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Preface

This paper contains a very short introduction to the theory of
ordinary differential equations and an exposition of some spe-
cial subjects of the mathematical theory of chemical kinetics.
Though a section on existence and uniqueness has been included
(in a form adapted to the needs of chemistry), our principal

aim is to train the chemist in handling differential equations
that are frequently met with in chemistry. Therefore we have
omitted many subjects (e.g. Bernoulli's equation, Riccati's
equation, etc.), that are commonly treated in elementary courses
on differential equations. On the other side we have discussed

some topics in greater detail than usually.

0f course, the present treatise is not complete. To get biblio-
graphical information on the subject is difficult, because ar-
ticles from journals of chemistry have not been included in
"Mathematical Reviews" (the review journal "Zentralblatt der
Mathematik" has not been at our disposal). As a guide we used
the bibliographies of [5] (43 titles) and [l12] (111 titles).

The symbols v (for all), 3 (there exists), € (element of) and

< (subset of) are frequently used.
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ORDINARY DIFFERENTIAL EQUATIONS OF CHEMISTRY

1. General Remarks.

A differential equation DE is an equation that relates some deri-
vatives of an unknown function to each other and to this func-
tion itself. An ordinary differential equation is a DE, where

the unknown function depends on one variable only. We call this
variable the independent variable and the unknown function the
dependent variable. If the unknown function depends on several
independent variables and the equation involves partial deriva-
tives, then we have a partial differential equation. A chemi-
cally reacting system without space variations can be descri-

bed by a set of ordinary DE with time t as independent variable.

The order of a DE is the order of the highest derivative occur-

ring in it. Thus the equation

x! = £{t,x) (' =

is of the first order. In chemistry we are usually concerned

with systems of DE of the first order such as

xi = f1(t, x1, Kyr «enr xn)
(1.1) xé = fz(t, L PN SYRRERY xn)
xé = fn(t, Kys Koo wees xn)



Here n unknown functions of the independent variable t are to
be determined. We may introduce the vector X = (x1, —_— xn),
X' = (Xi. e xﬁ). F = (f1, e fn). Then the system 1.1

can be written as one single vector differential equation

(1:1") X' = F(t,X)

A differentiable vector valued function X defined on an t-inter-
val I is called a solution of 1.1', if X'(t) = F(t,X(t)) ¥ t€I.
The problem to find a solution of 1.1' that satisfies X(to) =

X ,, where tD €I, is known as the initial value problem. Often

<)I
to is the left endpoint of I, but it may also be an interior
point or the right endpoint. In order that a DE be suited to
describe a deterministic process, the initial value problem

should have a unique solution. Therefore we'll give in sec. 2 ex-

istence and uniqueness theorems for the initial value problem.

In DE of chemical reactions the X, mean concentrations and some-

times a component x is included, that means temperature or

n+1
some other thermodynamic variable. These quantities are always
nonnegative. A vector X is called nonnegative, X > 0, if all
its components are nonnegative. In order that 1.1' describe

a set of chemical reactions, it must have the property, that

every solution with nonnegative initial vector remains nonne-

gative for all time.



We consider a single chemical reaction between n species

Byre-eidhp, whose concentrations in a homogeneous mixture of
dc
0 re ey o
1 dt
= h(c1,...,cn.T). It was one of the early discoveries of chem-

temperature T are c;,...,c , and suppose that ¢
il
istry that —— = n, = const. (i = 2,...,n). Therefore c! =
D) i i
nih(c1,....cn,T) for i=2,...,n. The atomic hypothesis implies

that n integers Vyresesvy can be chosen such that

(1.2) ci = “19(01""'cn'T) o (R |

n
7! h. The reaction isthen symbolized by |} v A, = O.

where g = v
The v, are the stoichiometric coefficients and the function g
is known as the reaction rate. The rate of many reactions is
of the form (see [4], p. 19 f£.):

E

_ “RT ¥y
(1.3} gEE. 9 E*Ci

Where ko' E, R are positive constants. The species A, is called

i
a reactant or a product of the reaction according to whether
Vig S O or Wiy ¥ O. There is always at least one reactant and

at least one product . Therefore n positive numbers Y; can be

n
chosen such that | v, = 0 and thus

v
=i i

(1.4) (ZTici) = ZYici = (ZYivi)g(c1,...,cn,T) =0



Now consider S reactions with rates qj(j =1,...,5) between N

N° Let uij be the

stoichiometric coefficient of the species Ai in the j-th reac-

homogeneously mixed chemical species A1,...,A

tion. The rate of change of cy in the j-th reaction is Vijgj
and therefore the total rate of change is

(1.5) cf = }
j=

1vijgi(c1,...,cN,T) i=1,...,N

To get a differential equation for T is more difficult. Assuming

constant pressure, a comonly used simplified equation is

s N

1
(1.6) T s ¥ UG (Crpiees i) (G = J &6
CP 321 Ky N | N jo1 17pi

where Qj is the heat of the j-th reaction amd cPi is the heat

capacity at constant pressure of the i-th species. If we adjoin
1.6 to 1.5 and write n=N + 1, Xy = ci(i = 1 eaayh=1) %, = T,

d

then we get a system of the form 1.1 with 2" member independent

of t.

2. Existence and Uniqueness

Consider the initial value problem

(2.1) X' = F(t,X) () = Xy

In this section we treat the question whether a solution of

this problem exists in some interval I and whether it is uni-



que. The famous existence theorem of Cauchy-Peano, which requires
only continuity of F, is a local existence theorem, i.e. it
guarantees existence of a solution only in a small neighbor-
hood of the intial point. A general procedure which leads to
existence theorems in the large is furnished by the theory of
completely continuous operators of Leray and Schauder. The
following basic theorem, which results from this theory, is

stated without proof.

Existence Theorem

Let F be continous. For every vector-valued function X, defined

and continuous in I, let ||X]||

sup (|x1(t)| + |x2(t)|

I

+...+|xn(t)|). If there exists a number K > O, independent of
A, such that

(2.2) X' = AF(t,X) X(to) = AX 0 < A<

implies ||X|| < K, then the initial value problem 2.1 has at

least one solution defined in I.

This general existence theorem is the base of the following

theorem, where specific conditions are imposed.
Theorem 2.1

Let xo %z 0 and let F be continous and satisfy:
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(i) fi(t, XyreoerXy _qu 0, xi+1"""xn) >0 for X > O,

(ii) 3 m, M and n positive numbers Si such that

n n

L Sf (kX)) +m ] 8.X, <M ¥X >0, ¥t>t,
i=1 i=1

Then there is at least one solution of 2.1 defined and nonnega-

tive for all t > to'

Proof: Suppose first that in (i) the inequality involving fi
is strict. Choose a number a > O and let

M

n
I = [ty t,+al, L =‘[ 8;x s+ 6, =min 6., K = (L + TﬁT) (1 +e

i=1 i i [e]
Let X be a solution of 2.2 for some A, O < A < 1. Since Xo > 0,
the solution cannot leave the positive orthant. For suppose, it
does leave it, then for some t1 and i we have xi(t1) =0,

1 2 e % % i ]

xi(t1) <0, xj(tT) >0 (j =1,...,n). But (i) implies xi(t1)
Afi(t, XqreoesXi_ g4 0, xi+1,...,xn) > Oi,a contradiction. Now
consider the function v(t) = E&ixi(t). It satisfies v' + Amv =

L] — -
Zﬁixi + AmV = k(ZGifi(t, X) + miaixi) < AM and v(to) = AL.

Multiplication by e)\mt and integration yields
(VeAmt)' = (v' + Amv)ehmt < MM ekmt
v(t)ekmt - v(to)eAmto i % (ehmt_exmto)
vit) = v(t e M) 4 B g gmam(Eot,),

+ e}m]a)

|~

(AL + 1%{) (1
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Since Xy > 0, 60 > 0, it follows

|mla, ¥ tel

=1 M
¥ () <6, (L+3) (1 +e
and hence ||[x|| < K.

Thus the conditions of the Existence Theorem are satisfied. There-
fore a solution X(t) exists for te[to, t0+a] with X(t0 + a) > O.

In the same way we can show that the initial value problem
X' = F(t, X) X(to + a) = X(to + a)

has a solution in [to + a, t° + 2a]. This process is called
continuation of the solution X. Obviously continuation is possi-
ble up to any value of t > to. This proves the theorem, when

strict inequality holds in (i}.

