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TOPOLOGICAL ASPECTS OF CRYSTALLOGRAPHY
W. E. Klee

Institut fiir Kristallographie der Universitat
D-7500 Karlsruhe

Summary: Topological and in particular graph-theoretical methods may
be used for

1. the clagsification of crystal structures,

2. the derivation of the different structural types which are
possible from a topological point of view,

3. the prediction of the maximum symmetry which a structure of a
given type may possess,

4. the solution of special problems such as the determination of
those Si/Al-distributions in silicates which are compatible
with Loewenstein's Si-Al avoidance rule.

0. Introduction

¥e show how graph-theoretical methods can be used to describe and
characterize certain topological properties of crystal structures.
We mean those properties which depend on the way in which the atoms
are connected to each other. We shall assume that for the crystal
structure in question or for the relevant part of it we are given
the information which pairs of atoms are connected by a chemical
bond and which are not. With this information we can associate
graphs of various types with the crystal structure and study the
properties of these graphs. In constructing the graphs we shall
make use of the following concepts:

i) We call a graph a simple graph if it has no loops or multiple
edges.

ii) We call a graph n-periodic (n=0,1,2,...) if it can be embedded
in a euclidean space of sufficiently high dimension in such a
way that among the isometric symmetry operations of the
embedding there are translations in n, but for no such
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embedding there are translations in n+1 linear independent
directions. We call two vertices translationally equivalent
with respect to a given embedding of the graph, if there is
a translation which maps one of the vertices onto the other
and brings the embedding into coincidence with itself.

iii) We call a graph n-dimensional (n=1,2,3) if it allows an embed-
ding in n-dimensional, but not (n-1)-dimensional euclidean
space. The graph KT consisting of a single vertex is the only
graph which can be embedded in O-dimensional space and is cal-
led O-dimensional. The 0-, 1- and 2-dimensional graphs are the
planar graphs.

Obviously we are only considering locally finite graphs, i. e. graphs
in which all vertices are of finite degree. For graph-theoretical
terms not explained in this paper see Harary (1969).

The crystalline silicates are well suited to exemplify the arguments
discussed here. If we leave certain high-pressure modifications out
of discussion the silicates are characterized by the presence of
T04 tetrahedra, where T stands primarily for Si which may, however,
be partly replaced by Al, B, and other elements which form suffici-
ently small cations. The T-atoms, the tetrahedral atoms, occupy the
centres of the tetrahedra and the four O-atoms to which each T-atom
is bonded are at the corners. The arrangement is generally such that
two tetrahedra share at most one oxygen atom and that each oxygen
atom belongs to at most two tetrahedra. We shall assume that all
the silicates which are discussed here are of this type. Possible
distortions of the tetrahedra from their ideal symmetry are of no
consequence for our topological considerations.

With a given silicate structure we can associate several types of
graphs which all give information about the mode of linking of the
TO4 tetrahedra in the structure:

Graphs of the first type, the silicate graphs S", contain two kinds
of vertices, called tetrahedral vertices and oxygen vertices. The
first-mentioned vertices represent the tetrahedral atoms and the

last-mentioned vertices the oxygen atoms, while the edges of such
a graph correspond to the chemical bonds between the atoms.
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crystal structure of A silicate graph S" may or may not be con-
?:E:oggiéiésg?[féggﬁ] nected. In the latter case its components
will in general be isomorphic and we
select one such component for further
study. Otherwise we gselect one component
from each of the two or more isomorphism
classes and consider these components
separately. In any case we shall assume
that from now on we are only dealing with
connected graphs, and we shall call the
connected graphs obtained by the method
just outlined the silicate graphs S'.

Graphs of the third type, which are more
convenient for many applications, contain
only vertices representing tetrahedral
atoms and are called silicate graphs S. We

obtain such a graph S from a graph S' by
deleting each monovalent oxygen vertex and
by replacing each divalent oxygen vertex
together with its two incident edges by a
single edge. Note that we can reconstruct
S' from 5 if we remember that each tetra-
hedral vertex in 5' is tetravalent and that
two tetrahedral vertices in S' are con-
nected via an oxygen vertex whenever the
corresponding vertices in S are adjacent.

Graphs of the fourth type are called
finite silicate graphs 5° and can be con-
structed from the silicate graphs S in a

unique way as follows: If a given graph S
Fig. 1. Different types is O-periocdic and therefore {since we re-
g;%::gh;rggiiﬁecigySZal strict our considerations to crystalline
structure of sanbornite silicates) finite, we put S° = 8. If S is

1-, 2- or 3-periodic, then we partition the
set of vertices of S into classes V, W, ... of translationally equi-
valent vertices and identify these classes with the vertices v°, w°,
... of 5%, We connect two vertices v° and w° in s° by as many edges
as & vertex in class V has neighbours among the vertices in class W.

