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1. Introduction

As it was mentioned earlier,l in 1974-1975 a computer pro-
gram was devised for recognizing whether a given carbon skeleton
(connected graph) with 5k carbon atoms (vertices), where k = 1,
2 or 3) can be decomposed into isoprene subunits (isoprenoid
subgraphs ). There were no restrictions on the given
graph, i. e. it could be cyelic or acyclic, and the mode of link-
ing of the isoprenoid subgraphs was arbitrary. 1t is hoped to
extend this program to k> 3.

Kornprobst and Harary,3 as well as Jacquier and Korn-
probst,4 developed more recently different programs for deter-
mining 1soprenoid structures obeying certain restrictions
(regular, i. e. head-to-tail linking as will be discussed in
more detail in the next Section ; k = 1 - 6 ;4 cyclomatic number
1155 ;4 for monocyclic systems with p =1, an enumeration of the
smaller systems was possible 3).

The present paper discusses the simplest case, of acyclic
polyisoprenoid structures with regular (i. e. head-to-tail)
linking, without any restriction on k.

The importance of the isoprene rule in the chemistry of
natural products has increased continuously since ituzicka first
formulated it. liany natural compounds with biological activity
obey this rule ; we will illustrate this by enumerating several
Nobel prizes for chemistry awarded for elucidating the struc-
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tures of these compounds : terpenes (Wallach, 1910) ; bile
acids, steroids, vitamins (Wieland, 1927 ; Windaus, 1928) ;
carotenoids (Karrer, 1937) ; sexual hormones (Ruzicka, Bute-
nandt, 1939) ; rubber and other macromolecules (Staudinger,
1953) ; stereochemistry of enzymically-formed compounds (Corn-
forth, Prelog, 1975). The Nobel prize for physiology and medi-
cine was awarded in 1964 to Bloch and Lynen for elucidating by
means of isotopic labelling the biosynthesis of isoprenoid
structures from acetate via mevalonic acid and isopentenyl
pyrophosphate.

From the rich bibliography on the isoprene rule and iso-
prenolid structures we will cite only a few leading references
(reviews, books, progress reporta).5'16 Though the biogenetic
route via isopentenyl pyrophosphate ("active isoprene") normally
leads to regular structures wnich have head-to-tail linking,

17 as in the carotenoid field (by
dimerization of the vitamin A skeleton) or the steroid field (by
rearrangement on cyclization of squalene). Bacteria cyclize
squalene dii‘ferently.18 The non-biological polymerization of
1-methylcyclobutene, or the metathesis of cyclic isoprene oli-

notable exceptions are known,

gomers, also leads to polyisoprenoid structures.

snumerations of restricted classes of isoprenocid strue-
tures were performed by Lederberg et al. on the basis of the
DENDRAL program ( for acyclic regular dimers of isoprene with
formula C,gHe )22 and by Randi& on the basis of the numbers of
paths in & graph.

2. Terminology and notation

A graph G consists of a finite nonempty set X of vertices
together with a prescribed set U of unordered pairs of distinct
vertices of X. Each pair u = (x,y) of vertices in U is a line
(edge) of G, and u is said to Join x and y. #e say that x and y
are adjacent vertices ; vertex x and edge u are incident with
each other, as are y and u. Note that the definition of such
(simple) graphs allows no loop, that is, no line joining a vertex
to itself. A walk of a graph G is an alternating sequence of

vertices and edges (xo, Upr Xqpeees X 40 Uy xn), beginning and

ending with vertices, in which each edge is incident with the
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two vertices immediately preceding and following it. This walk
Joins X, and X and may also be denoted X XqeeaXy (the lines
being evident by context). It is closed if Xy = X and is open
otherwise. It is a chain if all the vertices (and thus necessa-
rily all the lines) are distinct. If the walk is closed, and if
its n >3 vertices are distinct, it is called a circuit. A graph
is connected if every pair of vertices is joined by a chain.

The length of a walk XXy %, is n, the number of edges in it.
The degree of a vertex x in graph G, denoted d(x), is the number
of lines incident with x.