We'll only sketch the proof for the general case. Let {em}

be a sequence of positive numbers converging to zero, e.g.

g & o

5 (m) _
" . The functions fi = fi + €y have the property (i)

with strict inequality. Hence for m = 1,2,... there exists a
solution X(m)(t) of 2.1, where fi is replaced by fi + em,
defined and nonegative for all t > to‘ There is a convergent

subsequence of the sequence x(m)

whose limit is a nonegative
solution of 2.1. (strictly speaking this argument requires

a Lipschitz conditon for F).
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Definition: A function F(t, X) defined on IxD, where D is a=-
subset of Rn, is said to satisfy a Lipschitz condition with
respect to X for the constant k > 0, if for every t,X,Y such
that (t,X) and (t,Y) are in IxD

n n

y |fi(t,X)-fi(t,Y)| < k ): |xi_Yit

i=1 i=1
This condition is satisfied, e.g. if F has continuous partial

derivatives with respect to LSS CYRRRETES (see [20], p. 5).

n

Theorem 2.2

If F satisfies a Lipschitz condition with respect to X, then
there exists at most one solution of 2.1.
A proof is given in every text book on DE. We may combine

theorem 2.1 and 2.2 and get
Theorem 2.3
If F and x  satisfy the conditions of theorem 2.1 and 2.2 all-

together, then there is a unique solution of 2.1 defined and-

nonegative for all t > to.

Example 1

Consider a number of R isothermal reactions in a homogeneous-

mixture of N > R chemical species. The rate equations are
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=
Il =~

(2.4) c! = vi.gj(c],....,cn) = fi I [ . |

J

j=1

Gavals ([5], p. 8) has pointed out, that there exist numbers

N
Yip (4=1,...,N.; 1=1,....,N-R) such that J v

fon W, i Y
J iz i17ij
N-R
(1=1,....,N-R; J=1,....,R) and ] vy;; > O (i=1,....,N).
1=1
N-R
Then (ii) is satisfied with m=M=0, §; = ) Yi,- Indeed,
1=1
) LT 1L T3
§.f. = Y £. = )} Foio Nz Sl = )
151 1T g2 g2 A1 TR g8y 92y 3¢ 11 13T 524 55
)
( YV, :)E. =0
i=1 - S g iy

We will illustrate this with two special examples.

The reactions

v.A —l—> v,B —2—> v

are described by the equations

B = T
v -
(2.5) €y = Vygy Vg,
S3 = Nggy

Condition (ii) of theorem 2.1 is satisfied because



s 1=

ct (=4 (ot

=l + _3“+ B o g, + (g1—g2) + g, = O. If we assume that
vy 2%'U3

9; =kjey (k; > 0), then condition (i) is satisfied, too.

Next consider the enzymatic reaction (see [8])

S+E-1> C—2~—> P+ E

f—

=1

with the equations

s' = -k se + k_,c
e' = —kise + (k_1 + k2)c
(2.6)
c' = k1se = (k_1 + kz)c
p' = k,c (kyok_y.k, > 0)
Here s'+e'+2c'+p' = 0, and we may put 61 = 62 = 54 =1, 63 = 2,

Therefore conditions (i) and (ii) are satisfied.

Example 2

Consider a continuous isothermal stirred tank reactor with cons-
tant volume V and constant volumetric flow rate w of input and
output streams. Let Cif be the input or feed concentrations,
which are given functions of time. As a result of the mixing

the concentrations in the output stream are the same as those
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in the reactor. If R reactions between N species occur, then

the equations are (see [5]1, p. 29)

W

R
W) o - 3 = =
(2.7) C1 = i7 (le Ci) + Ji‘lvijgj fi i=1,.c0.,N

With Yi1 and Gi as in example 1 we get

Since the cif are bounded, there is an M > O such that

N
7 dicif < M and therefore
=1

<=

i

w
I 6,f, +5 I8y <™
i.e. condition (ii) is satisfied.

An existence proof for non-isothermal reactions is given in

sec. 4.

As much as concerns uniqueness let's remark, that F has al-
ways continuous partial derivatives and hence satisfies a
Lipschitz condition, if the rate functions have the form as
in 1.3. The derivative with respect to T, absolute tempe-

rature, contains the factor 5—5 e%%

RT

which is continuous
even if T » O.

For later use we prove the following
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Comparison Theorem

If £f(t,x) is continuous and if in [to,t0+a] the functions x

and y are differentiable and satisfy

(1) =x'-f£(t,x) < y'-f(t,y) X(to) & Y(to)

then x(t) < y(t) in [to,t°+a].

Proof: Consider the function z(t)=y(t)=-x(t). Obviously
z(to) > 0. If not z(t) > O for all t € [to,to+a], then there
is a t1 such that z(t1)=0, z'(t1) < 0, i.e. y(t1) = x(t1),
y'(ti) < x‘(t1). But y(t1) = x(t1) and (i) imply

x'(t1) < y'(t1), a contradiction.

3. Elementary methods of integration

The process of solving a differential equation is called
integration. The simplest DE is x'=f(t). It has the solutions
x = [£(t)dt + C, where C is a constant of integration to be
determined from the initial value. The unique solution satis-

fying x(to) = x4 is

t

€3.1) x=x_+ [ f(s) ds
@ t

o

Now consider the scalar DE x'=f(t,x). If it can be written

in the form



& i

(3+2) x' = g(x) h(t)
then the variablesare said to be "separated".

If g and h are continuous, then a solution x of 3.2 satisfying

x(to) = x_ exists in a neighbourhood of to' according to the

o

existence theorem of Cauchy-Peano. If g(xo)=o, x = xg is a so-

lution. If g(xo) # 0, then a solution can be obtained by so-

ving the equation

(3.3) = [h(t) at + C

foer x (it can be shown by the implicit function theorem that
this is always possible near to) and giving the constant C the
appropriate value. One might ask the questions: can the solution
; be cpntinued up to any value of t > to . what happens, if

g (; (t]) = 0 for some t, > t ? It turns out, that the latter

is impossible, if g is Lipschitzian and g(xo) # 0. To prove

this, suppose that g(x1) = 0 and that x(t1) =X for some

1
t1 > to where x is defined. Then x is a solution of the

initial value problem x' =g (x) h (t), x(t1) = x But this

1°
is impossible because the constant X, is also a solution of
this problem and the solution must be unique. Therefore it
is legitimate to use 3.3 even if g has zeroes. The gquestion
concerning continuation will not be discussed here to its

full extent, but only applied to examples.
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Example 1
(3.4) x' = a(t)x
We have g(x) = x,h(t) = a(t); then equation 3.3 reads

In|x| = | d—: = fa(t)dt + C

If x(to) = then

ol

i =
(3.5) x(t) = xoexp(f a(s)ds)
t

(o]

Continuation of the solution is not limited.
Example 2

(3.6) x' ==ax” (a >0, n>1)

_(dx

We get at+C = = (n-1)_1 % (n=1) or, solved for x:

1
(3.7) x = [(n - 1)(at + C)] n=1

1 =Un=1)

If x(0) = X5 # 0, then C = o %y

I X < 0 and n is

even the solution 3.7 is not defined for all t > O.
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Example 3

Reversible reactions involving two molecules of reactants
and/or products, lead to rate equations of the form

x' = g(x), where g(x) = —ax + b(1—x)2 or -ax2 + b(1-x)2. If

g has two real zeroes a and B, we may write, neglecting a con-

stant factor,

(3.8) x' = g(x) = (x - o} (x-B). (a < B)

[}

” - dx - e
B eaes ] (x-a) (x-B) =~ B-c It X8 " xa &

1 1n |X=B

a-B X-a
xo—B
Let x(0) = x_. We set t = O in (*) and get (f-a)C = 1ln | |
o Xg=a

Now we take exponentials and get

() |§;§| = exp [(B=a) (t+C)] = c exp(R-a)t
xo-B
where ¢ = exp(f-a)C = Ixo—a;'

Since gl(a) = g{B) = 0, a nonconstant solution never takes
the values ¢ or B. Therefore if x # a, B is a solution de-

fined in I, then only three cases are possible:
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x(t) < o V€I, a < x(t) < B VteI, or x(t) > B VteIl.