The special case V = W causes one or more loops to be incident with
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v® = w°. Note that the graph s° may be looked upon as a kind of
homomorphic image of S.

The graphs S", S', S and 8% which can be derived from the crystal
structure of the barium silicate sanbornite are shown in Fig. 1.

1. Classification of the silicate structures

A classification of the silicate structures can be based on the
periodicity and the dimension of the silicate graphs S and also on
the number of classes of translationally equivalent vertices in
these graphs, i. e. on the order of the finite graphs s°. 4 still
finer classification may be obtained by placing two silicate struc-
tures in the same class if and only if their finite silicate graphs
§® are isomorphic. In the finest classification according to graph-
theoretical properties two structures will be placed in the same
class if and only if their silicate graphs S are isomorphic. Let us
consider a few examples: Quarz and tridymite, two of the numerous
modifications of SiOQ, have finite silicate graphs of different
order, the graphs being @ and @ sy Tresp. K[AlSiOd, kalsilite,
and Rb[AlSi04] synth. (Klaska and Jarchow, 1975) have finite graphs
of the same order, but these graphs,gzm for K[AlSiO4] and

for Rb[AlSi04], are non-isomorphic. Rb[AlSi04] and mono—Ca[AlZSiEOJ
(Takéuchi et al., 1973) have finite silicate graphs S° which are both
isomorphic to é£§ , but their silicate graphs S5 are non-isomorphic.
Kalsilite and tridymite, finally, have not only isomeorphic finite
graphs SO, but also isomorphic graphs S.

A classification scheme, together with a few examples, is shown in
Table 1.

The system of classification illustrated here is rigorous in the
sense that its categories are mutually exclusive and it is exhaus-
tive in the sense that all silicates of the type discussed here find
their place in it, including any that may be discovered in the fu-
ture. It may not be equally useful in all areas of silicate science,
but it does provide a most convenient basis from which all possible
silicate graphs may be generated in a systematic way as explained in
the next section.
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2. Generation of the silicate graphs

As is not untypical in graph theory the following constructions are
easy to carry out only as long as the number of vertices involved,
which here means the order of the finite silicate graphs 8%, remains
small. The derivation of the silicate graphs S may be effected in
two steps, the first step being the generation of all finite graphs
s° of a given order, and the second step being the generation of all
graphs S which belong to a particular s°. The techniques which are
employed depend on the periodicity of the graphs to be constructed.

o) O-periodic silicate graphs S:

In the first step we require all connected simple graphs s° of

a given order, subject to the condition that the degree of any

vertex does not exceed 4. The number of such graphs of a given

order is, of course, finite. At least up to order 6 they can be
obtained by direct inspection of graph diagrams such as the ones
given by Harary (1969).

The second step is trivial, since for the O-periodic graphs
s = s°,

i} 1-periodic silicate graphs S:

The first step involves
the derivation of all

connected but not neces-

sarily simple graphs 8%,
again subject to the con-
dition that the degree
of any vertex does not
exceed 4. The number of

such graphs of a given
order is, of course, fi-

nite.
s 8° _——
The 1-pericdic 1- and 2-
dimensional silicate
graphs S correspond, in a
Fig. 2. A 1-periodic 2-dimensional unique way, to certain em-

graph S which is obtained from an ; 0
embedding of the finite graph S° in bedRings of Whe Eraphe 8
the surface of a cylinder in the surface of a
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cylinder, as is illustrated in Fig. 2. The embeddings have to
be such that the resulting graphs S are connected and have no
loops or multiple edges.

The 1-periodic and 3-dimensional silicate graphs S can be con-
gstructed from 1- and 2-dimensional subgraphs by methods which
are not difficult to employ in practice but which have not yet
been put on a systematic basis.

ii) 2-periodic silicate graphs S:

The first step requires the
generation of the finite
graphs S° as in 1i).

