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On the Sphere Packing Problem

by Hans Zassenhaus

Introduction. TIn discrete geometry and in solid state mathmatical physics
we often consider problems with the symmetry of a Lie group G of invariance
transformations, but admitting only discrete sclutions.

It is a heuristic principle to guide cur search for optimal
distributions (in some well defined sense) that amecng them there will be
some that participate in the symmetry of the problem by means of a 'large'

discrete symmetry group of the distribution contained in G.

Here 'large' can mean: 'a discrete group of G with compact
left coset space' or a discrete group H of G with positive, but finite
Haar measure of a suitable left representative set of G modulo H.

For example for the sphere packing problem in the euclidean
3-dimensional space E3 G is the Galilei transformation group E3 of
6 parameters,

A candidate for an optimal density arrangement of solid unit
spheres in the E3 without overlapping is any hexagonal 3-lattice with
minimal distance | between distinct lattice points, Its symmetry group
is a space group with the lattice translations as translation subgroup and
a point group of order 24 being the direct product of the tetrahedral
rotation group with the central inversicn group of order 2 in any lattice

peint.

Its left coset factor space in E3 is compact.

The Problem. Ask almost anybody but a mathematician how he would pack as
many oranges as possible in a crate; he will answer you about as follows:

place an hexagonal layer as in Fig. 1



Figure 1

on the bottom, place on top of it another hexagonal layer by making use
of the groves formed by the first layer and continue until the crate is
filled.

For the mathematical treatment of the packing problem we
idealize the shape of an orange as a solid sphere of fixed positive radius
r in the euclidean space E3 of dimension 3.

Any pointset S of the E3 satisfying the admissibility

condition
m Y(p,q)(p €S & q€S&p#q=pg> 2r)
is said to define an r-sphere packing consisting of the solid spheres

(2) or(p) ={q ]| qe E, & pq <r}

of radius r centered at the points r of § .
We observe that (1) is the necessary and sufficient condition
that any two solid spheres (2) centered at points of S have no inner

point in common; they do not overlap.

If the point set S 1s bounded then it is finite.
For any bounded subset B of the E3 the maximum cardinality

of a pointset S satisfying the admissibility condition (1) as well as the
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containment condition

(3) o.(p) =B (p €8)

is a non-negative rational integer P(B,r), the sphere packing number

of B .
It remains unchanged upon application of any rigid motion

to B . This is because the application of an isometry

(4) (A, £) = E3 -+ E3
0((A,t)(p)) = A(Op) + t
(0= (0,0,0), A€ & aal - 2 o088 R

of the E carries a solid sphere of radius r 1into another solid

3
sphere of E; . Note that any isometry of Ey is of the form (4) and
that the isometries of E3 form a six parametric Lie group EB , the
symmetry group of the sphere packing problems.

The Frobenius symbol (A,T) denoting an isometry of the

E3 consists of two parts, the homogenous part A and the translative

part t . The mapping

H E3 + 0(3)

H((AL)) = A

provides an epimorphism of E, on the full orthogonal group of degree 3

the kernel of which is the abelian translation group l'l3 formed by the

translations (E,t) by the 3-vectors t . The mapping
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(E,0) &t (t e g’

provides an isomorphism of the 3~translation group Il and the 3-vector

3
space RIXJ %

We denote the group of the iscmetries of a metric space S

by IS(S), e.g.

(5) IS(E3) = E3 .

Any non—empty subset S of Eqy is a metric space. The

isometries of E3 carrying § on S form a subgroup IS(E3,S) of

E3 said to be the symmetry group of S . The restriction mapping

(6) resg : IS(E3,S) > 18(8)

resg(a)(p) = a(p) (p € 8)

provides an epimorphism of IS(Es,S) on IS(S) the kernel of which is

formed by the isometries of E3 that leave the linear manifold generated

by S pointwise fixed.
Denoting by p = dim S the R-linear dimension of that linear

manifold it follows that ker resg is isomorphic to the full orthogonal

group of degree 3 — o :
(7) ker resg = 0(3 - dim S)

The non-degenerate similarity mappings of the E3 form an overgroup

IT3 of E3 . It is a 7-parametric Lie group generated by E

the central dilatations

3 and by
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(8a) T BT

Ty B0y B0 = (N8 ABpal€) (60, T50fs) €8y § A6 R)

3

Any bounded point set B 1is carried into the bounded pointset
(8b) B = {X(») | pesl

Since the packing number P(B,r) 1s a rational integer, in general the
function P(X(B),r) will be not continuous. We remedy this situation as
follows. For any pointset S satisfying the admissibility condition (1)
form the pointset A(S,B,r) obtainad as the union of the intersection
of the solid sphere o(p,r) (p € 8) centered at the points of § with
the clesure B of B

The Lebesgue measure ' pA(S,B,r) of the bounded closed pointset
A(S,B,r) 1is bounded. Form the least upper bound A(B,r) of the numbers
(9) HA(S,B,r) - 3/4Hr3
for all sphere packing pointsets S satisfying (1).