1st case: X < a

We have sign (x-a) = sign (x-B8) = -1 and hence from (*%)
(x=-B) = (x-a)¥Y, where Y = ¢ exp (B-a)t. This gives x-xY =
B-a¥

1

B-aY. X = —_—Y— i.e.

x = B-acexp(f-a)t
1-c exp(R-a)t

Since x_ < a implies |xo—a| > [x,-a| or ¢ > 1, the denominator
is < O for all t > O, and thus the solution is defined for all

t > 0. It is easily seen that x(t) » a for t + «,
2nd case: a < x < B

In this case we have sign (x-a) = -sign (x-B) and therefore
(x=8) = = (x-a)¥Y, x+x¥ = B+a¥, i.e.
B+acexp(B-a)t

(3.9) x =
1+c exp(B-a)t

Since ¢ > 0, the deominator is positive and the solution is

defined for all t > O. Again x(t) » a for t » =,
3rd case: x > B

Since sign (x-a) = sign (x-f), the solution is the same as in
the 1st case. But x_ > B implies [xo-B| < lxo—a1 or ¢ < 1. There

fore a t > O exists such that 1-c‘exp(B—a)t" = 0, hence the

solution cannot be continued up to t .
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Example 3'

(3.8") x' = = (x-a) (x-B) (a<B)

This equation is reduced to 3.8, if t is replaced by -t. We
consider only the case Xy > B, because we'll need it later.

The solution is

B-ac expl-(B=a)t]
1-c expl[-(R-a)t]

{3,912 X =

where ¢ < 1, Hence the denominator is > 0O and the solution is
defined for all t > 0. We have lim x(t) = B. Application of

troo
formulas 3.9 and 3.9' will follow in sec. 8a.

There are still many elementary methods of integration which
can be applied to particular types of equation. Most of these,
however, are not related to any known problem in chemical

kinetics.

4. Linear equations and systems

The general linear differential equation of first order has

the form

(4.1) x' + a(t)x = b(t)

The sclutions of this equation are
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(4.2) x = e-Ja®Iat (o o o faltiatg,

and are defined for all t for which a and b are defined and

continous. The solution which satisfies x(to) = Xgr is given
by t s
t—j a(s)ds t ¢ J a(wau
(4.2') x(t) =e ® Iz, ¢ fhlE) e as]
£

(]

Now we consider the linear homogeneocus system with constant

coefficients
N
= F g Xy {:= 1 juwewsn
This can be written in vector form
(4.3) X' = Olx

where (Ot denotes the (m,n) matrix [aij].

The general solution of 4.3 is an expression containing n constants
such that any solution of 4.3 can be obtained from it by assi-
gning appropriate values to these constants. It is known that

the solutions of 4.3 form an n dimensional vector space, i.e.

any linear combination of solutions is itself a solution. A

set of solutions that is a basis of this vector space, is

called a fundamental system of solutions. Thus, if {X1,XZ,....,

x“} is a fundamental system for 4.3, then every solution of
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4.3 can be obtained in the form X = ):Aixl, where the )\i are

real numbers.

An eigenvector of Ol is a real or complex vector # O such that
OX= AX or (0l- AE)X = 0 (E = unity matrix), where A is some
real or complex constant. In shis case )\ is called an eigen-
value of the matrix Ol and X an eigenvector belonging to A.
Note, that every scalar multiple of an eigenvector is it-
self an eigenvector. The eigenvalues are the solutions of the

characteristic equation det(0f - AE) = O.
Theorem 4.1

Corresponding to every eigenvalue ) of Ol there exists at least
one solution of 4.3 of the form

(4.4 X(t) = (o, %, o, e*t,...,0 &Y

where (c.l,cz,...,cn) is an eigenvector belonging to A. If O
has n distinct eigenvalues, then the corresponding set of solu-

tions forms a fundamental system for 4.3.

Proof: See [20] p. 60 f.

N 3 At at §c
If X is complex, A = a + bi, then e =e (cos bt + isin bt) and
the solution is oscillating. On the other hand if Olhas n

distinct real eigenvalues, then the components of any solution
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of 4.3 pass through at most a finite number of maxima and

minima.
Example
Let Ol = (-Z _g), a>0,b>0, a# b, and consider the system
X' = 01X, i.e.

| -
(4.5) X3 = -ax,

L -

x5 = ax, bx2

The characteristic equation

det (0L - AE) = |27 N=t@+nm+n =0

_b...

has the solutions A1 = -a, Az = =b. In order to get an eigen-

vector belonging to X1, we solve the algebraic system

-(a + )«l)c1 =0

a C.I"(b + A,I)Cz =0
Since A1 = -a, we may choose ¢, = 1 and this leads to ¢, = a
For A = Az = -b we get ¢y = 0 and ¢, = 1. Therefore the solu-

tions

b-a*
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(4.6) Xy =cy e

where c1, c2 are now arbitrary constants.

The system 4.5 can also be solved by integrating the first

equation apart, which gives x, = c1 e At and replacing this

1
in the 2nd equation, obtaining xé + bxz = acy e_alt which is

of the form 4.1. Applying 4.2 we get

-bt

e_atebtdt] = e [c2 + c

_ bt
X, = e [c, + [ac,

in accordance with 4.6. This method works also in the case
-at

a = b and yields X, = e (02 + a ctt).
A linear system is called inhomogeneous, if it contain terms
that are free of X. Consider the inhomogeneous system

(4.7) X! = Tseeeaen

I~5

1
(=

[
b3
+
2
-
]

The general solution of 4.7 is obtained by adding the general

solution of 4.3 to a particular solution of 4.7.
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The rest of this section is not neededin the further course
of this paper. By means of formula 4.2 and the Comparison
Theorem we will prove an existence theorem for non-isothermic

reactions in a continuous stirred tank reactor.

We make use of example 2 (sec. 2). The equations 2.7 for ci
remain unchanged, except that now the gj depend also on T.
The heat balance gives an equation similar to 1.6, but with
the term % (Tf - T) added. Here Tf is the input or feed tem-
perature. In this way we get the system of DE

W R
1 = 5 - i =
cj =5 (cge - cy) + qu Vij 93 I L. |
(4.8)
¥
T = (T - T) + = Q.9
v ‘Te GO e
N
where Cp 5 §1cpici

)T 3y =1,....,R (see [2], p.47)

cp and Cos denote the specific heat at constant pressure resp.

volume.
Theorem 4.2
If the following conditions are satisfied:

(i) the specific heats cpi and Cui (i=1,....,N) are inde-

pendent of T
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(1i) gj(c1a----ch) = sup gj(c1a-~-rCNrT)<°°
O<T<w»
R
(iii) .£ “ijgj(c1"""ci—1' 0, Cy qreeesCyr T) >0

j=1

N
M) o 50 LS Vs B0 T 65

if £

Then the system 4.8 has a solution that satisfies given non-
negative initial values and is defined and nonnegative for all

i

Proof: We have to derive estimates for solutions of

X' = AF(t, X) x(to) = XX,

or explicitly

cl = Am(cif - ci) + Azui.g.

i 373
(4.9) T' = AM(T. = T) + = I Q
’ £ c 393
p
c.(t)) =2rc T(t ) = A T_ wherem = L
i'"o oi o v

Let (c1,...,cN, T) be a solution of 4.9. Conditions (iii)-(v)
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imply that it is nonnegative. We consider v(t) =.§ Gici(t),
where the 6i have the same meaning as in example1;1of sec. 2.

We get v' = Eéici = Am (Elicif-v) and v' + Amv < AM for some

M > 0. It turns out, that K as defined in the proof of theorem
2.1 is an upper bound for the ¢;- In order to get an estimate fo
T, we need a positive lower bound for Cp and therefore a posi-
tive lower bound for the cy - Since (v) implies mzdicif > €

for some € > O, we get v' + imv > A€ and, after multiplication

with eAmt and integration

-Am(t-t ) | € =Am(t-t,)

vit) > v(t e + Z(1-e ) > vit)

since m = % > 0. Therefore v(t) > AL for t > to‘ where
AL

L =1L§ coi' But then c(t) > Ndkfor at least one index k, hence
€. I
= Pk~ _
CP g Cpici > A N6 ACO > 0 and from 4.9

T' < Am (Tf -T) + Co Engj

Now, using O < A < 1, Tf >0, T >0 and 4.8 a, and dropping

terms with negative on and negative vij' we obtain

_1 s il
£t CO {Zon gj + TZZvij cvj gj}

T' < mT

or breefly

T < FT(t, c1,...,cN) + rz(CT""'cN)T
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Since (°1""'CN' T) is a hypothetically given solution of
4.9, we may consider P1 and Fz as functions of t alone, which
are bounded independently of }. Now choose x, > Tg. According

to the comparison Theorem, the solution of

X' = F1 + sz x(to) = Axo

satisfies T(t) < x(t) and is given by (see formula 4.2'")

t, ds

S
i —fr
wfe] = eI 2 ef 2du

t
[+ T, ds]

Ir
Since Axo eIr2 <X, e 2, x and T are bounded independently of

A. Therefore the conditions of the general. Existence Theorem
(sec. 2) are satisfied and the proof is complete.

Remark: The principal ideas of the preceding proof are due to
[5], p. 28 f., where, however, the rather restrictive conditions,

that CP and the heats of reaction be constant, are imposed.