A digraph (directed graph) D consists of a finite set Y of
vertices and a collection V of ordered pairs of distinct verti-
ces. Any such pair v = (x,y) is called an arc or directed line.
The arc goes from X to y and is incident with x and y. The
outdegres d+(x) of a vertex x is the number of vertices adjacent
from it, and the indegree d”(x) is the number of vertices adja-
cent to it., A (directed) walk in a digraph is an alternating
sequence of vertices and arcs, Xor Vi Xqpeees Vpp X in which
each arc vi is (xi_1 i xi). The length of such a walk is n, the
number of occurences of arcs in it. A closed walk has the same
first and last vertex. A path is a walk in which all vertices
are distinct. A cycle is a closed walk with all vertices dis-
tinct, except the first and the last., If there is a path from x
to y, then y is said to be reachable from x., A semiwalk is an
alternating sequence Xos Vir Xqeeeep Vo X of vertices and arcs
where each arc v, may be either (xl_1 , xi) or (xi ’ xi—t)‘ A
semipath and semicycle are defined analogously. A digraph D is
strongly connected, or strong, if every two vertices are mutu-
ally reachable ; D is unilaterally connected, or unilateral, if
for any two vertices at least one is reachable from the other.

we say that D is weakly connected, or weak, if every two verti-

ces are joined by & semipath.
Correspondence table for graphs and digraphs :

Graphs Digraphs
Line (edge) arc
walk (directed) walk, semiwalk
chain path, semipath
circulit cycle, semicycle
degree outdegree, indegree
connected strong, unilateral, weak
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The adjacency matrix A = (aij)ls_i,j_{n of a graph G
(digraph D) with n vertices is an n X n matrix in which :

agy =1 Af (xg , x)€E U (V)

8= 0 if (xg , xj) ¢ U (V)

Thus there is a one-to-one correspondence between graphs
(digraphs) with n vertices and n X n binary matrices.

1t is obvious that : (i) the degree of a vertex x; of
graph G is given by the sum of the elements on the row and

column i of the adjacency matrix, i. e. d(ki) = a + 312 + ese

i1
cret Byp HByg F 8ol b oae. B (ii) the outdegree (indegree)
of a vertex x; of a digraph D is the sum of the elements of the

row (column) i of the adjacency matrix : d*(xi) =8y +a, +
+ ..o + 8, (likewise, d_(xi) =8y4 + Byt oee. + ani) 3 {iii)

the adjacency matrix of a graph is a symmetrical one, i. e.

8ij =844 (iv) the change of the numbering of two vertices in
a graph or digraph corresponds to the permutation of the raes-
pective rows and columns.

An acyclic digraph AD contains no cycles, It is obvious
that every walk of AD is a path, and that an acyclic digraph AD
hes at least one vertex of outdegree zero and at least one ver-
tex of indegree zero. A source of a digraph is a vertex s which
can reach all others. An out-tree (arborescence), denoted 0T,
is a digraph with a source and no semicycles. An out-tree is
characterized by : (i) there is only one vertex, the source, in
which no arc enters ; (ii) for any other vertex x, there is one
path only which goes from & to x ; (iii) for all vertices ex—
cepting the source, a single arc enters each vertex. Thus we
have d7(8) = 0, and d (x) = 1 for any x # 8. An OT is a weak
digraph. A vertex x in an OT for which d¥(x) = 0 is said to be
terminal,

3. General algorithm for testing whether a given

structural formula is an acyclic regular isoprenoid structure

From a graph-theoretical viewpoint, structural (consti-
tutional) formulas of hydrocarbons correspond to connected
graphs with no loops, in which no vertex has a degree greater
than four ; each vertex corresponds to a carbon atom (the
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hydrogen atoms are not included), and each edge corresponds to
a carbon-carbon bond. According to the structural formula of
isoprene : H20=C(CH3)-CH=GH2, we have the graph :

1 > A
2
3 5 (1)

(2)

and, respectively, the out-tree (O} :

1

w N

4 5
where the labelling of vertices is arbitrary.

Isoprencoids are gsubstances whose structural formulas are
obtained by connecting k units of isoprene. Thus we shall say
that a graph with 5k vertices is isoprenocid if it can be decom-
posed into k subgraphs of type (1). Examples of isoprenoid graphs
are presented in Figure 1, and examples of non-isoprenoid graphs
in Figure 2, Since the degree of any vertex is at most four, the
maximum number of edges in a graph with 5k vertices is (5k.4)/2
= 10k.

