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Summary

One of the main objectives of crystal chemisiry is to order the wealth of known
structures and to elucidate general principles. Quite obviously relations of cog-
nate structures have to play a major role in such endcavors. If two structures
are topologically equivalent these relations can be conveniently and clearly ex-
pressed by group-subgroup relations between their space groups. CGraphic rep-
resentation of these reclations leads to a hierarchic ordering resembling a ‘fa m-

ily tree’

At the top of each tree resides a highly symmetrical structure,
the so-called ‘aristotype’, from which the other structures of the tree
can be derived along certain pathways of symmetry reduction . In order to
describe the relations precisely, the symmetry reductions are broken down into
minimal sieps so that a space group is always followed only by maximal
subgroups. These are appropriately characterized by the terms 'translationen-
gleich’, ‘klassengleich’ or ‘#quivalent’ and by their index of symmetry reduc-
tion. Examples from crystal chemistry demonstirate various applications and
show the wealth of information contained in the details. The prime veason for
this success of the abstract framework of group theory in crystal chemistry
evidently lies in the so-called symmetry principle. In the first chapter a com-
prehensive formulation of ithis empirical principle is given, and important stcps

of its historical development are outlined.
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1. The symmetry principle in cry®tal chemistry

1 should like to start with a gencral question: Why is it possible io apply the
abstract framework of group thcory to such an empirical discipline as crystal
chemistry? The answer can only be given in a qualitative manner, but I hope
that the following elucidations will be convineing. In crystal chemistry many ex-
perimentally derived facts can be explained from certain basic principles. This
was emphasized repeatedly by LAVES [1]. [2]. Here we are only interested in
one of these basic principles, the so-called ‘symmetry principle’. It has a long
history, but the earlier formulations are somewhat vague and of limited value
for practical applications. Thus, I shall present at first a more detailed version

of this principle by putting emphasis on three important aspects.

(i) In the solid state the arrangement of atoms reveals a pronounced tendency
towards the highest possible symmetry.

{ii} Several counteracting factors may prevent the atiainment of the highest pos-
sible symmetry, but in most cases the deviations from the ideal arrange-
ment are only small, and frequently the observed symmetry reduction even
corresponds to the smallest possible siep.

(iii) During a solid state reaction which results in one or more products of
lower symmetry very often the higher symmetry of the starting material
is indirectly preserved by the orientation of domains formed within the

crystalline matrix.

After this presentation of my own version of the symmetry principle some his-
torical remarks are appropriate. As far as I know FEDOROV [3], [4] was the
first scientist who had recognized the true nature of the symmetry principle.
From extensive studies of the morphology of crystals he deduced the following
'symmetry law’: "All crystals are either cubic or hexagonal, at least approxi-
mately'. Obviously, this statement corresponds to aspeet (i) mentioned above.
Also aspect (ii) has alrcady been expressed by FEDOROV [3] in 1904: "The main
value of the symmetry law is that the greater the measurable deviation is from

either the cubic or the hexagonal symmeltry, the fewer representatives are known'',

In the twenties the famous Swiss mineralogist NIGGLI [5] supported FEDOROV's view
emphatically. He restricted the ‘symmetry law’ only in so far as he pointed out that

there is no rigorous proof of it. Consequently, he characterized the symmetry prin-

ciple as a 'philosophical doctrine” or as a ‘working hypothesis’. Furthermore, he

added the important viewpoint that sometimes reminiscences to more than one
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symmetry can be found. As an example he mentioned the mineral marcasite.

The first and to the best of my knowledge the only one who applied the symime-
try principle to X-ray crystallography and crystal chemistry was LAVES [1].
But even LAVES used the symmetry principle in a rather restricted scnsc [2]:
"A tendency to form arrangements of high symmetry is observable'. Nofe that
this statement is in accordance with my first aspect (i) only. Somewhat later I
shall come back to the surprising phenomenon of such a restricted use and I will

mention the presumable reason for it.

Some people do not like a ‘philosophical doctrine’ such as the symmetry principle.
Therefore I will quote a formulation given by BRUNNER [6] in 1971 that sounds more
precise: ""Atoms of the same type tend to be in equivalent positions'. After some
reflection you will see that the symmetry principle and BRUNNER’s statcment
are equivalent. Incidentally, BRUNNER has pointed out that this sentence is
nothing but a simplified expression of the old WIENER-SOHNCKE principle: ''Points
are disposed around each point in the same way as around every other''. As a good
example of the equivalence between the symmetry principle and BRUNNER’s state-
ment note that his statement picks out, from among all closest sphere packings,
the hexagonal two-layer structure and the cubic three-layer structure as the only

packings with equivalent sites.

Until now my excursion into history has shown that the aspects (i) and (ii) of the sym-
metry principle were already known although somewhat vaguely. Aspect (iii) was
mentioned by BERNAL & MACKAY [7] in 1965 as follows: "One of the controlling
factors in topotactic reactions is, of course, symmetry. This can be treated at
various levels of sophistication, ranging from Lyubarskii’s to ours, where we find
that the simple concept of Buridan's Ass illumines most cases''. Probably you
know very well the metaphor of ‘Buridan’s Ass’, but nevertheless I will repeat
its meaning here. ’Buridan’s Ass’ is a dog, not an ass*), dying of hunger be-
tween two equal amounts of food, because it could not decide between them. Crys-

tals, of course, are not such donkeys, they take both.

Beyond doubt the three aspects of the symmetry principle are based on a deep-
rooted inherent law of the solid state. In my opinion the term ‘symmetry prin-
ciple’ is well-coined, because it is like a signal for the application of space-

group theory. Now the question arises: Why can we find hardly any papers deal-

*} This transfer was done by antagonists of Buridan‘s doctrine.
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ing with problems of this kind? Dcrhaps you are surprisced ai my question. You
might think at first thal space-group theory is alrcady quite solidly anchored in
crystal chemistry, and vou arc right if you refer to the widespread usc of the
International Tables for X-ray Crystallography [8] in determining and describing
crystal structures. But do not forget that symmetry aspects have atlracted little
attention beyond the description of single, isolated structures. You will find proof
of this claim by paging through the major current text books of crystal chemistry.
Ignoring space group symbols when making comparisons between different  struc-
tures is almosi a characteristic feature of these books. Surcly there arc various
reasons for this one-sided, only geometry-based view. One reason might be that
our scientific community has downright forgotten the ordering principle in FEDO-
ROV’s lifework ‘Das Krystallreich’ [4] published in 1920, The main reason, howev-
er, is that the group-theoretical itools lo improve this situation only became avail-
able in & comprehensive form in 1966. By stating 1966 I am referring to a pa-
per by NEUBUSER & WONDRATSCHEK [9] entitled “Subgroups of the space groups’.
Some problems in this field of mathematical crystallography had already been sol-
ved in the thirties by HERMANN & HEESCH (sce [10]) and also been tackled in the
Internationale Tabellen zur Bestimmung von Kristallstrukturen” of 1935 [10]). Be-
cause HERMANN & HEESCH had restricted their treatment to a special type of

)

subgroup, the so-called ‘zellengleiche Untergruppen’* (lattice-equivalent sub-

groups), a broad application of their rcsults was not possible. Qur cxperiences
in recent ycars have shown that a second category of subgroups, the so-called
'klassengleiche Untergruppen’ (class-equivalent subgroups), are of equal if not
greater significance for crystal chemistry. In the above mentioned 1966 paper

NEUBUSER & WONDRATSCHEK (9] presented the full compilation of the maximal
subgroups of both categories. I was lucky enough to come inteo closer  contact
with Professor WONDRATSCHEK through my appointment to Karlsruhe at this
time. To him I am indebted for many stimulating discussions and for receiving
a preprint of his subgroup tables [11]. Without this contact the practical value
of the field would noi have come to my knowledge as a chemist. During the last
six years I tried repcatedly to pass along my own ¢xperience in this field by
presenting papers (for instance [12]) and by organizing two summer schools at

Karlsruhe [13] in concert with Dr. KLIEE and Professor WONDRATSCHEK.