5. Series expansion and singular perturbations.

1f an explicit expression such as 4.3 for the solutions of

a DE has been found, then we say that the equation has been
solved in closed form. Most nonlinear equations and in parti-
cular, systems of nonlinear eguations cannot be solved in closed
form. Therefore we have to look for methods that provide at
least approximate solutions in those cases. This task be-

long to the branch of Numerical Analysis and is extensively
treated in any text book on the subject. Here we'll only dis-
cuss series expansions, and especially the method of singular
perturbations and its connection with the quasi-steady-state

approximation introduced in 1924 by Bodenstein and Lutkemayer.
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We recall that a function is called analytic, if it is represen-
ted by an absolutely convergent power series. Let's consider

the equations
(5.1) x' = £(t,x)
(5.2) x' = h(t,x,})

If £ is analytic in t and x, i.e. f(t,x) = a, + aj;at + ag X +

2 2 i
aZOt + 2311tx tagxT o, then the solutions of 5.1 can

0

be obtained in the form x = ] c t". The coefficients c_ are
m=0

calculated by replacing x by Scmtm and x' by chmtm-1

in 5.1
and equating coefficients of equal powers of t. This is the
most common method of solution by series expansion. It can
also be applied to 5.2, if h is analytic in t and x, with
the difference, that Sn will then become a function of X. If
h is analytic in t and A then a solution of 5.2 can also be
obtained in the form

@

m
(5.3) x(t,A) = ] x(e) A®
m=0

If this series is troncated at m = k, then we call it the

solution of order k.

We consider the simple example

(5.4) x' = X (x) x(0) £

where
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X+AX2+...

(5.5) f(x) = AO + A1 2

We insert 5.3 into 5.5 and obtain after reordering

(o] 00 &
f(x) = [Ao + xA1 + x x Az + 4ae] A

1 o1 1

* XA + 2 % B+ wsus]A
1 2

2 11 0 2 5
+ [x A1 + (x x + 2 x x) A2 # el A
. e

0 1 5 2
On the other hand x" = x' + Ax'" + A" x' + ...

Thus, applying 5.4 and comparing the coefficients of 2™ on

both sides, we get the infinite sequence of DE

(0]

X' =0

1 e} O 0 o]
L] - -—

x' = Ao + X A1 + H X A2 + ... = £(x)

(5.6) &

2 1 o1
L] P

x' = x A1 4 2 e Az + w e

3 2 11 02

X' =xA, + (xx+2xx) A, + ...

2



=3P <

o] m
In we impose the initial conditions x(0) = g, x(0) = 0O

(m > 1), then 5.3 will satisfy x(0, ) =¢ vi. The equation

5.6 can be solved recursively, i.e. we first calculate 2,
insert it into the 2nd calculate ;, etc. Each equation of the
system 5.6 is simpler than the original equation 5.4, because
its second member depends only on known (previously calculated!

functions and therefore only on t. Now we consier instead of 5.4

the system
x' = M (x,y) y' = g(x,y)

Suppose that f and g are analytic in x and vy,

f(x,y) = Ia, yE g,y = I Byy xty®
i, k=0 i, k=0
m m
Inserting 5.3 and y = L y A into 5.7 and comparing the co-
efficients of Am we obtain
o}
(5.8) (ao) x' =0
(o] Oi Ok o O
L} - P
(By) y' = EB;, X"y =g(x, y)
1 0o ©
(a1) x' = f(x, y)
1 1 1 o1 o1
(81) g = B1Ox + Bo1y + 2[B20x X + B11(x y +
T (O o1
+ x y) +B02yy] £ u v
o]

This system is again recursive. Once x = const. has been de-

termined, equation BO reduces to an equation with seperated
o} [¢]
variables (see sec. 3). Once x and y are determined, the sec-
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and member of o, depends only on t, and l can be calculated g

by simple integration. Furthermore equation 81 is linear in y.
Generally speaking: equation o requires only the integration

of known(previously calculated) functions, and equation

Bp(m > 1) is linear. Thus the system 5.8 is essentially solvable,
though the actual computation may become tedious when m in=-=
creases. This method is particularly useful, if A is small and

higher order terms may be neglected. The same method, applied

to

(5.9) %!

£(x,y)

Ay' = g(x,y)

where A is small, is called singular pertubation. The system

5.9 is considered as a pertubation of the system

(5.10) - & f(x,y)

o
]

glx,y)
where one eguation is degenerated into an algebraic equation.
If y = ¢(x) is a root of g(x,y) = 0, than 5.10 may be

written

(5-10") x' = £(x, ¢(x))
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We may impose the initial condition x(0) = xo on 5.10' and

the initial conditions x(0) = x y(0) = Y, on 5.9 A Theorem

of
of A. N. Tikhonov (see [8], [18]) states, that under certain
conditions, which are usually satisfied in chemical kinetics,
the solution (x,y) of the initial value problem for 5.9 tends
to the solution (x, ¢(x)) of the initial value problem for

5.10 except for t = 0. Clearly, we cannot expect convergence

for t = 0, since in general ¢(x_ ) # y,.

Now let's consider an example. The equations 2.5 can be reduced
to a system of 2 equations, if only the equations for s' and

c' are retained and e is eliminated using e' + c' = 0, i.e.

e + ¢ = const. These reduced equations contain the initial
value e(0Q) = eo,s(o) = s, and c(0) = c, as parameters and can

o} o
be further reduced to the form (see [8])

= ==X+ (x + K-L)y

(5.11)

AEX =x - (x + K)y

drt
s c €o

where x = =—, ==, A= —, 1T = k,e_t and X, L are para-
So Sy S, 170

meters independent of A. In enzymatic reactions A is small.
If we set A = 0 and eliminate y, we get from 5.11 the so-

called Michaelis-Menten kinetic law

(5.12) dx Lx
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The solution of 5.12 is called the quasi-steady state approxi-
mation to 5.11. For t > O the exact solution of 5.11 tends to

the solutions of 5.12 as A tends to zero (Tikhonov's theorem).

During the last 20 years the quasi-steady state approximation
has been refined in two respects. First, the approximate solu-
tion of 5.9 has been splitted into two functions, one the

"inner solution”, defined for small t and satisfying the ini-
tial conditions, and the other, the'fouter solution", defined for
greater t and equal to the solution of 5.10. Secondly, the
solution of 5.10 has been replaced by a series expansion in

powers of A.

The inner solution is obtained as follows. Introduce a new inde-

pendent variable s by sA = t. Since %— = A g—, 5.9 is trans-
s dt
formed to
{5.7') dx _ dy _
T = MGxy) a5 = 9(x,y)

This system can be solved in the way outlined above. The
problem is then, to join the inner and outer solution smoothly.
We denote the inner solution with x, y and the outer solution

with %, y. If £t > O, then X -+ 0 is equivalent to s + «, There-

fore we require

(5.13) x{+0) = lim x(s)

S+®
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(5.14) y(+0) = lim y(s)
S+®
The series expansion of the outer solution in obtained as follo-
m
ws. If we introduce the series 5.3 and y = I y A™ into 5.9

and compare the coefficients of A", then we get

o o0
(5-.15) (By) 0 =g(x, y)
o] o 0
(ag) x' = £(x, ¥)
o] 1 1 01 o1 10
1 -
(B1) y' = B1O X + Bo1 y + 2[B20 X X + B11(x y + xy) +
01
+ 802 y vyl + ...
1 1 1 01 01 10
L] -
{a1) x' = AIO x + A01 y + Z[A20 x X% A11(x y+x ¥+
01
+ A02 yvl] + ...
0] i o]
From BO' which is no longer a DE, we get y as a function ¢ of x,
0 (o} o
and then we can solve equation ey for x, replacing y by ¢(x).
o 0
(Note that (x, y) is nothing else than the quasi-steady state
o] (o]

approximation). In equation 81 y'is known since y is known,
and ?o derivative of ; is present. Th?refore oy c?n be solved
for x after algebraic elimination of y, and then y can be ob-
tained from equation 81, etc. Obviously initial values are
needed only for the 2. How to obtain these initial values

such that 5.13 is satisfied, is explained in [8]. In [3]

it is shown by means of an example, how the constants of inte-
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gration that occur in the outer solution, are determined by
condition 5.13, and that condition 5.14 is then satisfied auto-

matically for the 2nd order solution.

