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Abstract

The molecular graphs of general ol,(0-disubstituted
polymethines are examined and a number of their mathema~
tical properties are indicated. Some interesting topolo-
gical characteristics of this class of conjugated pi-elec-

tron systems are presented.
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Introduction

In this paper we shall consider d,{/-disubstituted
polymethines, whose general formula is A—(CH)H-B, while
A and B denote arbitrary conjugated fragments. Such pi-
-electron systems are represented by molecular graphs Gn

of the following structure.
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Hence, a polymethine graph Gn is constructed by attaching
two arbitrary molecular graphs A and B to the terminal
vertices of the path P with n vertices. Let the path E

be Jjoined to the vertex Vi of A and to the vertex Yy of B.

Our discussion will also include the case when the
graphs A and/or B coincide with the empty graph ¢g. If
both A =¢ and B = ¢, then G, = P

If not stated otherwise, our results and equations
hold for all n = 0,1,2,... Of course, Py = ¢ and Go
is a graph obtained by Jjoining the vertex v, of A to the

vertex Vi of B.
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Go

Throughout the present work we will be mainly inte-
rested in the characteristic polynomials of the pertinent
graphs. [I'or reasons of simplicity the characteristic
polynomial of a graph G will be denoted also by G or G(x).
In addition, it is both consistent and convenient to as-
sert that the characteristic polynomial of the empty
graph @ is equal to unity, while the characteristic poly-

nomial of A—va is equal to zero if A = @.

Although in the past the polymethines were subject
to a variety of theoretical and quantum chemical examina-
tions, the real impetus for the investigation of the to-
pological properties of this class of conjugated compounds
came from the work of Fabian and Hartmann.l’2 Namely,
they made the remarkable discovery that in certain poly-
methines all bond orders (between adjacent atoms) are
mutually equal. FPolymethine graphs representing such
molecules are P;+ and P;-, i.e. the subgraphs A and B
in P;+ (resp. P_~) consist of a single vertex with a

self-loop of the weight +1 (resp. -1).
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One should realize that there are no symmetry reasons for

the equality of the bond orders in P;+ and P;', hence this

is a purely topological phenomenon.*

The recurrence relation for the characteristic poly-

nomial of polymethine graphs

It is well known3 that the characteristic polynomial
of the path Pn conforms to the following recurrence rela-

tion.

It was, however, long time overlooked that an equivalent

* Cne should compare the finding of Fabian and Hartmann
with Coulson - Rushbrooke’s pairing theorem, which has
the consequence that all pi-electron charge densities

in alternant hydrocarbons are mutually equal.
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relation is valid for all polymethine graphs, namely

n-2 (1

irrespective of the nature of the terminal groups 4 and

B. This result seems to be first published in 1976.4

#ge (1) is important for several reasons. iirst,
since it holds for all polymethine graphs, it represents
Jjust an algebraic consequence of the fact that the path
o is contained in Gn as a fragment. Ffurthermore, if Gn
symbolizes a graph with K+n vertices for n = 0,1,2,.¢..,

then Gn is a polymethine graph if and only if eq. (1) is

fulfilled for n = 2,3,.e0s »

Second, from (1) the explicite form of Gn(x) can

be determined4, viz.,

&

G, = Gl P -G =2

n n-1 0

Third, simple general analytic expressions for the c<harac-
teristic polynomials of certain polymethine graphs have

been deduced from eq. (1), namely
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F_ = sin(n+1)t / sin ¢ (2
. (2n+3)t
Bl G e cos(t/2) (2
2
_ (2n+3)t
B = ein e, sin(t/2) (2
2
Prt = -2 sin(t/2) sin(n+2)t / cos(t/2) (2
P;' = 2 cos{t/2) sin(n+2)t / sin(t/2) (2
P~ = 2 cos(n+2)t (2
2, =4 cos t cos(n+2)t (2
" . (2n+5)t
2, =-8cost sin(t/2) sin ———— (2
- (2n+5)t
Z = Bcost cos(t/2) cos ——— (2
W, =-16 sin ¢ cos® t sin(n+3)t (2
with x = 2 cos t and the graphs P;;, P;, P:, Zps Z;,

%n

and Hn being given as follows.

a)

b)

c)

d)

e)

£)

g)

h)

i)

3
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N =
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Deteils on egs. (2 a-j) can be found elsewhereq,
where also references to previous work on these poly-
nomials are given. We offer five additional expressions

of the same type, viz.,
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Pg = 2 cos(n+2)t

Pgo = -4 gin t sin(n+3)t
i ] . (2n+5)t
Pn = -4 gin(t/2) sin ——
2
(2n+5)t
Pg' = -4 cos(t/2) cog ————w

Zg = -8 cos t sin t sin(n+3)t

(2

(2

(2

(2

(2

where again x = 2 cos t and the graphs Pz, Pgo, Pg+,

and Zg are given as follows.
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From eqs. (2) the zeros of the fifteen characteris-
tic polynomials can be easily calculated and thus one
obtains the spectra of the pertinent polymethine graphs.
Therefrom we can evaluate various reactivity indices of
the polymethines under consideration, since the pi-elec-
tron energy levels (as caleculated within the Hilckel mo-
lecular orbital model) coincide with the graph eigenva-
lues. These results, however, will not be given here in
explicite form. We note also that the zeros of Pg were
recently used by Herndon and Farkdnyi for calculation of
the resonance energy of annulenes and their heteroderi-

5

vatives.