*) There is now a general agreement that (his term should no longer be used, be-
cause it is somewhat misleading. The term ’translationengleiche Untergruppen’
was recommended instead [13] and will be used throughout this paper.
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2. The group-theoretical representation of crystal-chemical relationships.

To demonstrate relationships between cognate crystal structures and to present
the results in a straightforward and comprehensive form is one of the main pur-
poses of crystal chemistry. Only thus can we ensure that the overall perspec-
tive is not swept away by the growing flood of structural information. Everybody
who publishes crystal structures can help in this endeavor by trying to classify
his new structures within the framework of what is already known. The literature
abounds with examples where so-called ‘new’ structures reveal themsclves at a
closer look as mere variations of well-known basic structure types. Below I will

illustrate this assertion along with my examples.

Our experiences of the last 6 years have shown that group-subgroup relations
are a valuable aid for presentation of essential similaritics between different
crystal structures in a rational and straightforward way. This success is not
surprising, if one bears in mind the symmetry principle. By the same token one
can say that the success can be considered as a direct proof of this principle,
especially with reference to the second aspect (ii). It was indeed found that
frequently a real crystal structure does not reach the highest possible symmetry,
because there are counteracting factors like

I} directed chemical bonds between the atoms (so-called covalent bonds),

II) atoms containing outer electrons that do not participate in chemical bonds
(s o-called lone-pair electrons),

1II) atoms having a non-spherical electron density distribution as trigger of the
so-called Jahn-Teller distortion,

1V) weakly-bounded or quasi-free electrons,

V) diffusion-controlled ordering between atoms of different kinds, often observed
with alloys during annealing,

VI

-

condensed lattice vibrations (so-called soft modes).

It is, however, an experimentally proven fact that the influence of these counter-
acting factors is relatively small. In many cases the observed symmetry reduc-
tion represents the smallest possible step, i.e. the space group of a crystal struc-
ture is @ ma ximal subgroup of a higher symmetric one which might be pos-
sible for this structure. Thus, the great practical value of the NEUBUSER -
WONDRATSCHEK tables [11] is evident. Note that these tables are confined to

maximal subgroups of the categories ’translationengleich’ and ‘klassengleich’
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whercas maximal equivalent subgroups are om!tted. The reason for this omis-
sion is obvious: Every space group has an infinity of maximal equivalent sub-
groups. Such subgroups, however, are also very important in crystal chemistry.
Fortunately, the identification of equivalent subgroups is not a difficult task,
particularly since the index of the subgroup is often low. Very recently a tabu-
lation of maximal cquivalent subgroups of lowest index was given by BERTAUT &
BILLIET [14].

If the cryslal structurc in question has a space group which is not a maximal
but a gencral subgroup of a higher symmeiric one, it is very convenient to re-
solve the total symmetry reduction into a series of usually very few sequential
steps, in the course of which every step represents the transition to a maximal
subgroup. Again the NEUBUSER-WONDRATSCIIEK tables are useful. In addition
to the group-subgroup compilation one often needs the reverse listing, namely the

group-supergroup compilation [11].

In a general way our style of representation of symmetry relations between differ-
ent crystal structures is based on the modular-design principle where the smallest
possible step is like a module of a construction sei. Thus, we only have to dis-
cuss this step in greater detail. We place the space groups of two structures
which we want to compare on¢ upon the other and indicate the direction of the
symmetry reduction by an arrow (Table 1). In the middle of this arrow we state
the type of the maximal subgroup and the index of the symmetry reduction, using
the abbreviations t for ’translationengleich’, k for ‘klassengleich’, and ¢ for
'equivalent’. If the size of the unit cell and its conventional setting changes, we
add the basis vectors of the maximal subgroup as a linear combination of the
basis vectors of the higher symmeotric unit cell, Tor ¢learncss it is recommended
to use unit-cell transformations as rarely as possible. It is much better to fully
exploit the Hermann-Mauguin symbol in formulating space groups and to choose
space-group symbols which do not correspond to the standard sctting of the
International Tables’ [8]. In many cases cognate crystal structures can be de-
scribed with a common origin. Sometimes, however, it is advisable to accept

an origin shift, since otherwise the space-group description deviates consider-
ably from the standard sctting of the ‘Interpational Tables’ [8]. Problems of this
kind were siudied in detail by BILLIET [15]. In the present paper the origin prob-

lem will be discussed along with one of the examples (see Chapter 4.).
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TABLE 1. Gencral formulation of the smallest possible step connecting symmetry

relations between cognate crystal structures.

Hermann-Mauguin symbol of the higher symmetric space group G

Shortened symbol for characterizing the higher symmetric crystal structure,
Often the chemical formula of the compound in question is appropriate,

Type and index of the maximal subgroup U

Unit cell transformation
Origin shift

Hermann-Mauguin symbol of the maximal subgroup U of G

Shoriened symbol for characterizing the lower symmetric crystal structure.
Often the chemical formula of the compound in question is appropriate.

Explanations

1. Possible types of maximal subgroups U of a given space group G.
Abbreviation Term Meaning

t "translationengleich’ U contains all the translations of G.
(lattice-equivalent) The crystal class of U is of
lower symmetry than that of G.

k ’klassengleich g G and U have the same crystal class,
(class-equivalent) but belong to different space-group types.
Thus U has lost translational symmetry,
i.e. the primitive cell of U is larger than that of G.

e equivalent ) G and U belong to the same space-group type.
As in the ‘klassengleich’ case,
U has lost translational symmetry.
2. Index

The index of a subgroup U is the number of cosets of U in G.

3. Unit cell transformation
The three basis vectors of the unit cell belonging to U are given as linear

combinations of the basis vectors of the unit cell belonging to G.

4, Origin shift
The three coordinates of the origin belonging to U are given with respect to

the system of coordinates belonging to G.

*) More precisely: crystallographically equivalent
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At the end of this chapter it should be mentioned that the formulation of struc-
ture relations as developed here has the advantage to be concise, but the disad-
vantage to be without further content. This lack is, however, fundamental accord-
ing to a theorem known from logic about the reciprocity of extent and contents
of a concept: The larger the extent of a notion, the smaller its contents and vice
versa. If structure correlalions by means of symmetry relations between space
groups are to be of practical value, a collection of the usual crystallographic da-
ta for related structurcs has to be provided. It is important to present these
structures in such a way that their relations become clearly visible. In particular,
the atoms of the asymmetric units should exhibit strict correspondence, so that
their positional parameters can immediately be compared. Some cxamples in the

following chapters have been prepared according to this suggestion,
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3. Examples for the simplest possibility of a symmetry relation between cognate crys-

ial structures: The space group of one crystal structure is a maximal

subgroup of the space group of another structure.