It may happen, that the outer sclution breaks down for very large
times, because the series 5.3 is not longer convergent. This
possibility is considered in [3] anda way to circumvent this
difficulty by the construction of a third function, the "far

out" solution is indicated.
6. Stability

In many applications it is not necessary to calculate an exact
or an approximate solution of a DE, but it is sufficient to
know the behaviour as t + = (asymptotic behaviour) of a cer-
tain set of solutions. One of the most important concepts

in this area is the concept of
stability. The short exposition of stability theory given here
differs somewhat from the usual way, due to the fact that we are

frequently interested only in nonnegative solutions.

Definition 1. A subset @ €R" is called an invariant set with
respect to 1.1, if for every XO €Q the solution X of 1.1 that
satisfies X{t ) = X is defined amd remains in @ for all

t > t . For example, @ = {XERn:XEQ] is invariant with respect

to 1.1, if F satisfies the conditions of Th. 2.3.
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n

Definition 2. A norm in R" is a function || ||:R™ + R that
satisfies ||X|| >o¥x # 0, ||ax|| = |a| ||x]|]|, ||x+¥|| < |[|%]||+
+ ||¥|| for all X, ¥ € R", a € R.

n
For example, ||X|| = ] |x;| and ||X|| = max|x;| are norms in
2 i=1 i

Definition 3. Let @ be an invariant set with respect to 1.1. A
solution y of 1.1 with w(to) € R is said to be Q-stable, or
simply stable, if given any € > O, there exists a § > O such
that any solution ¢ of 1.1 satisfying ¢(t)) € Q and |]¢(to)—
vt ) || < & satisfies |[¢(t) - w(t) || < e for all t > ..

Y is called asymptotically stable, if it is stable and if there
exists a § > O such that any solution of 1.1 satisfying ¢(tD)
er and ||¢(t,) - w(t ) || < & satisfies |[¢(t) - y(£) || + 0 as

t > o,

Remark: These concepts coincide with the usual stability con-

cepts, if @ = R™.

Theorem 6.1

Let A be a(n.n) matrix and let @ = R%. If all eigenvalues of

A have negative real parts, then the identically zero solu-
tion of the system

(6.1) X' = AX

is asymptotically stable.
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Proof: If A has n distinct eigenvalues Al""’kn' then any
i At
solution of 6.1 is a vector whose components are x, = ) Cix © -,
i=1

where the C;) are complex numbers (Theorem 4.1). If Re(A) =

@ < 0, then [e1t| = e 5 0 as t » =. Therefore X, > 0, if all

Ai have negative real parts. If A has mutiple eigenvalues, then

ALt
X, = 1 Pik(t) e 17 where Pik is a polynomial in t (see [20],

i
p. 63). But it is known that lim l?(i:)emt

tow

= 0 for any polynomial

P, if o < O.

The eigenvalues of A are the roots of the characteristic equ-

tion det(A-AE) = O, which may be written in the form
n n-1 -
(6.2) AT+ m, A F i oL, (o] (m1,....,mn ER)
We define the determinants D1 = m, and
My Mgy Mg eeeeenne My
T mymy el My 5
D, = 0O m My eeeennn. My o k=2,3,....,n

where mj =0 for j > n. We have e.g. for n = 3
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m, m, m, my (e]
D2 = D3 =11 m, (o] = m3(m1m2-m3)
1 m [0} m, ma

Theorem 6.2 (Routh-Hurwitz criterion)

If all the determinants D, are positive, then all roots of

6.2 have negative real parts.

It is therefore possible to get information on stability with-
out calculating the roots of 6.2. The proof of Theorem 6.2
cannot be given here. Applications of the Routh-Hurwitz criter-

ion can be found in [1] and [9].

A very powerful tool in the study of stability, especially in
nonlinear systems, is the direct method of liapunov. t consists
in the use of certain auxiliary functions, called liapunov

functions, which will be defined now.
Definition 4.
A function V:R™ » R is called positive (negative) definite in a

subset Q€R", if V(X) > O (< O) for all XeQ and V(X) = O if

and only if X = O.
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Definition 5.

Let & be an invariant set with respect to 1.1. A liapunov
function for the equation 1.1 is a function v:R™ + R with

continuous partial derivatives and the following properties:

(L 1) V is positive definite in Q
n

(L 2) ) BV ¢ <oforallt>t_ and x € Q
124 §xi 3 R o

Note: If X(t) is a solution of 1.1 that remains in Q, and
V is a liapunov function for 1.1, then W(t): = V(X(t)) is

descreasing, since

av

——gl =
s S

w'(t) =
i

=t
<12
e
A
o

[Rarke=]

As an example we consider the system 4.5 for which V = ax$ +
2 . ) ay v _
+ hx2 is a liapunov function. Indeed, 3;] f1 + Tx f2 =
2.2 2.2, _ 2 2, 2
-2(a x) + abxlx2 + b x2) = (ax1 + bx2) (ax1 + bxz) < 0.
Theorem 6.3
Let F(t,0) = O for all t and let 2 be an invariant set with

respect to 1.1 such that O € 0 and the intersection of {
with any set {X:||X|| = ¢} is compact. If there exists a

liapunov function such that L 2 is satisfied for all X € @,
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then the identically zero solution of 1.1 is Q-stable.

Note: The compactness condition is satisfied, if, e.g.

Q= {x € R™:x > 0}

Proof: Given € > 0, consider the set S of all X € Q such
that ||X|] = €. S is compact and therefore w: = min V(X) exists
S

and is > 0, since V(X) > O for X # 0. Now choose 6, O < § < ¢
such that V(X) < w for ||X|| < &. If X(t) is a solution of 1.1
with X(t ) = X, € @, |[X || < §, then V(X)) < w. Since Q is
invariant, X(t) remains in Q and V(X(t)) is decreasing for all
t > £ , hence V(X(t)) < w and hence |[X(t)|| # «for all t > t_.

But |[|X || < ¢ and therefore |[X(t)|| < ¢ for all t > £,

In the next theorem we suppose that F doesn't depend on t.

Hence we consider
(6.4) X' = F(X)
Theorem 6.4

Let F(O) = O and let Q@ be an invariant set with respect to

6.4 such that 0 € Q@ and the intersection of Q2 with any set

{X:a < ||X|| < b|} is compact (e.g. 2 = R® or 0 = {X:X 2 O}).
T oav

If there exists a liapunov function V such that E %; fi

is negative definite in @, then the zero solution of 6.4 is

asymptotically Q-stable.
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Proof: Since the conditionsof Theorem 6.3 are satisfied, the
zero solution is {i-stable. Hence, given ¢ > O, there exists
a § » 0, such that any solution X(t) with x(to) = XO € R,
[1x(t ) || < & satisfies [[X(t)|| < e ¥ t > t_. For such a

solution V(X(t)) is decreasing. Suppose there exists an

n>0 such that V(x(t)) 2 n ¥ t > to' Since V(0) = 0 and V is

s 4

continuous, to n there exists an n such that ||[X]|| <

implies V(X) < n. But then V(X)) 2 n implies ||X(t)] n

v

¥t to. Let S be the set of all X € {§ such that n g
Eg—f. dt <
axi i

< [x[] = e
o oV A
Then w: = m;x z T, £,<0, and V(x(t),)—V(x(tO))=tJ z
w(t - tO) ¥t > to’ hence V(X(t)) —+=» which © is impossible.
Therefore such an n cannot exist, i.e. lim V(X(t)) = O.

torx

Now suppose that lim X(t) # O or that this limit doesn't exist,
tro

then there is a convergent sequence X(t1), X(tz),..., such that

lim X{t ) = X # 0, and then lim V(X(t )) = V(X ) # O because

n->oo n+o

V is continous and positive definite. This is a contradiction

therefore X(t) tends to zero as t tends to =,

There is no general procedure to construct liapunov functions
for arbitrary systems, but some succenful recipes are pro-
posed in [17]. An interesting application of Theorem 6.4 is

given in [14] (see also sec. 8 b).