With regard to the second
step it should be noted that
the 2-periodic and 2-dimen-
gional silicate graphs S cor-
respond to certain embeddings
of the finite silicate graphs
So in the surface of a torus,
ag 1llustrated in Fig. 3. For
details of the procedure see
Guigas and Klee (1976). Of
particular interest are those
graphs S which allow a convex-

%%T7g} FA A polygonal embedding in the
PR plane, 1. e. an embedding in
' 3
EOOOR0OR. beddddidd AAAA which every face is a convex

polygon. The property of per-

Fig. 3. Three 2-periodic mitting such an embedding is
2-dimensional graphs which
result from different
embeddiggs of the finite graph~-theoretical property
graph 5° in the surface

of a cylinder (taken from through the following
Guigas and Klee, 1976)

connected with a purely

Theorem (Mani-Levitska, Guigas and Xlee, 1979): A 2-periodic
and 2-dimensional simple graph allows a convex-polygonal embed-
ding in the plane if and only if it is 3-connected.

The 2-periodic and 3-dimensional silicate graphs S can be con-
structed from 1- and 2-dimensional subgraphs by methods which
are not difficult to employ in practice but which have not yet
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been put on a systematic basis.

3-periodic silicate graphs:

The derivation of the 3-periodic and 3-dimensional graphs is

not quite analogous to that of the 2-periodic and 2~dimensional
ones. The last-mentioned graphs, when embedded in the plane,

partition the plane into points, lines and faces. The first-

mentioned graphs, however, when embedded in 3-dimensional space,

do not necessarily partition the space into points, lines, faces

and volume elements in a unique way. The derivation of these

graphs can therefore not be based on methods which aim at such

partitions of 3-dimensional space. Three possible approaches to

the problem will be discussed.

a)

B)

Y)

It is always possible to embed a 3-periodic and 3-dimensional
graph in 3-dimensional space in such a way that its vertices
are arranged in parallel layers and it is usually possible
to do it in such & way that the vertices and edges in any
particular layer form a connected subgraph. 3-periodic and
3-dimensional graphs may therefore be obtained by intercon-
necting 2-periodic and 2-dimensiocnal graphs in various ways.
This method has been applied successfully by Wells (see
Wells, 1977) for constructing graphs of silicates and other
structures, and more recently by Smith (1977, 1978, 1979)
for constructing graphs especially of the tectosilicates.
Many of the graphs thus generated correspond to frameworks
which have actually been found in nature. It is, however,
difficult to see which general principles underly the dis-
tinction between those graphs which have been generated by
the authors mentioned and those which have not.

Whether a meaningful connection can be established between
the 3-periodic and 3-dimensional silicate graphs S and cer-
tain embeddings of the finite silicate graphs s° in the
pretzel (double torus) surface or in orientable closed sur-
faces of higher genus remains to be investigated.

A combinatorial method which is certainly capable of further
development has been employed by Chung and Hahn (1976). The
approach is essentially as follows: In a given finite sili-
cate graph s% a connected spanning subgraph is chosen. Those
edges of s® which belong to the subgraph are considered to

represent connection (via oxygen atoms) between tetrahedral
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atoms within a primitive unit cell of the silicate, whereas
the remaining edges of s° are considered to represent con-
nections (via oxygen atoms) to tetrahedral atoms in certain
of those 26 neighbouring cells which have a face, an edge,
or a corner in common with the given unit cell. The desired
sllicate graphs are obtained by choosing different connected
spanning subgraphs in 52 and, for a given choice of subgraph,
agsigning to each edge of 8% which does not belong to the
subgraph one of 26 colours, where each colour stands for a
different neighbouring cell. Actually the edges are given a
direction and so the number of colours which are required is
reduced to 13. The procedure can be modified in such a way
as to make the results independent of the choice of the pri-
mitive unit cell.

¥e add a few general remarks which apply to 1-, 2- and 3-perioedic
gilicate graphs.

It may happen that to a given finite graph 8% there does not belong
geven a single graph 5 of prescribed periodicity and dimension.
From 8° = c;ip y for example, no 1-periodic and 2-dimensional
gilicate graphs S5 can be obtained, because S0 cannot be embedded in
the surface of a cylinder in such a way that the construction leads
to a simple and connected graph S.

It may also happen that to a given finite graph S® there exist in-
finitely many graphs 5. Two of the infinitely many 3-periodic and

3= dimensional graphs S which can be constructed from

$% = @ are illustrated in Fig. 4. Of such a set of infinitely
meny silicate graphs which belong to a particular finite graph at
mest a few can be expected to be graphs of actual silicate struc-
tures. It is therefore wise to restrict the number of allowed graphs
$ in an arbitrary but meaningful way. This may be done as follows.