3.1. The maximal subgroup is lattice-equivalent (''translationengleich'),

3.1.1. The structural relationship between high quartz and low quartz.

It is known since a long time that the mineral quartz (chemical composition SiOg) un-
dergoes a reversible phase transition at 573°¢C accompanied by small shifts of
the atoms. Crystallographic details of the low-temperature modification (called low
quartz) and of the high-temperature modification (called high quartz) as well as addi-
tional details concerning the mechanism of the phase transition (displacive transforma-
tion after BUERGER [16]) are given in many textbooks (see for instance [17], [18]).
Here we are mainly interested in the fact that the space group P 32 21 of low quartz
is a maximal lattice-equivalent subgroup of P G6g 2 2 , the space group of high
quartz. The twofold axis in the [210]-direction is lost, thus the index of the sub-
group P 32 21 is 2. Together with the subgroup type ’translationengleich’ (calledt
for short) this number is given with the arrow (Fig.l). Note that this phase transi-
tion entails extensive twinning because the higher symmetry of the starting material
is indirectly preserved, as one should expect from the third aspect (iii) of the symme-

try principle (Chapter 1.) From the rough sketch (Fig. 1) you can imagine the distor-

Psz.zz 0<:E:>0
t2
LoD

Silicon atems at Z:O'O,zr% ‘@, and Z=%:..

FIG. 1. Genesis of Dauphiné twins during the transition from high quartz (upper
line) to low quartz (lower line).
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tion of the crystal structure of high quartz during the transition, but note that the
shifts of the silicon atoms (oxygen atoms have been omitted) are rather small. In
Fig. 1 these shifts arc multiplied by the factor 2 for better elucidation. The twin
domains are the well-known Dauphiné twins. If they are present in low quartz the
crystal cannot be used as piezoelectric component in electronics, because the

polar twofold axes compensate each other.

3.1.2. The structural relationship between @- and 8-iin.

According to TAMMANN [19] grey lin (@-Sn) is transformeod to white tin (3-Sn) by
application of high pressure, The reverse transformation which takes place at low
temperaturcs is also known ( ‘lin pest’). At first sight a comparison of the crystal
data of the two Sn-modifications does not reveal any relationship, bul none the less
both modifications are topologically equivalent, The structure of g-Sn is derived from
the structure of a-Sn — which is of the diamond type - by shortening of onc of the
cube edges and elongation of the other two without change of the relative coordinates x,

y, and z of the S5n atoms (Fig.2). A phase transition of this kind is a so-called dil-

a-tin (Fd3m) B-tin (F 4/ddm or 1 4/amd

stendard sefting

FIG. 2. Perspective views of the unit cells of a- and g-tin. The unit cell of
a-Sn is cubic with a = 649.12 pm [20]. For g-Sn the non-conventional set-
ting of the tetragonal unit cell with aj =ag = 823.03 pm and ¢ = 317.49 pm
is preferred, however the conventional tetragonal cell with a’1= a’z =581, 97 pm
and ¢’=317.49 pm is also shown [20].

atational transformation (BUERGER [21]). The metrical differences bhetween o-
and B-Sn are rather large. As a result one observes a volume decrcase of

about 21% during the transformation. Moreover the coordination number of tin in



- 150 -

creases from 4 to 6. The two additional neighbors are translation-equivalent atoms
along [001] and [001_] ; but for better comparison between the left and the right hand
side of Fig.2 the corresponding chemical bonds are not drawn. It is worth to

mention that the crystallographic phase transition is associated with a semiconduc-

tor-metal transition.

In group-theoretical terms the transformation of a-Sn to 8-Sn corresponds to the
transition to a lattice-equivalent maximal subgroup of index 3 according to the nota-
tion F 4,/d 32/m —t3— F 4,/d I 2/m. Because of the compression along [001]
the crystal system changes from cubic to tetragonal, and hence the space-group
symbol of the subgroup has to be changed according to the usual setting of the tetrag-
onal system. The transition a-Sn -» 8-Sn then is described by the relation shownin

Fig.3 (a). Instead of the face-centered cell a body-centered cell containing half the

F 41/d32/m F41/d32/m

13

el "21‘(5‘1-92)= %@1*‘?2): ag

141/11 2/m 2/d

FIG. 3. Symmetry relationship between grey tin (¢-Sn) and white tin (g-Sn). For
clarity the group-theoretical representation is given in two dif-
ferent ways using a non-conventional setting of the space group of g-Sn (a)
and the conventional one (b).

number of atoms can be chosen as smallest unit cell. The axes a} and z_1’2 of the

small cell point along the face diagonals of the previous cell. For the conven-
tional description of g-Sn via the smallest possible unit cell the space-group symbol
must be changed to I 41_/3 m d (short Hermann-Mauguin symbol). In the representa-
tion as suggested for group-subgroup relations (see Table 1.) the transition between

a-Sn and B-Sn is formulated in the way shown in Fig. 3 (b).

This example stresses the difficulties which may arise from the use of the term ’zel-
lengleich’ instead of ‘translationengleich’. As shown in Fig. 3 (b) the size of the
unit cell has changed, but none the less I 4;/am d is ‘zellengleich’ with the min-

imal supergroup F d 3 m . This contradiction is resolved if one bears in mind that

HERMANN [10] has related the term ’zellengleich’ to the primitive unit cell which
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actually is of equal size for both the fourfold primitive F-cell and the twofold

primitive I-cell.

3.1.3. The structural relationship between diamond and sphalerite .

So far we have compared pairs of crystal structures which were chemically re-
lated. It may, however, also be useful to comparc structures which are completely
different from a chemical point of view. A classic example is the relation between
the diamond type and the sphalerite type, as shown in Fig. 4. The atoms of both struc-

tures have identical coordinates, the difference being that the diamond structure con-

FIG. 4. Comparison between the crystal structures of diamond ( left ) and
sphalerite ( right) . Diamond consists of C-atoms; the chemical for-
mula of the mineral sphalerite is ZnS (sulfur atoms are hatched).

tains only one type of atoms, wherecas the sphalerite structure contains two types
which are distributed in an ordered way. The symmetry relation between the two

structures is of the form
F4,/d3 2/m 43 m

12— -
diamond type sphalerite type

The transition, 'tr'anslaﬁonengleich’ of index 2, leads from a centrosymmetric to

a non-centrosymmetric space group. The loss of the inversion centers is ecasy to
understand, because in the diamond structure these centers lic exactly halt way

between neighboring atoms which in Fig.4 are connccted by straight lines.
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3.2.1. The structural relationship between Rh5Ge3 and CaSSbB'

The crystal structure of Ca55b3 was published in 1974 [23]. The authors had found
no relationship with any known structure, but they were kind enough to send me
a copy of the manuscript parallel with submission to the journal. Because I had
some training in recognizing symmetry relationships between the space groups I
saw very soon that in fact another closely related structure existed, Bh5Ge3 [24].
This came just in time to be added as a note in proof. Table 2 shows the crys-
tal data of both compounds. How could I have suspected a relationship, if the

structures apparently have so little in common? Well, the space group Pbnm,
obtained from P nma by cyclic permutation of the lattice constants is a class-

equivalent subgroup of Pba m with index 2. The symmetry reduction while re-

Rh;Ge,-type (Pbam) Ca,Sb,-type (Pbnm) —l
l
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FIG. 5. Schematic representation of the crystal structures of two M5X3-compounds.
All symmetry elements of the respective space groups are included in
order to show the way of thinning (’Auslichtung’) during the symmetry
reduction. For further crystallographic details see Table 2 and 3.
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TABLE 2. Comparison between the crystal data of two orthorhombic M5X3-com-

pounds and their symmetry relationship.

