively on B, then $H^A \leq H \int G$ acts transitively on B^A . If H acts fixed point free on B (i.e. if $h \cdot b = b$ for some $h \in H$ and some $b \in B$ implies $h = 1_H$), then $H^A \leq H \int G$ acts fixed point free on B^A .

<u>Proof:</u> If F, F' \in B^A and H acts transitively on B, we may choose for a \in A an element $f(a) \in$ H with $f(a) \cdot F(a) = F'(a)$ and thus $(f, l_C) \cdot F = F'$.

If H acts fixed point free on B and $(f, 1_G) \cdot F = F$, then $f(a) \cdot F(a) = F(a)$ for all $a \in A$ implies $f(a) = 1_H$ for all $a \in A$ and thus $(f, 1_G) = 1_{H \setminus G}$.

<u>Corollary 1:</u> If H acts regularly on B (i.e. if H acts transitively and fixed point free on B), then H^{A} acts regularly on B^{A} .

For any $F \in B^A$ let $(H \ G)_F = \{(f,g) \in H \ G \ | \ (f,g) \cdot F = F\}$ be the (full) "symmetry group" of F. Since $(H \ G)_F = (g,f) \cdot (H \ G)_F \cdot (g,f)^{-1}$, all symmetry groups are conjugate in $H \ G$, if H acts transitively on B. Thus, it seems more appropriate to classify elements F, F',... $\in B^A$ with respect to the action of G, say, considered as a subgroup of $H \ G$, or some other significant subgroup.

Concerning the structure of $(H \subseteq G)_F$, we have

Corollary 2: If H acts transitively/fixed point free/regularly on B and if $F \in B^A$, then the canonical map $H \cap G \to G : (f,g) \mapsto g$ maps the symmetry group $(H \cap G)_F$ of F surjectively/injectively/bijectively into G.

<u>Proof:</u> The kernel of $(H_{\Delta}^G)_F \to G: (f,g) \mapsto g$ consists of all $f \in H^{\Delta}$ with $(f,l_G) \cdot F = F$ and, thus, is trivial, if H acts fixed point free on B. If H acts transitively on B, we can find for each $g \in G$ some $f \in H^{\Delta}$ with $(l_{H}^{\Delta},g) \cdot F = (f,l_G) \cdot F$; so we have for any $g \in G$ some $f \in H^{\Delta}$ with $(f^{-1},g) \in (H_{\Delta}^G)_F$, and since this element $(f^{-1},g) \in (H_{\Delta}^G)_F$ will be mapped onto g, we see, that f the transitivity of the action of H on B implies surjectivity of $(H_{\Delta}^G)_F \to G$.

§ 2 Imperfect crystals

Now let A be the 3-dimensional euclidean space \mathbb{E}^3 and let G be the group $O(\mathbb{E}^3)$ of all isometries of \mathbb{E}^3 . Thus $O(\mathbb{E}^3)$ contains the subgroup $O^+(\mathbb{E}^3)$ of index 2 of all proper (orientation preserving) isometries of \mathbb{E}^3 and the translational subgroup $T \leq O^+(\mathbb{E}^3)$, consisting of all translations of \mathbb{E}^3 . Obviously $T \cong \mathbb{R}^3$, $O(\mathbb{E}^3)/T \cong O_3(\mathbb{R})$, the 3-dimensional orthogonal group, and $O(\mathbb{E}^3) \cong T \bowtie O_3(\mathbb{R}) = \mathbb{R}^3 \bowtie O(\mathbb{R}^3)$, the semi-direct product of \mathbb{R}^3 and $O(\mathbb{R}^3)$, taken with respect to the natural action of $O(\mathbb{R}^3)$ on \mathbb{R}^3 . We write $\det(g) = +1$, if $g \in O^+(\mathbb{E}^3)$ and $\det g = -1$ otherwise.

For the choice of B and H we discuss several possibilities: we may either choose B = B_o as just a finite set, consisting of various symbols X_0, X_1, \ldots, X_n for chemical substances, particularly chemical elements, but including one symbol, say X_0 , for the "empty substance", and H = H_o as the group Σ_B of all permutations of B_o, with G acting trivially on B_o and H_o, or we may choose B = B_1 as a finite set, consisting of symbols $X_0, X_1, \ldots, X_k, X_{k+1}^+, X_{k+1}^-, \ldots, X_n^+, X_n^-$ for chemical substances, some of which (more precisely, the last n - k of which) come with a pregiven orientation + or - in our three-space, and we may choose H = H_1 to consist of all permutations π of $X_0, \ldots, X_k, X_{k+1}^+, X_{k+1}^-, \ldots, X_n^+, X_n^-$ which permute the X_0, \ldots, X_k among themselves and the $X_{k+1}^+, X_{k+1}^-, \ldots, X_n^+, X_n^-$ in such a way, that $\pi(X_1^c) = X_1^m \iff \pi(X_1^{-c}) = X_1^{-n}$ (i, j = k+1, ..., n; $\epsilon, \eta \in \{+, -\}$), with G acting

trivially on H_1 and on $\{X_0, \ldots, X_k\}$, but $gX_i^{\epsilon} = X_i^{\epsilon \cdot \text{detg}}$ for $i = k+1, \ldots, n$; $\epsilon \in \{+, -\}, g \in G = 0 (|E^3)$.