D (D < (I (I
d o o o ‘
-+»~—r J/ J/’ AK.( 4 Fk ; ’

Fig. 4. Two of the infinitely many 3-periodic 3-dimensional graphs
$ which can be generated from the finite graph S° (see text)
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Let a finite graph s° with vertices v°, w°, .. be given. As we
know, these vertices represent classes V, W, ... of translationally
equivalent vertices in the graphs S which are to be constructed
from §°. Suppose that we want to construct graphs of periodicity n,
where ne€ {1,2,3}. Then we label each vertex in V by an n-tuple of
whole numbers (negative, zero, or positive) such that the vertices
and the n-tuples are in a one-to-one correspondence, and do like-
wise for each vertex in W. Now, we agree to consider only those
graphs 8§ for which the following condition holds: If a pair of ver-
tices v and v' in class V is adjacent to the same vertex w in class
W (V #W), or if a pair of vertices v and v' in class V is mutually
adjacent, then vy - vi ¢ {-1,0,+1} for i=1,...,n, where (v1,...,vn)
are the indices of v and (v;,...,vé) the indices of Vv'. This reflects the

fact that in real structures there is no bonding between distant atoms.
3, Symmetry of the silicate graphs

When discussing the symmetry properties of the graphs which are
associated with the silicate structures it is more realistic to con-
sider not the graphs S which contain only the tetrshedral vertices,
but the graphs S' which contain also the oxygen vertices, since the
symmetry of the latter type of graphs is more closely related to the
actual isometric symmetry of the structures.

By the symmetry group of a graph we mean its automorphism group. The
determination of the automorphism group of a given graph is a problenm
which we shall not discuss here. We only recall that important re-
sults for trees have been obtained by Pdélya (1937).

Besides the automorphism group I'(S') of a given graph S' we shall
algo consider the isometric symmetry group of certain embeddings of
S' in euclidean spaces of suitable dimension. The isometric symmetry
group of such an embedding is, of course, isomorphic to a subgroup
of I'(S'), but there are more detailed relations which are of in-
terest:

i, Can S' be embedded in a euclidean space of finite dimension in
such a way that the isometric symmetry group of the embedding
is isomorphic to the automorphism group I'(S') of S' and, if so,
what is the space of lowest dimension having this property?

ii. What are the embeddings of highest symmetry of a graph §' in
2- or 3-dimensional space?
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iii. What special properties must a graph S' possess in order that
an embedding in 2- or 3-dimensional space can be found with an
isometric symmetry group which is isomorphic to the automorphism
group I'(S8')?

ad i: It is well known that any finite simple graph of order n can
always be embedded in (n-1)-dimensional euclidean space such
that the isometric symmetry group of the embedding and the
automorphism group of the graph are isomorphic. For finite
graphs S' of order n we thus have n-1 as an upper limit for
the dimension of the euclidean space asked for. In the case
of 1-, 2- and 3-periodic graphs S' a general answer does not
seem possible unless additional properties of the graphe are
taken into consideration,

ad 1i: An answer to this question is of relevance for determining
the highest isometric symmetry which a silicate structure
with a given graph S' can possess. No systematic methods of
finding highest-symmetrical embeddings of graphs are known
to the author.

ad iii: Here we have the

Hypothesis: Each 2-periodic 2-dimensional and 3-connected
simple graph can be embedded in the plane in such a way that
the isometric symmetry group of the embedding and the auto-
morphism group of the graph are isomorphic. In other words:
The automorphism group of such a graph is isomorphic to a
2-dimensional space group.

The converse of the hypothesis is

not true, i. e, there are 2-peri-
odic¢ 2-dimensional simple graphs
such as the one in Fig. 5 which are

not 3-connected and yet have an
automorphism group which is iso-
morphic to a 2-dimensional space

group.

Fig. 5. A 2-periodic
2-dimensional graph
whose automorphism
group is isomorphic
to a 2-dimensional
space group cm
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in I'(S). The next step is the partitioning of the set of verti-
ces of S into classes V, W, ... of vertices which are
translationally equivalent with respect to a translation in Y(S)

The graphs in I are finite graphs in which the vertices v°, w°.
stand for the classes V, W, ... of S defined above. Two not neces-

© and w° are connected by as many edges

sarily different vertices v
as a vertex in V has neighbours among the vertices in W. For Y(S) =
= T(8) the graph s® is obtained. Note that each absolutely maximal
internally stable set in a graph of F defines an internally stable

set in S which is invariant under a translation in Y(S).

The graphs in H are finite simple graphs in which the vertices v,

w, ... are representatives from the classes V, W, ... defined above
and in which two vertices v and w are adjacent whenever they are

ad jacent as vertices in S. In other words, the graphs in H are in-
duced subgraphs of S which contain exactly one vertex from each class
of vertices which are equivalent under a translation in Y(S).