Ca/Sby [23]  Rh Ge, [24) CagSby
(rearranged)
a (pm) 1250.2 542 828.7
b (pm) g51.2 1032 1250.2
¢ {pm) 828.7 3986 9512
Ratio of the axes 1.31:1:1.15 0.53:1:0.38 0.66:1:0.76
Z 4 2 4
Space group Pnma Pbam Pbnm

TABLE 3. DPositional parameters of the atoms for two related M5X3~compounds.

I) RhsGe3 : space group P 21/b 21/a
Rh(1l) in 4h m ; Rh(2)
Rh{3) in 2d 2/m ; Ge(1)

(Il) CagSby : space group P 21/b 21/n

Ca{l), Ca(3), Ca(4), and Sbh(l) in 4¢ m

2/m (No.55) ;

and Ge(2) in 4g m ;
in 2b 2/m .

27/m (No.62) ;

3

Ca(2) and Sb(2) in & 1 .

Atom *) x(T) x(11) ¥(D) y(I1) z(1) Z(II) **)
Mi1) 0.348 0.3213 0.280 0.2725 0.5 0.25
M(2) 0.170 0.1930 0.107 0.0753 0 -0.0425
M(3) 0.5 0.4645 0 -0.0063 0.5 0..25

M{4) or [M(17)] [0, 848] 0.8515 [0.220] 0.2106 [0.5] 0.25
X(1) 0 0.0785 0 0.0168 0.5 0.25
X(2) 0.612 0.5668 0.152 0.1704 0 0.0146

¥} Atoms and their parameters in sguare brackets
other ones given earlier.

are symmetry related to

##) The values of z(I) are strictly or approximately one-half of the correspond-

ing values z(I), because the lattice constant c
larger than that of RhgGey.

of CagSbg 1s about two times
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taining the crystal class requires a doubled axis ¢. For Rh5(_;e3 and Ca55b3 this
is in fact true when the axes-ratios are compared. When I looked at the atomic
positions my suspicion was confirmed. Fig.5 illustrates how striking the relation-
ship between the structures really is when we arrange them in a way appropriate
to symmetry. For Rh50e3 two adjacent unit cells are shown. All atoms lie on the
mirror planes perpendicular to the c-axis. If one reduces the symmetry by the
index 2 by leaving out half of the translations in the c-direction - which is equiv-
alent to doubling the c¢-axis -, only one half of the mirror plancs, one half of
the inversion centres and one half of the screw axes can be retained. Thus the
atoms in the structure acquire additional degrees of freedom for positional shifts,
but the magnitude of the shifts is quite small (see Table 3). We have here a com-
mon phenomenon in crystal chemistry: Very often to a highly symmetrical struc
ture deformed or distorted structures are associated. Of course this is nothing
new. New is only the way we comprehend and assign a distorted structure. The
rather general and meaningless term ‘distorted’ by means of group-subgroup
relations receives a precise and reproducible meaning. Let me only menticon that
also the assignment of equivalent atoms is greatly facilitated and that some con-

sequences for better documentation result (Table 3).

3.2.2. Formation of antiphase domains in hexacelsian during a class - equivalent

phase transition.

It was shown in Chapter 3.1.1. that a solid-state phase transition results in twin
domains, when the growing phase belongs to a lattice-equivalent subgroup
of the space group of the starting material. In the present chapter it will be demon-
strated that with a class-equivalent symmetry reduction so-called anti-
phase domains [25] may be created. Again I would like to draw your atten-
tion to aspect (iii) of the symmetry principle, key-word ’indirect preserving of

symmetry’ (Chapter 1.).

The formation of antiphase domains can easily be understood from the example
shown in Fig. 6. This example looks like a hypothctical one, but there is every
reason to believe that it may stand for a high-temperature phase transition ob-
served with ’hexacelsian’, a synthetic product of the chemical composition
Ba}-‘\leEZO8 [26] . As can be seen from Fig.6 the symmetry reduction is ‘klas-
sengleich’, since translational symmetry is lost during the transformation

to the low-temperature modification. As the growth of the latter phase starts
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P&/m 2/m2/m
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P6,/m2/c2/m

antiphase domain boundaries

FIG. 6. Genesis of antiphase domains during a phase transition which is asso-
ciated with a loss of translational symmetry. 1,2, and 3 are independent
nuclei for crystal growth of the lower symmetric phase (bold lines)
within the crystalline matrix of the higher symmetric starting mate -
rial (dashed lines) .

at different nuclei which are independent of each other, the growing crys-

tals will be to some extent ’in phase ' with respect to the new translation 2c¢, but
just as often ‘out of phase’; e.g. starting at point 1 and 2 in Fig.6 the growing
crystals are in phase, but starting at point 1 and 3 as well as 2 and 3 they are
out of phase. Thus the latter will form antiphase domain boundaries. For hexa-
celsian such boundaries are shown in Fig.7. This picture was taken by MULLER

[26] with the aid of transmission electron microscopy.

FIG. 7. Antiphase domains in hexacelsian after MULLER [26] .
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3.3. The maximal subgroup is equivalent.

The transition to an equivalent subgroup is illustrated via the comparison between
the CuF2 and the VO2 structures. In the concise nomenclature of Table 1

( Chapter 2. ) we have

P12/al

|

2

'
«-—'7 T
0
T3]

o)
-
2
-
~
)
-

VO2

From Fig.8 it may be seen how the transition CuFy — VOy, which involves
doubling of the ¢ axis, leads to the elimination (’Auslichtung’) of half of the sym-
metry elements. In VOz only every other row of inversion centres and screw

axes parallel to the a axis are retained. The arrows which are attached to the

CuF, (P2/a) V0, (P2,/a) at 298K

FIG. 8. Comparison between the crystal structures of CuFg and VOg. The crys-
tallographic details can be found in Table 4.

atoms of the asymmetric unit show how small the displacements from the ideal

structure really are. The ideal structure in this case 1is not the rutile struc-

ture but a hypothetical one in which the anions are arranged as in the hexagonal

closest sphere packing.
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TABLE 4. Crystallographic data of CuFg [27] and VO, [28] .

(I) CuFg : space group P 1 2y/a 1 (No.14); Z

:zv
a=29536.2, b=456.9, ¢=330.9pm, B =

121,112 ;

Cu in 2b1; F in 4e 1.

(I} VO3 : space group P 1 2y/a 1 (No.14); Z=4;

a=538.25, b=453.78, c = 575.17 pm, B = 122.65° ;
V., O(1), and O(2) in 4e 1.