7. Two dimensional system.

The system 1.1 is called autonomous, if F doesn't depend

on t. We consider the autonomous system
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(7%-1) x' = £f(x,y) y' = g(x,y)

A solution of 7.1 may be represented as a curve in (x,y,t)
space with tangent vector (x',y',1). Its projection ontoc the
(x,y) plane, the phase plane, has tangent vector (x',y') and
direction ¥; = %%%f%%. This projection is called the path or
trajectory of the solution and satisfies the DE

(7.2) dy _ g(x.y)

dx f{x,y)
A design which exhibits the shape of the solution paths in
the phase plane, is called a phase potrait of 7.1. A singular
point of 7.2 is a point, where f and g both are zero. The sin-
gular points of 7.2 are steady states of 7.1. The theory of
stability gives sufficient conditions, that solutions near
a steady state tend to this steady state. The following classi-
fication of singular points is a refinement of stability theory

for two dimensional systems.
We start with the linear system
(7.3) x' = ax + by y' = cx + dy

where ad - bc # 0. The only singular point is (0, 0O).
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The characteristic eguation of 7.3 is

a-\ b 2
(7.4) = A"=-(a + d)A + (ad-bc) = O

c d-A
We saw in sec. 4 how to determine the solutionsof 7.3 from
the roots A], XZ of 7.4. It can be proved, that the nature

of the singularity (0,0) is completely determined by the values

of A] and A2 (see e.g. [20], p. 75 f). The singular point is

called

a) focus (or spiral point) if A1 and Az are complex

b) vortex (or center) LE Ai and A2 are purely imaginary

¢) node if A1 and A2 are real and of equal
sign

d) degenerate node HLE A1 = Az

e) saddle point if A1 and Az are real and of opposite
sign

a) focus b) vortex c) node d) degenerate node e) saddle point

a)-e): Phase protraits near singular points
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Now we consider the general nonlinear system 7.1 and suppose
that f and g are twice differentiable and that (0,0) is an iso-

lated singular point. Applying Taylor's theorem we get

(7.5) x' = ax + by + ¢(x,y)
y' = cx + dy + y(x,y)
_ 3£(0,0) _ 3£(0,0) _ 39(0,0) _ 39(0,0)
where a = ==, b = o=, c = w s 4= 3y
lim Loy |+ [pixey) | _ _ g ad - bc # O
[x| + |y[+0 [x] + [y]

Except for the case of the vortex and the degenerate node, the
phase protraits of 7.5 and 7.3 are topologically equivalent.
This means that perhaps straight lines become distorted in the
nonlinear case, but e.g. intersection properties don't change.
Sometimes but not always, this is also true for the vortex. Let's

consider the system

(7.6) x' = x(a; = byy)
;.4 by >0
o b 1
y' = y(-a, + b,x)
23 24
which has, besides (0,0), the singular point x = Bt Yy = s
2 1
- 9 = 4
By the substitution x = x - —, y =y - —

b2 b1 we get the system
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a

1] L] -l _2
(7.6"') X b1y (x + bz)

2
Yy = b2x (y + ET)

a a
with linear part x' = =b —zy, y' =b —lx and the character-

1 by 2 b,
istic equation Az + aja, = 0. Hence the roots are purely imagi-
nary and the singular point of the linearized equatiocn is a
vortex. The sclutions are ellipses with (0,0) as center. Lotka
({10]} has shown that the nonlinear system 7.6 has an infinite
family of periodic solutions, whose paths in the phase plane are

closed nested curves surrounding the singular point. Hence this

point is a vortex (see also sec. 8c).

At greater distance from a singular point, however, the non-
linear system in general exhibits qualitatively distinct fea-

tures. Consider for example, the system

(7.7) B =y + 2l =22 =yl @ o=zl = 2 =g
For the linearized svstem
(7.7a) X' =x +y y' = -x + vy

the singular peint (0,0) is a focus. In polar coordinates

TN . o 55:_%_xxl
y = r sin ¢ o = artg(y/x) o' ==

1]
»
H
[ %]
L
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the nonlinear system becomes

(Za?™) r' = r{1 - £°) b = -1
dr ] -
According to 3.3, t + C =JL—-——§— = I{E + 5} dr = In|r| -
1 2 r(1-r°) 1-r
iln|1 -r I, which yields, after some algebra,

r = e T k arbitrary

/14ke™ 2t
Hence the solutions are spirals, which approach the circle r
from inside if k > 0, and from outside if k < C. The circle

is itself the path of a periodic solution, corresponding to

1

0.

A closed path such as the circle r = 1 in this example is called

a limit cycle. Linear systems cannot posses limit cyles.

The following condition for the existence of a limit cycle is

due to Poincaré and Bendixson: If there is an annular region

free from singularities, such that all solution paths cross the

boundary towards the interior of the annulus, then there exists

at least one limit cycle in the annulus.

A new technique for stability and limit cycle analysis for two

dimensional systems has been developped in [11]. The system

is transformed to polar coordinates with a singular point as

center. If this point is a focus or a vortex, then the solu-

tions perform turns around it. The method consists then of

calculating and studying the average radius of a path during
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one turn. If the average radius is decreasing to zero, then
the singular point is asymptotically stable; if it tends to

a positive limit, then there exists a limit cycle.

Interesting applications of the theory of two dimensional sys-

tems are given in [15] and [16].

8. Some applications

a) Solutions in closed form

We consider the isothermal reversible reaction

1
(8.1) a1A1 F i F arAr ;j—> B1E1 . oBs
Let's denote the concentration of Ai by ¢y (i=1, ..., r) and

the concentration of Bi by c (i=1, ..., s). The reaction

r+i

rates of the forward and the reverse reaction are given by

o
g, = k1 Cqp  aess Cp

The stoichiometric coefficients of the reverse reaction are
the negatives of those of the forward reaction. Therefore,

according to 1.5, we get
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o B B
_ _ 1 X 1 s _
(8.2a) ci = -a; kjc, e € tagk g Cg e Gl =
—a; (9, - 9_4) 1 = w2
L) = - i = sae
(8.2b) Crej = Bylaq — 94} 15 My aewy X
and therefore ci/ui—ci/ak =0 A,k S Ywevent)
Ci/“i+c£+k/6k =0 {(i=1, cees ;3 k=1, ..., 8)
We let i = 1 and get by integration
Ok %
(8.3a) e = ET cy *+ o (to) = E? <y (to) k=2 soap X
By By -
(8.3b) Crpq =7 Ch c, + ity (t) + o e (k) 3 =1, ..., s

Substituting ChyseeesCy from 8.3 and writing x instead of ¢

+s 17

we get from 8.2a

x!' = -P (X) + Q (X)

where P (X) and Q (X) are polynomials of degree o = u1 R

and B = 31 + ... + Ss resp.

Now we consider more special examples. First we let r=s=1,

u1=B1=1, i.e. we consider the reaction

(8.1-1) A—>B
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From 8.3b we get c, = ¢, + 02(0) + 01(0). With 02(0) + cl(O)

=1 and x = ¢, we obtain the eguation

1

x' = -ax + b(1-x) = b-(a + b)x (a=k1, b=k_1]
Formula 4.2' gives the solution

x(t) = e (AP (o) 4+ B (g7 (athE,
We observe that lim x (t) = E%E' which is the unique steady
state. e
Next consider the reaction
(8.1-2) A —> 2B
where 01(0) =1, 02(0) = 0 is supposed. According tc 8.3b
cz(t) = -2c1(t) + 2. Therefore <4 satisfies the equation
(8.4) x' = =kgx + 4k, (1-x) 2

In the same way it is seen, that the concentration of A in

the reaction A —> B, + 32 satisfies the equation

1

(8.4')  x' = —k;x + k_  (1-x)
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§£ c1(0) =1, c2(0) = c3(0) = 0 is assumed.

At last consider the reactions

2A —> 2B with c1(0) =1 c2(0) =0
A1+A2 = 2B with c1(0) = c2(0) =1 c3(0) =0
A1+A2 _— B1+B2 with c1(0) = cz(O) =1 c3(0) = c4(0)
Here c1, the concentration of A resp. A1 satisfies
(8.5) X' = =k,x2 + mk_, (1-x)2

1 -1

where m=1, m=4, m=1 respectively.

We are going to show that the right member of 8.4, 8.4' and
8.5 has exactly one zero in (0, 1) and that the solutipn tends
to this zero if the initial condition is x(0) = 1. We'll use
Vieta's theorem, whereby the product of the two roots of

xz + rx+ s =0 is s.

Consider £(x) = -ax® + b(1-x)? with a, b > 0; a, 8 > 1.