@ &? o

Pigure 1. Examples of 1soprenoid graphs

Y odd
A

Figure 2. Examples of non-isoprenoid graphs
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Qur problem is the recognition of acyclic isoprencid
structures with "head-to-tail® linking, which will be called
acyclic regular isoprenoid structures’ The notation "head" and
“"tail" is defined as follows for an isoprenoid unit :

tail L{ head

For further needs we shall use the term iscprencid OT to

define the out-tree with 5k vertices which can be decomposed
into k out-trees of type (2). Any acyclic isoprencid graph with
"head-to~tail" connection can be represented under the form of
an isoprencid OT as follows : (i) we consider the vertices x
for which d(x) = 1 ; (ii) the source of an isoprencid OT will
be the vertex x determined by the fact that it obeys (i) and
that its adjacent vertex y has d(y) = 2 ; (iii) the lines of
the given graph are converted into arcs respecting the proper-
ties of the OT.

The problem raised when representing a regular isoprenoid
structure in the form of an iscoprenoid OT is to find out which
vertex will be the source of the OT. This problem is solved in
two stages, as indicated above : at stage (i) we find the set
of vertices of degree one, and at stage (ii) from this set we
select the source of the OT. We can always represent a regular
isoprenoid structure in the form of an isoprencid 0T, and this
in a unique way, for the structure is acyclic. Examples of

isoprenoid out-trees are presénted in Figure 3.

Figure 3. Examples of isoprenoid OT's

¥ The word "regular" originates here from chemistry, not from
graph theory, and has no connotation about vertex degrees, but
only indicates the "head-to-tail" linking of isoprene units.
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Remarks

a) It is obviouc that & necessary condition for a given
OT with 5k vertices (k >1) * %o be a regular isoprenoid struc-
ture is that the number of terminal vertices equals k + 1.

b) Let us call a bifurcation any vertex of type b : ;JE*

where d”(b) = 1 and d¥(b) = 2. Since each isoprencid unit has
one bifurcation, an 0T with 5k vertices (k> 1) is an isoprenoid
OT only if the number of its bifurcations is k.

¢) Since for each vertex x of an isoprenoid OT we have
at(x) e {0,1,2} we can find the number of vertices with the
outdegree one by subtracting from the total number of vertices
the number of vertices with outdegree 0 or 2.

d) Owing to the "head~to~tail" linking of isoprene units,
the length of the path from the first bifurcation of the OT to
any other bifurcation of the isoprenocid OT is congruent to
0 modulo 4. Thus the length of any path which has as extremities
the first bifurcation and one of the terminal vertices of the
isoprenoid OT is congruent to 1 modulo 4.

In the following we shall assume that n is a multiple of
5, i. €. n = 5k (where k is a positive integer).

Our algorithm for the recognition of an acyclic regular
isoprenoid structure (isoprenocid OT) uses Warshall's algorithm
for finding the length of the minimum path between any two ver-
tices as well as a modification of the latter algorithm for
determining the vertices of the paths of minimal length which
are to be taken into account.

In order to test whether a given OT with n vertices is an
isoprenoid OT we consider its adjacency matrix

MED = {8450 igd, dgn

where : &g, = 1, if (i,3)EV

ajj =m,if (i) V

The matrix MARC = (bii)1$i,.1$_n

b, . = i, if (4,§)EV
J
by = 0, if (1,3 v

where i and O are labels for arcs.

of the arcs is given by

" For the convenience of the program, henceforth n replaces 5k
(the number of vertices in the graph or the OT).
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We consider the concatenation operator "." for the above
labels with the convention : if « = Q0 or 8 = 0, then a.B = Q.
Applying Warshall's algorithm we obtain the matrix

MDRUM = (xij) of the lengths of minimal paths, where
xij = the length of the minimal path from i to j, if there
exists a path from i fo j
= @ , otherwise;

1<i,jgn

x.i..]
and the matrix MNODD = (v
paths, where

ij)lsi,js_n of the vertices of the

vi; = the vertices which appear in the minimal path from
i to j, if there exists a path from i to j

v.ij = 0, otherwise.

Warshall's algorithm for finding the length of minimal
path between any two vertices of a graph and the actual
determination of the vertices of this path :

1. MDRUM = MAD, MNODD = MARC

2. j =1

J.i=1

4. If Xjj=® » 80 to 8.

5. k=1

6. If X > X9t 13’1&’ then Xy = xij + xjk and Yk ™ \r“.vjk

Te k = k + 1 ; if k<n, go to 6%
8.i=1+1; if ig¢n, go to 4.
9. =3 +1; if jgn, go to 3, otherwise STOP.