Atom ¥*) x(I) x(I1) y(I) y(IT) z{I) z (1) )
Cuor V 0 0.02646 0 0.02106 0.5 0.23947
F or O(1) 0.2951 0.29884 0.2968 0.29742 0.7558 0.40051

[F'] or O(2) [0.2049] 0.20859 [0.7968] 0.78815 [0.2442] 0.10616

*)

Atoms and their parameters in square brackets are symmetry related to
other ones given earlier.

#¥) The values of z(II) are approximately one-half of the corresponding value

z{I), because the lattice constant ¢ of VOg is about itwo times larger than
that of CuFy .

Another simple case of a symmetry relation between equivalent space groups
was discussed as early as 1973 by BILLIET [29], but note that BILLIET used

the designation 'isosymbolic space groups’. Applying our nomenclature (see

Table 1) BILLIET's example looks as follows:

P 49/m 21/n 2/m

TiOg (rutile)

l

e3
a1.a, 3¢

P 4y5/m 2y/n 2/m

[ ZnSbyOg (trirutile) |

The most interesting point in this context is the fact that compounds are known
which undergo an order - disorder transition between the trirutile and the rutile
structure. For further details see [30] .
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4. Examples for more complex cases of symmetry relations between cognate crys-

tal structures: The space group of one crystal structure is a general

subgroup of the space group of another structure.

4.1. The structural relationship between NiAs and MnP.

The example I should like to present because of its clarity deals with the inten-
sively studied phase transition from the NiAs-type into the MnP-type known for
many compounds. Crystallographic data for one of these are given in Table 5.

Formal symmetry reduction here has to follow two steps because we only want
to allow transitions into maximal subgroups (Fig. 9). In the first step we dis-

turb hexagonality, for example by changing the angle of 120°. Now on symmetry

P 63/m 2/m 2/c

t3
Gi+02,-9*d2, €

C2/m 2|Ic 2/m

K2
-4-4.0

¥
P2im 2i/c 2i/n

FIG. 9. The symmetry relation between NiAs and MnP as well as a schematic
representation of the corresponding structural relationship. The hatched
area means the unit cell of the NiAs-type structure; the basis vectors a
and b refer to the unit cell of the MnP-type structure. Note that there
is an origin shift and that only some symmetry elements are shown.

grounds we have to use an orthorhombic C-centered cell in order to comply with
conventional notation. This new choice of axes of course makes no change in the
iranslations, so the first step is ’translationengleich’. The second step involves
the destruction of the face-centering of the intermediate space group Cm cm .
This implies losing one-half of the translations, thus we have a class-equivalent

reduction of index 2.
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NiAs and MnP are centrosymmetric. We have to be careful about which of the
crystallographically non-equivalent inversion centres is destroyed during reduction.
Fig.9 shows that it is precisely the one which is usually chosen as the origin of
the NiAs-cell (hatched in Fig.9). Actually the problem is quite irivial. Neverthe-
less I want to point it out because experiencc shows that fixing the origin is a
common source of error.

With a great number of examples we have found a guide-line that works in many
cases: Very often with symmetry-reducing centrosymmetric structures, that in-
version centre is retained which is in the orbit of lowest site symmetry. For our
example of the NiAs-MnP transition we have: the inversion centre of the orbit
(6g) with site symmetry 2/m is retained, the one of the orbit (2a) with site sym-

metry 3m disappears (compare Table 5. ).

The atomic shifts from the ideal positions during symmetry reduction arc quite

small. So there is good reason to describe MnP as a distorted NiAs-type. It can

TABLE 5. Crystallographic data of the high- and low-temperature modification

of (MHD. SFEO. 1)As [31].

(Mng_ gFeq 1)As Hypothetical (Mng_gFep. 1)As
at 673 K intermediate at 293 K
(NiAs - type) structure (MnP - type)
Crystal system hexagonal orthorhombic orthorhombic
aj = 370 a~ 370 a = 358.9
Lattice constants (pm) as = 370 b~ 641 b = 625.2
¢ =578 ¢ 578 c = 561.5

Space group

P 63/m 2/m 2/c
(No.194)

C 2/m 2/c 29/m
(No. 63)

P 2,/m 2/c 2./n
¥ (No.lﬁz) ¥

Atomic positions

and site symmetry

Ni in 2a 3m

As in 2c¢ &m?2

M in 4a 2/m

X in 4¢c mm

Mn and P in 4c m

x 0.25 0.25 0.25
(Mng gFeq ;) ¥ 0.25 %) 0.25 0.2138
z 0 0 0.0126

x 0.25 0.25 0.25
As ¥ 0.5833 ) ~0.583 %) 0.5811
z 0.25 0.25 0.2073

*) These positional parameters are not the original ones but transformed values.

They are related to the unit cell of the MnP-type structure for better com-
parison.
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be regarded in the sense of BUERGER [16] as a ’derivative structure’. Let me

show you the extent of distortion in MnP from Fig.10.

S

TIG. 10. The crystal structure of the MnP-type. All atoms are located at the
height x = 1/4 (light circles) or x = 3/4 ( heavy circles ). Only
some symmetry elements are shown.

In this figure the structure is projected along the a-axis because free parame-

ters occur only in the b- and c-direction. The displacement from the ideal posi-
tions is indicated by the length of the arrows. Incidentally, because of symmetry
it is sufficient to draw the arrows for the asymmetric unit only. In the litera-
ture quite often the whole picture is speckled with arrows which in my opinion

does not make for clarity. Along with the pair NiAs-MnP I want to mention an-
other case studied by SELTE, KJEKSHUS & ANDRESEN [31] which backs up my
thesis that group-theoretical presentations of this type are really warranted. For
(Mno‘gFeo‘])As the authors have shown not only that the compound undergoes
a MnP-NiAs-type transition - there are many examples of it — but also how
this transition proceeds. In a series of structure determinations of the compound
in transition the authors could show that the positional parameters of the atoms
as well as the lattice constants vary continuously between the MnP-type and the
NiAs-type, in other words a diffusionless phase transition of second or higher

order takes place. One¢ can assume that other phase transitions not so well in-
vestigated proceed in this diffusionless manner, provided that direct group-sub-

group relations between the phases exist .

The example of this chapter stands for the large field of transitions between dis-

ordered and ordered structures. Quite generally, structures with a statistical
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distribution of different atoms on specific orbits belong to the space group of
higher symmetry. Therefore, the ordering process that takes place in many al-
loys when annealed is always associated with a transition into a subgroup. One
of the alloys which has been subject to thorough investigation is MoNigy . At

higher temperatures the metal atoms are distributed statistically on the sites of
the cubic closest sphere packing. Slow. cooling gives rise to diffusion-controlled

ordering, the result of which is the structure shown in Fig.11 . For a crystal -

F 4/m32/m

13
Harg)lara,le

14/m2Z/m2im
t2

14/m

. . e5
2ayd; ,-gy+2g; ¢

Atoms at z=0: light drawn circles,

z:%: bold drawn circles.
14/m

FIG. 11. The symmetry relation between the disordered high temperature struc-
ture of MoNiy and the ordered low temperature structure. The latter
is shown in rough outlines. For further details see Table 6.

lographic description we need a strangely enlarged cell of tetragonal symmetry.