Obviously £(0) =b > 0, £(1) = a < 0 and £'(x) = -eax® 1-

bB(1-~x)B < 0 for 0 < x < 1.

Therefore f has exactly one zero in (0, 1). In particular the

quadratic equation -ax+b(1—x)2 = bxz-(2b+a)x+b = 0 has one
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root in (0, 1) and the other root in (1, =), since their pro-

2

duct is 1. The equation -ax? + b(1-x)2 = (b-a)x> - 2bx+b = O,

where the product of both roots is BQE, has one root in (0, 1)

and the other root in (-«, 0) if b < a, and in (1, «) if b > a.
We denote the roots with o and B such that a < b; then £ can

be written in the form f(x) = bo(x—u) {x-B), where bo = 4kww1

for 8.4, bo =k_, for 8.4' and bo =mk_., - k, for 8.5.

1 1 1

1st case: bo > 0

The preceeding arguments have shown that O < a < 1 < 8. Using
the time scale 1 = bot. each of the equations 8.4, 8.4' and

8.5 is transformed into the equation

x' = (x-a) (x-8)

Since c1(0) = x(0) = 1, we are concerned with the 2nd case of
example 3 in sec. 3. The sclution is given by 3.9 and satis-
fies lim x (t) = a.

treo

2nd case: bo <0

We have seen that a < O < B < 1. Using the time scale 1 = —bot,

equation 8.5 is transfommed to

x' = —(x-a) (x-B)
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The initial condition x(0) = 1 > B corresponds to the 3rd case
of example 3' in sec. 3. The solution is given by 3.9' and
satisfies 1lim x(t) = B.

o
In both cases the solution tends to that constant sclution,
that lies in (0, 1), in accordance with observation. So far

we assumed that A, and AZ had equal initial concentrations. Now we

1
consider the irreversible reaction A1 + AZ ——> B and suppose
y: = c1(0) - cZ(O) # 0, where y is such that c2(0) = C1(0)'Y >0.

With 8.3a we get Cy = Cq-Y and therefore the rate equation

A . [ -
c1 = kc,lc2 kcl(c.l Y)

By the change of variable 1 = kt it is reduced to

x' = -x(x-y) (x=c1)

Since the right member has the zeroes O and y, the solution of
this DE can be derived from 3.9', putting o=0, B=y if y > 0O,
and a=y, B=0 if y < O. For we assumed that vy < c1(0) = x(0),
hence either 0 < y = B < x(0) or y < 0 = g < x(0) holds.
Thus, excluding the case x(0) = B which leads to a constant

solution, we have again the 3rd case of example 3' of sec. 3.

From 3.9' we get

¥

wle) = 1-c exp(-vt)

if y > 0
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_ ~—CYy exp yt

x(k) 1-c exp yt

b5 R )

The solution, that is Sy tends to O if vy < O, and to vy if

y > 0. Since e, = ¢;-Y, ¢, tends to |y| if ¥y < 0, and to O if

Y » 0. That is, the reaction tends to a state, where one of
the species A1 or AZ has disappeared and the other is remaining

with concentration |y]|.

Now consider the consecutive reversible reactions

a

A > B

(a|

<

where the rate equations are

= -ax, + a'x
1 2

- (b+a')x2 + b'x

—_-

(8.6) x! = ax

N

1 3

o Sy
y “ibixg

W=

L] 1 |
We have X3 + x5 + X3 = 0.

For the irreversible case, i.e. a'=b'=0, the general sclution of

the first two equations is given by 4.6, If x1(0)=1, x2(0)=x3(0)=0.

then
-
-at
X, =e
(8:7) Xy = B%E e—at*e_bt)
X, = 1=x,=x
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. _ lna-1lnb
X, has a maximum at t = =5 X1 and x4 are monotone.
If we suppose KPRy +Ry = 1, we can eliminate Xq and get from
8.6 the reduced system
| T 0
X1 ax, + a'x,
(8.8)
N = =t [ 1 e
X5 = ax, (b+a )x2 + b' (1 x1 x2)

We write m1=a+b+a'+b‘, m2=ab+ab'+a'+b'. A particular solution

of the inhomogeneous system 8.8 is the constant solution

- a'b' = ab’ — )

R = T = Xy = i The characteristic equation of the homo-
2 2

geneous system is Az

+ m1A + m, = 0. Since m, > Oy D2 = mym, > 0y
the Routh-Hurwitz condition for asymptotic stability is satis-
fied. The general solution of the inhomogeneous system is ob-
tained by adding (;1,§2) to the general solution of the homo-
geneous system. The latter tends to zero, hence any solution

of 8.8 tends to (;1,§2], as t tends to =.

b) Stability

Suppose that the isothermal reactions

a a a
1 n-1 n
1 > AZ > A3 > S > An > A

are running in a closed reaction vessel, and let Xy denote the

(8.11) A

n+1

concentration of the chemical species Ai. This process is ruled

by the system of linear equations
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I =
X = agxy
(8.11a) Xy = a.lx1 - a2x2
[ - i=
Xp = @i 4 X4 a X, (ai > 0, i=1, .ee, n)
We could add the equation Xn+1 =ax, to this system, but it
is more convenient to determine X1 from the identity X +a,+
«.. *X,.q=const. System 8.117a is a recursive syste? and there-
-a
fore can be solved easily. We start with X, = ce . Having
[] = -
computed X;s We can solve L3 a;xy a4 401%541 by means of

formula 4.2. Alternatively, the method of eigenvalues can be

applied. The eigenvalues of the coefficient matrix are the

solutions of
-a1—A O v o o O
a, -az-l (o]
o a, ® - . = (=17 (+a)) O+a,) ... (M+a ) = 0
. . o
O« o s ¢ ¢ .0 a4 -an—l

and are exactly the negative real numbers SA4yr T85s eeeey Tl
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This proves, that the zero solution of 8.11a is asymptoti-

cally stable. Now we pass to the nonlinear case. Let Ak in
(V4 >0

ik ) _
8.11 be replaced by v1kA1k + saee + Vrkk Arkk - Cigr the con
centration of the species Aik' is related to Sk by equation

8.3a, where cy and c, are to be replaced by Cik and Cix resp.

We write
v,
s AL e _ e
gy = ;T; Y; = S44 (0) €y C11(O] 1m2s ey r,
Tk
Ag = 1 vip X = o k=1, «ccr
i=1
and suppose ci1(0) >0 i=1, soep r,
Vg, & o}  F_ e S r,
cik(o) =0 1=1, ceuy ryi k=2, ..., n+i

With these conventions the rate equations for the sequence of

reactions
Viq A11 s SRR Voo 4 Ar 1 —_— Vig A12 * swe E Ve 2 Ar 2 —_—> e
1 1 2 2
take the form
X1 = =vqq9p (x9) = £
(8.12)
Xy = Vo9, (%) = v,9,5(%,) = £,
Xn = YinIn-1 Fpep) Vqp9, (%) "
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where
Vi1 1}:1 Vii
9q = kqxy 0 T (Eg%g ty;5) (ky > Q)
i=2
Q.
g]=ijJJ ky > 0) i =2, «o.r mn

Theorem 8.1

Any solution of 8.12, which satisfies X(0) > O, exists and is
nonnegative for all t > O. Tt tends to the zero solution as t

tends to .

Proof: Obviously fi satisfies condition (i) of theorem 2.1.
Now
n fi
S G - (g, = - = - =
121 1 g, + (9, gz) o+ g g gn) g, and 9,(x) <0

for Xn > 0. Therefore condition (ii) is satisfied, too. Further-
more, the functions fi are lipschitzian. Hence for any xo > (8]
there exists a unique solutiocn that satisfies X(0) = X0 and is
defined and nonnegative for all t 2 0., Now we will construct

a Liapunov function and show that the zero solution of 8.12

is asymptotically stable, the invariant set being Q = {xer™:

X > 0}. Choose positive numbers Pys =eer Py such that P, = 1

and
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Me? = VqpPx = Vi, 41 Prtr ~ © kSl feeq Ml
n
We define V(X) = } Py X,- V is positive definite in @, and
K=1
for X€EN we have
AT
} =— £, = Py £.{X) = (“PaV P Vi5) T {Xs) + wueas
k=1 axK k k=1 k "k 1711525125217

£ e (—pn-1 Y1,n-1 * Py “1n) 9n-1 (xn—1) ~ Vin gn(xn)
n

= =1 n g, (x)
ny kT, Vg

where we have put Ha = Therefore | %%;fk is negative de-

V.In.

finite and the assertion now follows by theorem 6.4.