Comments. If the minimal path from i to j contains the
sequence of vertices i,, ijy..., i, where i, =4and i =j,

then vij = 11. 12..... ik—-l =i, 12..... ik—]' Since in an OT
there is at most one path that Joins two vertices, we can omit
the adjective "minimal" path.

4. The FORTRAN-IV program (named REGISQ) for the
recognition of regular isoprenoid OT's with N carbon atoms,
where N is congruent to O module 5

Given an OT with N vertices we number these vertices
arbitrarily by assigning them digits (integers) from 1 to N
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and we form the adjacency matrix MAD(N,N) and the matrix
MARC(N,N) of the arcs. These will also be the input data of the
recognition program of isoprenoid regular out-trees,

The non-existence of an arc between two vertices is
symbolized by 999. This is the equivalent to the symbol o . It
is chosen in such a way that it will be always greater than any
other number which might appear following the calculations made
by the program. The testing program for CT's contains the
following stages (some of which take into account the Remarks
from the previous Section) :

I. Calculate the outdegree and indegree of the vertices
of the given OT (by means of theoretical considerations) and
introduce these degrees into vectors GE(N) and GI(N), respec-
tively, which appear in the listing.

1I. Determine the source of the OT and denote it by
SOURCE. If there are more than one vertex satisfying the con-
ditions for being a source vertex (NS >1), an error message is
signaled.

I11. Determine the terminal vertices which will be put
into the NODTER(NT) vector, where NT is the counter of these
vertices, 1f NT is different from 1 + N/5 (Remark a), then the
given structure is a non-isoprenoid 0T. The NODTER(NT) vector
is an output vector from the program.

1V, Determine the vertices with outdegree 2 and 1. These
vertices will be put into the vectors NGE2(N2) and NGE1(N1),
respectively, and will be displayed on the listing. Verify
whether N2 is equal to N/5 (Remark b) and whether N1 is equal
to N - N2 - NT (Remark c).

V. Find the first vertex after SOURCE which has the
outdegree 2, Denote it by NODSEC. A necessary condition for an
OT to be isoprenocid is the existence of exactly one vertex
(denoted by NODPRIM) between SOURCE and NODSEC with GI(NODPRIM)
= GE(NODPRIM) = 1.

VI. Calculate the matrix MDRUM(N,N) of the lengths of the
paths. Calculate the matrix MNODD(N-3,N-3) of the vertices in
those paths which have as extremities NODSEC and a terminal
vertex. Test whether the lengths of the paths which start from
NODSEC and have as endpoint & terminal vertex are congruent to
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1 modulo 4 (Remark d). Every row of the matrix MNODD contains
the vertices of the paths which start from NODSEC. In view of
the structure of an isoprenoid OT as well as of the previous
check-up, observe that MNODD is a square matrix of dimension
N - 3. Both the MDRUM and MNODD matrices are obtained by a
suitable adaptation of the #arshall algorithm. Indeed, we are
interested in the recognition of the vertices of those paths
which start from NODSEC.

VII. For every path that starts from NODSEC end has as an
extremity a terminal vertex (the number of these paths is ob-
viously equal to the number of terminal vertices, NT) verify
the following stages using a DO loop : (i) the predecessor,
PRED, of the terminal vertex must be a bifurcation, i. e.
GE(PRED) = 2 ; (ii) the vertices of the path under consideration
are decomposed into groups of four elements in the opposite
sense of their order, beginning with the ante-predecessor of the
terminal vertex. By introducing the vertices of each group in
the above order into the vector ANTEPRED of dimension four, we
test whether GE(ANTEPRED(i)) = 1, i = 1, 2, 3 and whether 3
GE(ANTEPRED(4)) = 2. The decomposition into groups of four
vertices is possible in view of Remark d. This stage is achieved
by using a DO loop.

#hen conditions (i) and (ii) are fulfilled for all NT
paths, the program ends successfully (i. e. the given structure
is an isoprenoid OT). Otherwise the structure is not an isopre-
noid OT. The T(N) vector used in reading and writing contains
the labels of the vertices of the given structure.

This program is able to recognize regular isoprenoid O0T's
with 5k vertices for any k (k 31). It can also be used for
recognizing cyclic isoprenoid structures with "head-to-tail"
connection containing S5k vertices, after using a modification
of Kornprobst's algorithm.