With respect to the old cell of statistical distribution (basis vectors of the unit

cell a1, 29, and ag = ¢, see Fig.11) the volume of the new cell (basis vec-
tors af, a4, and ¢) has increased by a factor of 5/2. For this phenomenon
the terms ’superlattice’ or ‘superstructure’ are often used, but these are very

bad terms and should be discarded (BERTAUT [32]), because a subgroup derives
from a group by a loss of symmetry operations. The terms ‘sublattice’ or

'substructure ' seem to be more appropriate. The group-theoretical treatment is
especially instructive here, because the important cell-enlarging step involves

a transition to an equivalent subgroup.

The single steps of symmetry reduction correspond to certain particularities in
the crystalline texture of the ordered alloys. With the lattice-equivalent steps

in view, one can easily understand that the textured alloy structure shows twin-
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ning. One only has to keep in mind that the mechanism for ordered alloy forma-

tion is governed by two processes, nucleation and growth of nuclei. As in
the first step the loss of the threefold axis of the cubic system creates three en-
ergetically equivalent alternatives for the orientation of the incipient tetragonal
structure, they have to form triple twins or triplets. Each of these triplets in
the second step is subject of another twinning process. The rcason for this isan-

alogous to the one before. The first mentioned triple twins have been called

TABLE 6. Crystallographic data of the disordered and ordered alloy MoNig [33].

Disordered MoNig
(Cu-type structure)

Ordered MoNiyg
(own structure type)

Crystal system
Lattice constants (pm)

Space group

cubic
a = 361.2

F 4/m 3 2/m (No.225)

tetragonal
a = 572.0; c = 356.4
I 4/m (No.87)

Atomic positions

Mo in 2a 4/m

and site symmetry all atems in 4a m3m Ni in 8h m with free parameters

x = 0.200 (5) and y = 0.400 (5)

‘perpendicular twins’ [34], because the ¢ axes of the threc individuals are al-
most perpendicular to each other; they correspond, of course, to the basis
vectors a1, ag, and ajg of the cubic unit cell of the disordered structure. The

above mentioned twins which are formed during the second step of symmetry re-
duction (cf. Fig. 11) have been called ’antiparallel twins’ [34], because the c axes

of the two individuals are parallel, but pointing in opposite directions. The

essential feature of the symmetry

which

reduction in the third step is the forma-

tion of antiphase domains, cannot be understood without consid-

ering the loss of translations. With four-fifths of the translations lost, i.e. one-

fifth retained or - in other words - with index 5, one expects a corresponding
variety of antiphase domains, and in fact in 1971 the group around AMELINCKX
[34] showed that 4 different types of antiphase boundaries occur with MoNi4. Ac-
cordingly in their experiments they observed the triple and double twins. Thus,
the texture of this alloy is like a ‘finger-print’ for the intermediate space groups
(see Fig.11) . In 1974 VAN TENDELOO & AMELINCKX [35]

explanation for the apparently quite complicated textures of ordered alloys, using

gave an



= 168 =

group-theoretical concepts. The presentation they gave is quite corrcet but unnec-
essarily complicated. Somewhat later WONDRATSCHEK & JEITSCHKO [36]
showed that these rclationships can be presented in an equally correct but far
simpler way with the aid of lattice-equivalent and class-equivalent subgroups of
the space groups. Our example MoNi, is intended as an illustration of how simplce
the application of the concept really is . Before leaving this example I
wish to repeat a general and casily remembered statement from ihe
paper of WONDRATSCHEK & JEITSCHKO [36]: Whenever a phase transition
involves a change in symmetry one observes twin domains when the new
phase belongs to a crystal class of lower symmetry and antiphase domains

when translations as symmetry operations are lost.

5. An example for another frequently observed possibility of a symmetry rela-

tion between cognate crystal structures: The space groups of two (or more) differ-

ent crystal structures have a common supergroup .

The example of this chapter will show that structural relationships between dif -
ferent crystal structures can be elucidated by finding the common supergroup of
their space groups. In addition it will illustrate the fact that this procedure can
even be of advantage when only the crystal data of the compounds, that is the

lattice constants and space groups, are known.

In his Ph.D. thesis on alkaline halogenoc-aurates at the university of Freiburg
SLEATER [37] found that the rubidium and caesium compounds cannot all be iso-
typic, contrary to the results of PENFIELD’s excellent morphological investiga-
tion of 1892 [38]. By appropriately modifying SLEATER’s conventional setting of
the monoclinic compounds (cf.Table 7) one arrives at an elegant solution of this
contradiction [39]. If one compares the crystal data of RbAuCly and RbAuBr, in
the new setting, the metrics of the unit cells show a close relationship. Becausec
the data match quite well save for a doubled lattice constant ¢ of RbAuCly, a
class-equivalent symmetry reduction is at hand. In fact, both space groups I 2/c

and P 21/a can be derived by class-eqguivalent symmetry reduction from the

common supergroup C 2/m ; C12/mi1

&

112/ct P12/al
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TABLE 7. Comparison between the crystal data of RbAuClg and RbAuBry in two
different settings.

Relations between the basis vectors of the unit cells for

RbAuCly: a=-a’"-¢'; b=b"; ¢=2a"+¢'.
RbAuBryg: a=¢'; b=-b'; c=a".
Conventional setting [37] Unconventional setting [39]
RbAuCly RbAuBrg4 RbAuCly RbAuBry
attioe Sonstants a’ = 1251 a' = 143 a= 976.0 a =1029.9
ok i b’ = 590 b = 622 b= 590.2 b= 621.4
B o = 1744 ¢ = 1029 c=1411.6 c= 743.6
Angle in degree 3’ = 146.9 g’ = 121.3 B = 120.05 B = 121.33
Ratio of the axes 2.120:1:2.956  1.195:1:1.654 | 1.6564:1:2392 1.657:1:1197
% 4 2 4 2
Space group g1 2/el P12/cl I12/ctl P12g/al

TABLI 8. Crystallographic data of RbAuCly and RbAuBry4 compared with cor-
responding data of a more symmetrical but hypothetical structure

MM ‘Xyq .
RbAuCl4 [40] RbAuBr, [41] MM Xy
Space group I12/c1(Nol5) P 1 2¢al (N6.14) C 1 2m 1 (No.12)
Rb in 4e 2 Rb in 2d 1 M in 2d 2/m
Atomic positions Au  in 4a I Au  in 2a 1 M’ in 2a 2/m
and site symmetry Ci(1) in 8f 1 Br(l) in 4e 1 X(1) in 4i m
C1(2) in 8 1 Br(2) in 4e¢ 1 X(2) in 4e 1
X 0 0 0
Rb or M y 0.4763 0.5 0.5
z 0.25 3*) 0.5 0.5
X ] 0 0
Au or M' y 0 0 0
z 0 *) 0 0
X 0.1161 0.1183 0.117
Cl{(1),Br(l) or X(1) ¥y -0.0210 -0.0165 0
Z 0.1855 %) 0.3783 0.374
X 0.1633 0.1691 0.25
Cl1(2), Br(2) or X(2) ¥y 0.2943 0.2949 0.25
z 0.0187 =) 0.0419 0

#) These z-values arc strictly or approximately one-half of the corresponding
values of RbAuBry, because the lattice constant ¢ of RbAuCly is about two
times larger than that of RbAuBry (cf. Table 7) .
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As can be seen from the scheme, in both cases the symmetry of the space
group C 2/m is reduced by the loss of translations. During the step to the class-cquiv-
alent maximal subgroup P 24/a the face-centering C is lost; going to the class-
equivalent maximal subgroup I2/c only every other point along the c-axis is gen-

erated by translational symmetry.