Finally we may choose $B=B_2$ to consist of, say, $B_0\times S^2$ (or $B_1\times S^2$ or $\{X_0,\dots,X_k\}$ U $\{X_{k+1}^+,X_{k+1}^-,\dots,X_{e}^+,X_{e}^-\}$ U $\{X_{e+1}^-,\dots,X_n\}\times S^2\}$ with $S^2\subseteq\mathbb{R}^3$ the unit sphere in \mathbb{R}^3 , — so any element in B_2 consists — essentially — of a chemical substance X_1 together with a pregiven direction in \mathbb{E}^3 —, and we may put $H_2=H_0\times O(\mathbb{R}^3)$ (or $H_1\times O(\mathbb{R}^3)$ or ...), acting on $B_0\times S^2$ component wise, with G acting on $H_2=H_0\times O(\mathbb{R}^3)$ and $B=B_0\times S^2$ via the homomorphism $G=O(\mathbb{E}^3) \longrightarrow O(\mathbb{R}^3)$ and the latter group's natural action on the second component, i.e. either by conjugation or the standard action of $O(\mathbb{R}^3)$ on S^2 .

In any case we get a natural action of $H \int_{\mathbb{E}^3} O(\mathbb{E}^3)$ on B^3 . Now let $V \leq H^{\mathbb{E}^3}$ be G-invariant, e.g. one of the groups discussed above. The central definition of an imperfect crystal is now the following:

<u>Definition 1:</u> Using the above notations we define an element $F \in \mathcal{B}^{\mathbb{E}^3}$ to be an imperfect crystal structure relative to $V \leq H^{\mathbb{E}^3}$, if the canonical map $H \int_{\mathbb{E}^3} G \to G$ maps $(V \rtimes G)_F$ onto a crystallographic subgroup U of G, i.e. a discrete subgroup with a compact quotient space.

To define equivalence of such imperfect crystal structures we imbed $G = O(\mathbb{E}^3)$ into the group $G_1 = A(\mathbb{E}^3)$ of affine transformations of \mathbb{E}^3 , which acts on all H's and B's in a natural and compatible way. Thus we can form $H \downarrow G_1$ and consider subgroups $W \subseteq H \downarrow G_1$ of this group, e.g. G_1 itself, identified with $0 \downarrow G_1$, or $0 \not J \not G_1$ in case $0 \not J \not G_1$ and $0 \not J \not G_1$ in case $0 \not J \not G_1$ in these notations we have

Let us discuss some special cases:

In case V = {1}, the trivial group, we get the usual perfect crystal structures.

In case B = B_o = $\{X_o, X_1, X_2\}$ and V = $(H^{1E})^{0}$ const with $H^{1} \leq H_o = \Sigma_{B^{0}}$ the the subgroup of order 2, consisting of the identity and the permutation, permuting X_1 and X_2 and fixing X_0 , we get - essentially - the well known Shubnikov-groups.

In case B = B_o = {X_o,X₁,...,X_n} and V = H^{E3} with H' \leq H_o = Σ _{Bo} consisting of some (or all) permutations fixing X_o, we get, at least, those imperfect crystals, whose <u>underlying</u> geometric crystal structure is perfect, i.e. the crystal structure, we get by neglecting the difference between the various substances X₁,...,X_n and taking into account only their position in three space.

In case B = B_o = $\{X_o, \dots, X_n\}$ and V = $(H_o^{\mathbb{E}^3})_{\text{fin}}^3$ or V = $(H_o^{\mathbb{E}^3})_{\text{comp}}^3$ we get those crystal structures which differ from being perfect only at a finite or a

compact set of places, whereas in case $V = (H_0^E)^3_{olisc}$ we may get crystal structures of the following kind: at first we define an underlying perfect crystal structure $F: E^3 \to B_o$, such that for any $x_i \in B_o$ the preimage $F^{-1}(x_i)$ is either empty or non-discrete and then we disturb F a little by changing its values at a discrete set of places.

References

- B.H. Neumann: Compositio Mathematica, Vol. 13, Fasc. I, pp. 47-64
 - --- , Archiv der Mathematik, Vol. XIV, Fasc. 1, 1963, pp. 1-6.
- V. Koptsik: Lectures and private communications.