Thus we can check whether a given structural formula is
an acyclic isoprenoid structure with "head-to-tail" connection
as follows :

- We try to convert the associated acyclic graph (hydro-
gen-depleted structure) into an OT whose source is one of the
graph vertices with degree 1 and whose adjacent vertex has
degree 2. #hen there is no such vertex, the structure is not of
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the required type ; otherwise,

- We convert the lines of the given graph into arcs
respecting the properties of an 0T ;

- We label in an arbitrary order the vertices of the OT
obtained in the previous stages and we apply the algorithm (our
REGISQ program) for the recognition of isoprenoid OT's.

If the given structural formula is in the form of an 0T,
the testing program can be applied directly.

The algorithm presented above solves also the cyclic case
since on being given a cyclic structure, by using Kornprobst's
principles, the problem may be reduced to an acyclic one. The
reason for using these two principles (namely, degradation of
vertex degrees, and non-generation of vertices with degree zero)
in Kornprobst's algorithm is to decompose the given structure
into groups of five vertices, and to check whether each group
coincides with an isoprenoid unit. 1t is our intention to devise
a program for operating cuts into the cyclic structure, in order
to obtain a connected acyclic structure, thus reducing the
problem to one of the type solved by the REGISO program. The
number of cuts which must be made in order to reduce a cyclic
structure to an acyclic one, converting it into an 0T, equals the
cyclomatic number of the graph. No cut should fragment an iso-
prenoid unit. For instance, in the case of chrysanthemic acid

only two of the three possible cuts are legitimate, 1 9 4

namely 2-6 and 2-9, whereas the cut 6-9 fragments an

isoprenoid unit and is therefore illegitimate. On 2 6
performing the cut, an acyclic structure results. 8 3

If the application of the REGIS0 program to this 10
obtained 0T ends successfully, then the given structure is a
cyclic regular isoprenoid structure ; otherwise this stage is
repeated with each of the remaining possibilities for cutting
(legitimate and illegitimate). The given structural formula is
not isoprenoid with "head-to-tail" connection if no application
of our algorithm ends successfully.

Acknowledgements. Thanks are expressed to Drs. J.-M.
Kornprobst and M. Randié for private communication of
unpublished manuscripts,
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" The number of isomeric acyclic head-to-tail diterpenes
C1OH16 is, however, 50 and not 52 as mentioned in ref. 20.
Indeed, if the nine bonds in the carbon skeleton of this
diterpene are labelled as indicated below, the three pairs
of J{-electrons may be ascribed in the following 50 ways :

9 8
1 34 6 1

133 134 135 136 137 138 144 145 146 147
148 157 167 177 178 234 235 236 237 238
244 245 246 247 248 257 267 271 278 335
336 337 338 345 346 347 348 357 367 377
378 446 447 448 457 467 477 478 577 778
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INE FILE *1c],#2=3
INTEGFR MAD(P5425) sMNODI(22422) s MDRUM{2S5+25) »MARC (25425} 535(25) 451
#(25) +MODTER(25) +NGE1 (25) «NGE2(25) v ANTEPRED (4 ) s PRZD ¢ SOURCE T (25}

NUM3ER 999 SYMBOLJZES THE NON=EXISTENCE OF AN ARC 3ZTWEEN TaD vIRT
ICES

READ{Y19100)Ns(T(TYol=]1sN)

FORMAT(I2+2512)

READ(I+160) ((MAD(IsJ) v J=loN)o=1eN}

FORMAT (2513)

READ{1+141) ((MARC(IeJ)sJ=1eN)eI=1eN)

FORMAT (2512)

WRITE (3,135}

FORMAT (32X ? THE PROGRAM TESTS WHETHFR A GIVEN STRUCTURE IS aN acyC
#L1C REGULAR I1SOPRENOID'/32X+76('%0)///)

WRITE(39124) ((MAD(IvJ)eJ=1eN)eI=]aN)

FORMAT (62Xs YADJACENCY MATRIX®/62Xe16(*%%)//25(20Ke25(1301X)/))
WRITE (39125} ((MARC(IsJ)sJ=laNtal=1aN)

FORMAT (62X "MATRIX OF ARCS'/62Xs16('%9)//25(33Xe25¢12+1X)/))