One suspects thal the siructures of both RbAuCly and RbAuBr, can be de-
rived from one hypothetical parent structure of higher symmetry (C 2/m) by ap-
plying two different minor distortions. After some trial and error I developed

a model for this parent structure in C 2/m . In this space group, for

Rb and Au and for one of the two crystallographically different halogen
atoms only sites with three fixed parameters are possible (Table 8). The
free x- and z-parameters of the other halogen atom follow directly from spacc-
filling considerations. After the hypothetical model had been obtained it be-
came clear why it could not serve as a solution of the structural problem in it-
self. In the supergroup C 2/m the trivalent gold atom would have to be octa-

B—mnfiguration requires square

hedrally coordinated, whereas its electronic d
planar surroundings. Fig. 12 shows how the octahedral environment, which the
gold atom would have in the supergroup, can be shifted into a square planar co-
ordination by small displacements of the atoms. Two alternatives are shown; they
are related by mirror symmetry. The structure of RbAuBry 1s now generated

by repeating the upper part of the right-hand side of Fig.12 in a direction tilted
approximately 30° off the viewing direction. With RbAuCly nearly the same
.thing happens, except that both the upper and the lower part appear alternately
along the viewing direction. This explains the necessity to double the c-axis im-
mediately. Fig.13 shows the two model structures in a different viewing direc-
tion. The square planar halogeno-aurate ions are drawn schematically as squares.
While tilted ecquilaterally along ¢ for RbAuBr4, the two alternatives 'zig-zag’ for
RbAuC14. The two models were directly fed into the computer, and the coordi-
nates were already good enough for the refinement to converge. Credit and my
thanks should be given to Prof. STRAHLE, who has done all the practical work

of measuring data sets, and refining and evaluating details of the structures.

The example above leaves one question open: Although there is a good reason why
the halogeno-aurate structures in the supergroup C 2/m are not realized, it could
still be that a similar compound assumes this more symmetrical structure. A
trivalent cation with a tendency to octahedral coordination would bhe likely to do

this, and in fact the example we looked for exists with the structure type of
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FIG. 13,

The [M’X4]-layer as the main structural unit of a hypothetical crystal
structure with the composition MM'X, (on the left) and two distorted
versions known from RbAuCly (on the right). The atoms M’ and Au,
resp., are represented by hatched circles, the atoms X or Cl by open
ones. The drawing plane is (001).

RbAuCl, (12/c) RbAuBr, (P2/a)
/ : : 3 i : : o
@ @ ] @ @
7 / /
7
@ 0

Comparison between the crystal structures of RbAuCly and RbAuBr4.
Open circles: Au-atoms; hatched circles: Rb-atoms; Cl- or Br-atoms
at the corners of the inclined squares. For crystallographic details
see Table 8 .
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KA1F4. Its octahedral framework is so perfect that symmetry P4/m m m,
even higher than C 2/m, is possible. In this paper I want to dispense with fur-

ther particulars.

6. General application of group-subgroup relations .

Bl

Synopsis of symmetry-related crystal structures: Compound:

For clarily I have limited myself so far te a relatively narrow range of applica-
tions of group-subgroup relationships, In the last scction of this paper I
would like (o show that this range can be considerably broadened. 1 would even
venture to say that it is of special advantage to observe  group-theoretical
agpects within a wide range of crysial chemistry. Trom experience

we know that many structures can be treated as distortion variants of other struc-
fures. Thus, there is good rcason to look for structures which can no longer
be derived from, or linked with, other structures. The number of basic struc-
tures [16] will still remain on a comprehensible scale. To date it is a question
of personal preference how far one wants to carry this method of classifying
crystal structures. As an experimental scientist I am inclined to regard crystal
chemistry as an cxperimental field, and to see what will turn out to be feasible.
To illustrate my train  of thought about basic slructures, let me show
you a picture by the Dutch designer ESCHER [42]. No doubt the curl of black and

white reptiles in the centre of Fig.14 represents a complicated structure. The far-

FIG. 14. M.C.ESCHER (42]: 'DevelopmentI'.
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ther we follow the curls into the margin, the more clearly the basic structure
of the picture reveals itself as a checkerboard. In the reverse direction we see
how every single reptile can be thought of as being distorted from a square. If
vou look into the margin itself you will see that even the checkerboard disap-
pears. Translated into crystal chemistry this corresponds for example to the

step from sphalerite to diamond (cf. Chapter 3.1.3.) .

As an illustration of the basic idea of this chapter a synopsis for the so-called

perovskite-family is given in Fig. 15 [61]. Only those structure types are consid-

~_Pm3m
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o ¢ ,gyge'b-trss R |
Fi4/mmec Pl.lm?;)m Iélmcrn 5 P4dmm 12
NaNbO,,T fTi0 mmm BaTio
['“_C”E] E 873K | L178K) o \  208K), }
F3c / Wi k2 R3m
PrAIO] 12 gt ek 12
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|i’ / lemm C2mm
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FIG. 15. The "family tree' of perovskite-type structures with chemical
formula MM 'Xg . Structures which may not be reliable are
marked by #*) . PrAlO3 has been questioned by BIRGENAU
et al. (59], PbZrOs by MEGAW [60].

ered which may be regarded as derivative structures of the cubic perovskite with
formula MM ‘X3 . Thus, structures which are characterized by an ordered distribu-

tion of different cations on the M sites as well as the M’ sites are excluded, but
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they can be treated in a similar way. SALJE [62] has also studied symimetry re-
lations between perovskites, but his approach is formally different since he works
with irreducible representations of the space groups. The 18 variants of the basic
perovskite structure shown in Fig.1l5 are arranged according to the group-sub-
group relations of their respective space groups. As can be seen the group-theo-
retical connection of these structures results in a hierarchical order resembling
a ‘family tree’. Incidentally this term harmonizes very nicely with the definition
of structure families as given by MEGAW [63]. For the structure of highest sym-
metry within a structure family MEGAW has coined the term ‘aristotype’ which
in my opinion is rather appropriate. Those structures which can be derived from
the aristotype may be called the ‘hettotypes’, a term which has also been pro-
posed by MEGAW. The new terms, of course, are in correlation with BUERGER s
expressions ’basic structure’ and ’‘derivative structure’ [16]. Problems of nomen-
clature, however, should not be over-estimated. Another statement concerning
Fig.15 is really much more important. Considering the fact that every space
group has an infinity of subgroups. it is somewhat surprising that all the perovs-
kite-like structures are placed within such a small area as Fig.15. In my opin-
ion this result can be regarded as a strong manifestation of the symmetry princi-
ple, especially of the aspect(ii} (see Chapter 1.) . If you allow a metaphor, I
would like to say: In crystal chemistry we are only confronted with the ‘tip of

the iceberg’.

The presentation of all the structural data of the above mentioned perovskites
would be beyond the scope of this paper. Nevertheless it is advisable to give at
least the crysfal data (see Table 9), because our setting of the compounds

{ Fig. 15 ) diffcrs  frequenily from the standard setting of the space groups.
Finally it should be mentioned that BILLIET {G4] has recently published some

comments on the 'family tree’ of the perovskite-like structures [61].