The values of a(Fi) give the highest aluminum concentrations which
are compatible with a given periodicity of the aluminum and silicon
atoms. The values of a(Hj), on the other hand, give the highest alu-
minum concentrations which are possible on a local scele, with no
guarantee that such a concentration can be realized throughout the
structure.

We illustrate the method for the 2-periodic 2-dimensional graph S
shown in Fig. 8a. The group T(S) of all translationes can be generated
by two translations with translation vectors g and b. Let Y(S) be the
subgroup of T(S) which is generated by trensletions with translation
vectors a and 2b. The finite graph F, e F determined by Y(S) is shown
in Fig. 8b. The elements of an absolutely maximal internally stable
set are marked with circles. Note that a(Fy) = 3/8. A finite graph
Hyj€ H determined by Y(S) is shown in Fig. Bc. Again the elements of
an absolutely maximal internally stable set are marked with circles.
Note that a(Hy) = 3/B. We therefore have a(S) = 3/8. The ebsolutely
maximal internally stable set of S which is uniquely determined by
the corresponding set of Fy in Fig. 8b is shown in Fig. 8d.



Fig. 6. A 2-periodic
2-dimensional graph
whose automorphism
group is not isomor-
phie to a 2-dimen-
gicnal space group
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The hypothesis is not trivial, i. e.
there are 2-periodic 2-dimensional
simple graphs such as the one in
Pig. 6 which are not 3-connected
and do have an automorphism group
which is not isomorphic to a 2-
dimensional space group.

One of the possible extensions of
the hypothesis to 3-periodic graphs
leads to the (false) conjecture:
Each 3-periodic 3-dimensional and
4-connected simple graph has an

automorphism group which is isomorphic to a 3-dimensional space

group. To this conjecture the 4-regular graph in Fig. 7 provides a

counter-example.

-

‘i

Fig. 7. A 3-periodic 3-dimensional and 4-connected graph
whose automorphism group is not isomorphic to a 3-dimen-
sional space group: The permutation ...(v,w;)(vows)... is
an automorphism of the graph, but cannot be an element of
the space group of any embedding of the graph in 3-dimen-

sional space



4., Si/Al-distributions in silicates

There is a rule which is associated with the name of Loewenstein
(1954) and also with the names of Goldsmith and Laves (1955). It is
based on Pauling's electrostatic valence rule (see Pauling, 1960)
and states that in silicate structures two neighbouring TO4 tetra-
hedra cannot both be occupied by aluminum atoms. We recall that
neighbouring tetrahedra are those with a common vertex. This rule
suggests the following question: What is the highest concentration
of tetrahedral aluminum atoms that can be realized in a given sili-
cate structure without violation of Loewenstein's rule and what are
the corresponding Si/Al-distributions?

Translated into graph-theoretical language Loewenstein's rule states
that in a given silicate graph S those tetrahedral vertices which
represent the aluminum atoms form an internally stable set (see
Hammer and Rudeanu, 1968). The above-mentioned question then leads
to the following problem: To find, in the given silicate graph S, all
absolutely maximal internally stable sets and to determine what frac-
tion a(S) of the vertices belong to such a set. If a(S) is the only
information required, then it is obviously sufficient to construct
just one of these sets.

Methods for solving this problem, in the case of finite graphs, can
be found in Hammer and Rudeanu (1968). In the case of the 1-, 2- and
3-periodic silicate graphs we may proceed as follows (for details
see Klee, 1973): To a given silicate graph S we construct two sets
?=(Fy, Fp, ...} and H= {H), Hp, ...} of finite graphs F; and H;
with the property that a(F;) ¢ a(S) su(Hj) for all F; e P and Hje H,
where «(Fy) is the fraction of the vertices in F; which belong to an
absolutely maximal internally stable set and where a(Hj) is defined
in an analogous way. A pair F e P and H) e H can then in general be
found such that a(Py) = «(8) = «(Hy). The graphs in both sets F and
H depend on the choice of subgroups Y(S) of the group T(S) of all
translations in I'(S) and, in addition, the graphs in H depend on the
way in which representatives are chosen from sets of vertices equi-
valent under translations in Y(S).

The first step in the construction of the graphs in P and H is the
choice of such a subgroup Y(S) of the group T(S) of all translations
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Fig. 8. Construction of an absolutely maximal in-
ternally stable set in a 2-periodic 2-dimensional
graph. For further explanations see text
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