For general reversible reactions Shear ([l14]) has proven asym=—
totic stability of the steady state. He assumes that rate equ-
ations derived from the law of mass action describe the be-
haviour of the reaction system at constant temperature, pressure
and volume. The system may be open to matter and energy fluxes
so long as the species that are free to move in and out of the
system do not explicitly appear in the rate expressions. It

is further assumed that there is exactly one stationary solu-
tion (51, 52,_..., En) of the rate equations. Then the function
Sk

{ck 1n 5; - ¢ t+ 6}

5

NGy Cuy wasy CJ) =
1 2 n k=1
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c, =C

is considered. With X = k_ k we can write
C
k
n
V(C s Cpr weer ©) = VX, vy X ) = k§1ck[(1+xk)ln(1+xk)-xk]
It is shown that V is positive and Z %;— fk negative definite.
k
Hence the steady state (51, 52, e En) that corresponds to

X=0 is asymptotically stable.

A different approach is used by Gavalas [5] in his analysis of
the number and stability of steady states. If X is a stationary
solution of 6.4, i.e. F(X) = 0, and if F is twice differentiable,

then

n . A (X)
£, (X) = I (x;-x,) —3;;—— + higher order terms

i=1

and X is asymptotically stable, if all the eigenvalues of the
of . (X)
i

matrix F = [ Py
k

] have negative real part. He assumes, that
there exists a region 9 < R™ such that the vector F(X) points
to the interior of @ for all X on the boundary of Q (this
condition is satisfied e.g., if conditions (i) and (ii) of
theorem 2,1 hold with m=M=0). Using the topological index he
shows, that the number of steady states is odd, 2m+1, among
which m at least are unstable. In the case of one reaction,
exactly m of the steady states are unstable and the remaining

m+1 are stable. In particular, if the steady state is unique,

it is also stable.
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The laws of thermodynamics give rise to some special Liapunov
functions. J. Wei [19] has indicated, that excess entropy
and Gibbs free energy are Liapunov functions for adiabatic

and isothermal reacting systems, respectively.

c) Oscillations

A function of one variable is called oscillating, if it has
infinitely many maxima and minima. Oscillations of a system
governed by an autonomous equation (see sec. 7) are called
free oscillations, while oscillations caused by a time-de-
pendent periodic forcing term are called forced oscillations.
If an oscillating system admits a sort of energy or potential
function that is constant along the solutions, then it per-
forms conservative oscillations, and limit cycle oscillations
(see sec. 7) else. Oscillations with decreasing (constant)

amplitudes are called damped (sustained) oscillations.

Oscillations in chemical reaction systems are very rare.
Prigogine [13] has proved that sustained oscillation is not
possible in a closed system, regardless of the order of the

reactions taking place.

Hearon [7] showed, that neither damped nor sustained oscill-
ations are possible in a closed isothermal system of first-

order reactions, when the principle of detailed balancing
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holds. Gray [6], also using detailed balancing, proved that

the steady state of a system of reactions of arbitrary order is
approached without oscillation. There may be several maxima and
minima (so-called undershoot-overshoot), but their number is
limited by the number of reactants. We will prove a stronger

result for the case of consecutive irreversible reactions.
Theorem 8.2

The component Xy of any solution of 8.12 has at most k-1 re-

lative maxima and minima.

Proof: First we'll prove by induction that xk(t) >0 ¥t > 0,
k=1, ..., n. For convenience we put Vi = 1. Since zero is a
solution of xi = —g1(x1), and x1(0) > 0, it follows by the uni-
queness theorem that x1(t) >0 ¥t > 0. Now suppose that xk(t) >0

¥t > 0. If =0 in [0, 6] for some § > O, then

X1
i - 3 A i ,.6_

Xyyq = 9 (%) > 0 in [0, 8] and x¢ . > h > O in [3,6], hence

xk+1(6) & % h§ > 0, a contradiction. Therefore a §' > 0O exists,

8 <

such that Xy 41 (t) > 0 for 0 < t < §'. Since X > o, gk(xk)

>0, we have xp ., > =gy . (%,,.) for t2¢ and Xp4q (8)>0. There-

fore, applying the comparison theorem to Xppq and the zero solu-
; ' i '

tion of u = "I (u) , we obtain Xy 11 (t)>0 for t 2z 6, hence for

all t>0. In the final step we'll use the property that gg(u) >0

and gj (u) >0 for u>0 (j=1,...,n) and the fact, that between

two maxima there is at least one minimum, and vice versa. We'll

prove that X has at most k-1 relative extrema and that xﬁ #0

in each extremal point.
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Again we proceed by induction. For k=1 the statement is true,
since x, >0 and xi = -g1(x1) <O¥%t > 0. It is impossible,
that xﬁ = O in some interval, because this would imply that

-4 " - 1 1 L} = i -
O = xp =xp_ 4 9p_q (%._4) and thus xg_, = O in the same inter
val, etc. But this leads to a contradiction, since x! <OVt > 0.

1

Now suppose, that xy has at most k-1 extrema and that xﬁ #0

in the extremal points. Then there exist at most k open
intervals, such that xé is zero only at the endpoints and

has constant sign in each interval and opposite sign in subse-

quent intervals. Now, if X1 has an exremum in to > 0, then
1 - " - ] L
X (to)—()and xk+1(to) = xk(to) qk(xk(to)), hence
: n - 3 1
(8.14) sign xp 4 (tOJ = sign xp (to)

Therefore, each of the above mentioned intervals, k in num-
ber contains either only maxima or only minima, and conse-
quently contains at most one maximum or minimum. Can there be
extrema at the endpeints of those intervals? This would imply
for some t1 > 0, xk(t1) = x£+1(t1) = x£+1(t1)
X' (£9) = xp(t)) gp(x(t,) # O. But then t

= 0, hence

1 is not extremum

of xk+1 but an inflection point. Therefore xk+1 has not more

than k extrema Tyreser i we have xé (Ti) # 0 and, according
L] $ =

to 8.14, xk+1(Ti) #0 (i=1, ..., k).

Oscillation is possible, however, in open systems and in auto-

catalytic reactions. Recently much work has been done in this
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field, because it is believed, that the rise of oscillations in
chemically reacting systems is a decisive step in the develop-
ment of life (see [15], [l6]). A survey by Noyes and Field

[12] with a large bibliography has appeared in 1974.

As early as 1920 A. Lotka [10] considered the hypothetic auto-

catalytic reaction

(8.15) A+ X > 2X
X +Y 2 > 5
Y 3 >

where a, the concentration of A, is assumed to be constant.

The rate equations are

(8.15a) x' = kjax - k,xy

y' = _k3Y + kzxY

which gives the system 7.6, if we write a, = k1a, a, = k3,

b1 = b2 = kz. We define V(x,y) = -a, In x + b2: - alln y + b1y.
It is easy to prove that V has a minimum in (52 ¥ Bl) and
2 1

that %% = 0. We can add a constant to V such that Vv(0, 0) = 0O,

then V will be a Liapunov function for 8.15a. The steady state
a

(B_' Bl) is therefore stable, but not asymptotically stable.
2 1

The solution paths in the phase plane are the curves V (xX,y) =

const. These curves are closed lines around the point
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a3 ‘%
(Ew, E-J, where V has its minimum.
2 1

There is an infinite family of conservative oscillations, each
corresponding to a particular constant value of V. It should
be noted, that this doesn't contradict the stability theorem
of Shear (sec. 8b), since the species Y, that moves out of

the system, appears in the rate equations.

In [15] the autocatalytic reaction

(8.16) A —> X
B+X —> Y+ D

2X 4 Y —> 3X

X =5 B

is considered, where the concentrations of A,B,D and E are

held constant. With methods of nonlinear mechanics (see e.g.
Minorsky, Nonlinear Oscillations) the existence of a limit
cycle is proved., Reactions of the type 8.15 and 8.16 have not
yet been really observed. But they are "realistic" in the sense,
that they don't violate any laws of chemistry or physics.
Moreover, it is shown in [15], that 8.16 is the simplest
chemically realistic example of limit cycle oscillations.

Tyson [16] has tried to show that chemical reactions "can
exhibit all of the interesting and well known behaviour of

nonlinear oscillators". Zhabotinski and others have observed
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oscillations in actual chemical reactions, but the corres-
ponding rate equations are rather complicated and have not

yet been investigated (see [15]).
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