Summing up, it may be said that considerations of group-subgroup relations may
help to put the science of crystal chemistry on a more logical basis. This im-
pression is based on our own work (MXy- and MM 'X4- compounds, unpublished

results ) as well as on the work of EYSEL [65] (AZ[BX4]- and A2 [BX3]—com-
pounds) and MULLER (M,

—compounds [66] and MX_—compounds [67]).

%10 6



- 170

umouy ALrastmoad e/d> LU0 (%

8 | (zgoN) zead 0°zze 8°9LTI b e8¢ 18¢] €ouazag
T | (091°0N) u g | 89°68=1 ¥ BPS [L8] 100080
8 | (0FT'ON) o> w w/§ g L PEL 0Z°828 [9¢] (e ad4d1) a3
i4 (gg"oN) Tzuaa 668 109 18¢ [ss] foaxmT
¥ | (g9oN) wuqg 8°99L 17198 6 FES [¥¢] €00apo
i (g oN) 11 L906=A'0°06~E~D LLBL LT88 ¢ geg [€g] (3 cer) Corvaa
4 (21°0N) w/z 1 0°06=¢ 1°8%L 2 288 L PES [ec] (31 2L1) fotvaa
8 | (L9T°ON) 2¢4d GE 06=2 6 ESL le¢] (3 ¢62) mo:tm
4 (PLON) wwo ] 9°L¥8 L7009 £7909 [2g] (312'%) *oqded
¥ | (0FPT°ON) w2 wt/f 1 («¥ 08L= (#6186~ [18] (31 8L) €oras
z (gg'oN) wwgDd 0°66¢ 6°99¢ Z°89% log] (31 £92) fotnen
I (66'ON) wwpd SE E0F ¥ 668 16%) (31 862) Sorrea
8 | (191°0N) 2gd gz 68=70 99182 [2¥] (1ezn) N Poanen
¥ (9oN) wrtTd €90 "06=A 0L 9LL L0°8SG 6€°25¢ [8¥] (31 862) O Foanex
8 (LE ON) woqd 0°2g¢¢1 9°9¢¢ 9°08¢ 1L¥] “[97] (31 86¢) afoanen
8 (6§ ON) wwug 90984 96 °¢gL 90 °99L (%] “leF] (1een) s Poanen
8| (ggoN) wwuod 9698 05°¢8L groosL | l1svl‘ler] (M go8) 'L Foanen
% | (LaT'ON) wqui/y J 8% "¥6¢€ 6€°9G¢ 1p7] “[€F] 31528 2L Poanen
T | (TggoN) weguwg 8 'G6E [¥%1°[e¥] (31 ¢66) Coanren
4 dnoa8 ooedg Hmwoammm,wu AE&mo:oﬁm:unHHM_wn muﬂ:ﬂ.«M& £ EEBUERE) &N} punoduro)

‘o1 811 ur umoys mKLﬁa spunodwod ayl jo wep [eisfi) ¢ AI1IV.L




=L &

6.2. Synopsis of symmetry-related crystal structures: Compounds with

In the last section of this paper it will be shown that group-subgroup rclations are
also ol advaniage when the compounds have different stoichiometry.

Fig. 16 gives a simple example. Three apparently different erystal structures

CoSn-type (PE/mmm]

snit(Tyze

/

i L
A

Fe,P-type (PB2m) Rb, Ge, - type (Pbam)

FIG. 16. Schematic representation of three different, but nevertheless related
crystal structures. Some crystallographic data and references are given
in Table 10.

are shown, the relationship of which is made evident by linking the atoms con-
cerned with bold lines. The highly symmetrical hexagonal structure is the CoSn-
type. In the sense of MEGAW [63]it can be called ‘aristotype’. Imagine the Co-
atoms at the intersection points of the so-called Kagomé-net with the Schlafli-
symbol 3636, Whereas the Sn(l)-atoms are in the same plane as the Co-atoms of
the net, the Sn(2)-atoms are half way between two nets, adjacent Sn{2})-atoms being

translationally equivalent along the viewing direction. Space filling in the inter-
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P slm mm
PE2m 9.‘Qz.'ﬂ"9;.‘2
Cmmm
t3
+Q,,-8+Q,,C
k2
c2 Pbam
|mm Rh.Ge;
k2 k!z ez
g,b,2¢ ab%  gb2
12cm Pbnm Pbam
TiFesi) [Cagsty] [HioMn,0;]
k2
ab.2¢
Pbnm

FIG. 17. Symmetry relationships between some apparently different crystal strue-
tures. Note that the compounds Rhs('“c3 dhd CagSbg have already been
discussed in greater detail (Chapter 3.2.1.) .

TABLE 10. Crystal data of some compounds shown in Fig.17.

Note that corresponding data for Rh5Geg and CagSbg can be found in Chapter 3.2.1.,
Table 2. For better comparison the hexagonal structures of CoSn and FegP are
described in the orthohexagonal setiing [8].

CoSn FegP TiFeSi HoMngOg a -Ba(OH)y
[68] [69] [70] [71] [72]
a (pmn) 527.9 586.75 628.7 736 710.55
b (pm) 914.3 1016.3 1083.0 849 1102.3
¢ (pm) 425.8 345. 81 699.7 569 1651.5
Hatlo 058:1:047 058:1:034 0.58:1:065 0.87:1:067 0.64:1:1.50
of the axes
Z 6 6 12 4 20

P6/mmm Pé2m I2cm Pbam Pbnm

Space group | - n. 191y (No.189) (No. 46) (No. 55) (No. 62)
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metallic compound CoSn is relatively low, only 55%. Not surprisingly we have a num-
ber of variants of this structure fype, created by filling the large hexagonal chan-
nels around the Sn(l)-atoms. Two such variants are shown. Stuffing thrce atoms
into cach channel - that is 3 atoms per unit cell - hexagonality can be retained,
and onc obtains the Fezl"_type. The resulting distortion of the Kagomé-nel is geo-
metrically plausible. It corresponds to a lattice-cquivalent symmetry reduction

of index 2. Stuffing only tw o atoms into cach channel or unit cell necessarily
destroys the hexagonal symmetry, and one obtains the RhsG&-B-type with a differ-
ent distortion of the Kagomé-net, which is also quite plausible. Thus the basic
idea becomes clear: Despite differing stoichiometry, the structural reclationship

of different compounds can be close enough to warrant the search for a common
basic structure (aristotype) in order to improve a systematic treatment of crystal
chemistry. It takes but a little courage to integrate more stiructures into this ex-
ample and to encompass a wider area of crystal chemistry. For instance our ex-
ample can easily be expanded beyond the Fe2P-type and the Rh5GO3—tpr‘ as shown
in Fig.17. Some crystallographic data as well as references are given in Table 10,

but for rcasons of space a discussion of more details is inappropriatc.

Some of you may be disturbed at the way in which we brushed aside stoichio-
metry, and thus the chemistry of the compounds in this example. But let me
remind you that interpretation of one struclure as a stuffed variant or
vacancy variant of another structure has always belonged to the inventory of crys-
tal chemistry. In addition to what is already known I wanted to show how
group-subgroup relations give a more precise description. A special advantage
seems to lie in the hierarchical structure of the group-theoretical description. Con-
sequent application of the ’family-trec principle’ could help to make crystal chem-

istry more comprehensible than it is today.
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