CALCULATION OF OUTDEGREES

D0 1 I=1sN

GE(1)=0

DO 1 J=1s+N

IF (MAD(1+J),EQ.999)G0 TD 1

GE(II=GE (I)+MAD(I+ )

CONTINUE

WRITE(34102)(T(I)sGE(T) o T=1eN)

FORMAT(62Xa'VERTEX T0y2Xo? %1 42Xy "OUTDEGREE*/62Xa22('®1) /(66X 4T345X
®y081,6%012))

CALCULATION OF INDEGREES

DO 2 J=1N

GI(J)=0

DO 2 I=1eN

IF (MAD(1+J)4EN.999) GO TO 2
GI(N=GI(J)+MAD(TeJ}

2 CONTINUE

WRITE(3«103) (T(I)sSIUT)ol=14MN)

103 FORMAT (/762X o' VERTEX J'e2Xe " @0 a2Xy Y ITNDEGREZ ! /62Xe21(181)/(64X41345

w

104

25
122

#Xyre146Xe12))
DETERMINATION OF SOURCE

NS=0

DO 3 I=1N

IF(GI(I}+NE,0)GO TO 3

SOURCE =T

NS=NS+1

CONTINUE

IF(NS.EQ.1)50 TO 25

WRITE(3+104)
FORMAT (15X 'FRROP=WE HAVE NOT AN QUT=TREE?')
GO Yo S0

WRTITE(34122)SOURCE
FORMAT(15K+ ' THE SOURCE IStts12/)
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DETERMINATION OF TERMINAL VERTICES., THESE WILL 3Z PUT INTO NODTER
VECTOR

NT=0

DO & I=1sN

IF(GE(I}«NE.O}GO TO &

NT=NT+]

NODTER(NT} =1

CONT INUE

WRITE(3+126) (NODTFR{I) #I=14NT)
FOOMAT{15Xs* TERMINAL VERTICESI'¢25(1241X)/)
MzN/5+]

IF(NT,EQ.M)50 TO 5

WRITE (34105)

FORMAT (15X "NON=TSOPRENOID STRUCTURE")
GO TO S0

DETERMINATION OF VERTICES WHICH H4VE THE QUTOZGREE 2. THESE WAILL
8E PUT INTO NGE2 VECTOR

N2=0

DO 6 I=1sN
IF(GE(I)«NE.2)GO TO &
N2=N2+]

NGE2(N2) =1

CONTITHUE

M10=N/5
IF(N2,EQ.MI0)}GO TO 7
WRITE(3+106)

FORMAT (15X ¢+ * NON=ISOPRENOID STRUCTURE )
60 TO 50

DETERMINATION OF VERTICES wHICH HAVE THE OUTDEGREE 1, THESFE WILL
BE PUT INTO NGEL VECTOR

N1=

DO 2 T=14N
IF(GE(TI4NE,1)GO TO B
Nl=N}+1

NGE1(N1)=1

CONTINUE

Ml=N=N2=NT

TF (N1 ,EQ,M1)G0 TO 9
WRITE({3.107) <
FORMAT (15X * NON=TSOPRINOID STRUCTURE ')
60 TO SO

DETERMINATION OF THE FIRST VERTEX AFTER SOURCE wHICH HAS THE QUTDE
GREE 2

IF (5E (S50URCE)Y,EQ.1)GO TO 10

WRITE (3108}

FOPMAT (15X 'NNON=1SOPRENOTD STRUCTURET)
GO To S0

DO 11 J=1N

TF(MADISOURCF+J) «NEL993)1G0 TO 12
CONTINUE
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118 12 NODPRIM=J

119 1F (GE (NODPRIM) ,EQ.1)G0 TN 14

120 WRITE(3+109)

121 109 FOPMAT(15X+?MON=]SOPRENOID STRUCTUREY)

122 GO TO 50

123 14 DO 15 J=1eN

124 1F (MAD (NDDPRTMe J) ,NE.399)G0 TO 16

125 15 CONTINUE

126 16 MONSFC=J

127 1F (GF (NODSEC) ,ER,2)60 TO 17

128 WRYTF(34110)

129 110 FORMAT(15Xe ' NON-ISOPRENOID STRUCTURE?)