The number A(B,r) = A(E,r) is now a non-negative number
depending on B and r which is invariant under the isometries of E3
Note that the numerical factor 3/4Hr3 is the inverse of the

volume of a solid sphere of radius r . A best sphere packing of B is

any sphere packing for which uA(S,B,r) - 3/4Hr3 = A(B,r) . Two sphere
packings S, S' of B are said to be equivalent if they determine the
same subset of B as union of the intersection of the solid spheres
o(p,r) centered at the points of 3§, §' respectively. This equivalence

has of course the 3 properties of an equivalence relation.



If the pointset B 1is convex then A(B,r) and P(B,r) differ
from each other only by an amount in the order of magnitude of the surface
of B .

In other words, for the treatment of the packing problem we
will allow even to pack sections of whole oranges as long as rthere is no
overlapping of any two oranges.

Let us now briefly summarize the properties of lattices.

A (geometric) lattice of the E, 1is defined as a non-empty

3

discrete subset of the E, satisfying the parallelogram condition (see

Fig. 2)
(10) V(p,q.r,s)(pEL&qeL&reL&s€E3&r_s‘:=;c;==s€L)
q s
p r
Fig. 2

For any lattice L of the E3 the vectors E; from a fixed point p
of T to an arbitrary point q of L form a module I under vector
addition. The module L is an additive free abelian group of rank p < 3
independent of the choice of p . Thus there is a generator set bl""’bp
of L . Any such set is said to be a basis of E . It is linearly iddepen-
dent over the real number field R and it spans T over the rational
integer ring 7 .

Conversely, for any point p of the E3 and for any set of

1x3

linearly independent elements bl,bz,...,bD of the 3-vector space R

the pointset
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I
an L = L(psb uby,.. b ) = {q | PIE I Zb

2t
forms a p-lattice emanating from p . The rank p = dim(L) of L
depends on L only and is said to be the dimension of L

If the demension p 1is positive then the transition from
one basis b],bz,...,bD to another one, say bi,bi,...,b; is defined

by means of a unimodular matrix

(12a) U € GL(p,Z)
such that
(12b) B' = UB

| and B' is

where B 1is the px3-matrix with row vectors b],. .

the px3-matrix with row vectors b;,..~,b$ . The real number

(13) fol = 1E) = | et 88T '7?

is a positive number depending only on L called the mesh of L .
Among the symmetries of a point lattice L there are the

i
lattice translations (E,x) with x in L . They are the only trans-

lations belonging to the symmetry group of L . All isometries of a
lattice form a symmorphic space group. Its point group consists of all

isometries of 1 fixing one of the points of L . Among them there is

always the inversion at that point. A lattice L 1is said to be hexagonal

if it is of positive dimensions, and if it has a basis b]’b2""’bp

with the property that all basis vectors have the same length A and



= 138 =

that any two of them include the angle of 60° between them

(14) b.b (1 <1iz<p)

P..
e

Wl 8 e

A
=

A
=

A
©
—

(s. Fig. 3 showing a plane hexagonal lattice)

Fig. 3

There are precisely o * (p +# 1) lattice vectors of length A wviz.
(15) tbi,i(bj-bk) (1<i<p, 1 £j<kz<p)

all other non—zero lattice vectors are of length >} . Any hexagonal
lattice of shortest length A 1is admissible with respect to sphere
packing of radius r < A/2 .

The mesh of a p-dimensional hexagonal lattice of shortest
length 1 equals /p # T(2/2)0/2,

The point symmetry group of the hexagonal p-lattice is the
direct product of the inversion group and the group generated by the p

s (1 < j <p) . The latter group ist the

reflections in b, ,b,-b.
L T
Coxeter group with the symbol

0--=0-==0 ,,, p===p
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of 5 wvertices isomorphic to the symmetric permutation group of o + |
letters.
It is claimed that for regular tetrahedral crates of side

length « > 0

4
(16a) T() = { £ Lo | & €R
i=]
&80 %K (1 =i 24)
4 P
Ve K
& L= }
i=1
with
(16b) dy = [
a, = (13=1,=1)
aq = (=1,1,-1)
aA = (=1,-1,1)

there is precisely one best sphere packing up to equivalence viz.

the one provided by the hexagonal lattice

4 2r
L(r) = L(0O; X Za.)
jor
In other words
an ACT(D,1) = pAL(E),T(),T) + 3/dmr>

The solution: For this purpose one develops an infinitesimal calculus
following Study's ideas. The symmetry group of the regular tetrahedron is
used in a decisive manner. The result (17) implies the validity of the

statement made in the beginning,