130 G0 TO S0

13) 17 WRITE (3+128)N0DSEC

132 12R FORMAT (/15X ¢ THE FIRST VERTEX AFTER SOURCE wH1CH HAS THE OUTIESREE
133 # 2'NOTED NODSECeISt's12/)

136 c

135 [~ CALCULATE MATRIX MORUM OF THE LENGTHS OF PATHS ANJ  MATRIX vM0J)
136 c OF THE VERTICES OF PATHS

137 c

138 DO 30 I=1«N

139 DO 30 J=1.N

140 30 MDRUM(I+J)=MAD(I+J}

14) DO 31 J=lsN

142 DO 31 I=1+N

163 TF (MDRUM(T+J) ,EQ.999)50 TO 31

166 DO 31 K=1eN

145 IF (MDRUMIJK) . EQ.999)50 TO 31

146 ME=MDRUM (T 9J) +MD RUM( Js X)

167 IF (MDRUM(T+X),LE.¥6) 50 TO 31

148 MDRUM ([ +K) =46

149 IF (1 .NEJNODSFECIGD TO 31

150 IF(K4EQ«SOURCE,OR. K, EQ4NODPRIML DR, K, EQ.NODSEC) 30 TO 31
151 IF (MDRUM(I+J).NE,)IGO TO 32

152 IF (MARC(1+J),EN,0,0R,MARC{JsK) ,ED,0160 TO 31
153 MNODD (Ks 1) =MARC(T4J)

1564 MNODD (Ks 2} =MARC({ J+K)

185 GO 1O 31

156 32 IF(MARC(Js+K) ,FO.0)GO TO 31

157 M9=MDRUM(T+J)

158 DO 34 J1=14M9

159 34 MNODODIKs J1)=MNDDD(Js J1}

160 MNODD(K+M9+1) =MARC{JyX}

161 31 CONTINUE

162 DO 111 J=1sNT

163 TF (MDRUM(NODSFCaNODTER(J)) JEQ, 1) MNODDINODTER{J) » 1) SNODSEC
164 111 CONTINUE

165 DO 1R I=1eNT

166 M5=MOD (MDRUM (NODSECs NODTER(T) ) o)

167 IF(M5.EQ.1)60 TO 18

168 WRITF(3+112)

169 112 FORMAT(15X+ '*NON=[SOPRENOID STRUCTURE®)

170 G0 YO S50

171 1R CONTINUE

172 WRITE(3¢129) ( (MDRUM(TsJ) s J=1sN)sI=1sN)

173 129 FORMAT (62X« "MATRIX MOIRUMI/ZE2X o 12('#1)//25(20X¢25(1301X)/))

176 WRITE(3+130)



175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
196
195
196
197
158
199
200
201
202
203
204
205
206
207
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130 FOPMAT(15Xs? THE VERTICES OF EACH PATW WHICH STARTS FROM NOJSTC AND
® ENDS IN & TERMINAL VERTEX'/1SXeB80(1%v)/)
DO 131 TI=1eNT
K2=NODTER(T)
K1 =MDRUM(NODSECIK2)
WRITE{(3+132)K? s (MNODD (X2 J) s J=19X1}
132 FORMAT(//15X+ ' THE VERTICES OF THE PATH WHICH ENOS INV.[345X422(13
£1xX))
131 CONTINUE
DO 19 I=14NT
K1=MDRUM (NODSFC+NODTER(I))
PRED=MNODD (NODTER (1) «X1)
1F IGF (PRED) ,FQ.2)G0 TO 20
WRITE(3+113)
113 FORMAT (15X e *NON=T1SOPRENDID STRUCTURE")
GO TO SO
20 IF(K)1.EQ.)GO TO 19
MP=(Kl=1)/G
DO 19 T1=1464M2
MG=[143
DO 21 12=1leMa
21 ANTEPRED (12)=MNOND (NODTER(T) +K1=12)
TF (GE (ANTEPRED (1)) EQe Lo ANILGE(ANTEPRED (2)) 0 EQ. 14 ANDWGE(ANTEPRID(3
#)) JF0L1aAMD WG (ANTEPRED(4) ) ,EQ.2)60 TO 19
WRITE (3¢ 114)
114 FORMAT (15X ¢ " NON=TSOPRENOID STRUCTURE?)
GO TO 50
19 CONTINUE
WRITE(3+115)
115 FORMAT(//15X+'THE STRUCTURE IS AN ACYCLIC REGULAR ISOPRENOID'/15Xe
s4p(180))
50 ST0P
END
coc 11711778 1l.12.2%
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