Another conclusion from eqs. (2) is that the spectra

of the considered polymethine graphs are mutually strongly

. ++ —

interrelated. For example, P/" = (x- 2) P_ 4, P~ =
- o + o+ - o—

=(x+2) P, P =« B2, Zr =xPQ*, Z- xE,

00 _ 2
22 = x B%°, W_=x% (x® - #) P etec.

o
n
Among the fifteen above mentioned polymethine graphs,
only three: Pn’ Zn and Wn are simple, i.e. have no self-
-loops and/or weighted edges. In spite of considerable
efforts and numerous attempts, no more simple polymethine
graphs were found whose spectra can be expressed by means

of analytical formulas. Therefore we must conclude that

the finding of a fourth (simple) polymethine graph of
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this kind seems to be rather difficult and is maybe im-
possible. It should be a challenge for the colleagues to
prove or disprove our previous conjectureq that gnhggn
and wn are the only polymethine graphs, the spectra of

which can be expressed in analytical form.

In order to deduce further consequences of eq. (1)

we need the following result.

Lemma. Le‘tXn=an_l+an_2 and Ynan +

n-1
+ B Yn—-2 be two recurrence relations with the coeffici-
ents f and g being independent of n. Let Rn a®”

k]
= Xn Ym - Y

Then

n+l m-1°

Ry o= (-8)°R

n, n-k,m-k (3)

for all values of the integers n, m and k.

Proof, For k = 0O eq. (3) is automatically fulfilled.
Suppose first that k>0 and that the equation

_ k-1 .
Rn,m = (-8) Rn-—k+1,m—k+1 is true. Then
k-1
Rn,m = (rg) (x4l To-ked = Bo-ke2 Tog) =

k-1
= - ) (X
o p-kel( £ Y+ 8 Ty g q) - (£ X 4y +

k-1
+ 8 Xy ) Ym-k) = (-8) (X ki Tore1 -
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k
8Ly Tpp) = C8) (N T - T ra Ty k1) =

k
= (-g) Rn—-k,m—-k

Therefore eq. (3) holds for all k = 1,2,3,... . The

proof in the case of negative k is analogous. Q.E.D.

Corollaries
Gy G = %1 %1 " G Ok ~ Spoxid Gkl
Gy Gy = Gpya Gi1 = Spomed &1~ Gpme2 %

c2-¢

2
n n+l Sn-1 = (Gl) - G, Gy

p2_ P

n n+l Tn-1 = 1

Let G be a graph with N vertices. Then we introduce
a new graphic polynomial (G) as (G) = . /G(-—i/x)/ i

where i =4/~1 . In terms of the polynomial (G), eq. (1)

reads

(6) = x (G,_1) + (6 ,)

while the Corollaries become
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(6)(8y) - (6,,9)(6, 1) = 1)* ( (6, (6, ) -

= Gy 1) Gy y) )

(6,)(65) - (6 1)(6, ) = (L™ ( (6, 1)(6) -

(G ms2)(Go) )

(6407 = (6,106, 1) = (D™ ((67)2 = (6,)(6y))

2 1
(BA™ = (B B ) = (1™

Some_topological pi-electron properties of poly-

methines

According to the author’s experience, the specific
spectral properties of the polymethine graphs are (and
must be) consequences of the recurrence relation (1).

A number of these properties have been suumarized in the

preceding section.

Some of the wmathematical results obtained, have par-
ticularly intriguing chemical implications. Before pre-
senting a few of them, we would like to emphasize that

the topological pi-electron characteristics of polymethines
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seem to be rather interesting and chemically non-trivial.
Only a limited number of them are nowadays well under-
stood and future investigations in this field are both

necessary and promising.

Property 1.1’2 In conjugated systems which are represen-
ted by the graphs PE* and P;' the bond orders between
the atoms r and T+l (r = 1,2,...,0-1) are all mutually

equal,

Property 2.6 If A is an arbitrary non-alternant and B
an arbitrary alternant conjugated fragment, then the pi-
-electron charges alternate in sign along the polymethine

chain of G, i.e. Q. Q. L0 (r=1,2,0eeyn-1).

Property é.? If G, is an arbitrary alternant polymethine,
n
containing a single heteroatom in the position v, of the
fragment A, then the pi-electron charges alternate in
sign along the polymethine chain of G i.e. aq, qr+l<: 0
(r = 1,2y0ess0=1):
It is to be noted that Properties 2 and 3 have been

recently proved6’7 by applying certain special cases of

the Lemma.

We prove here another regularity in the pi-electron
structure of polymethines, which is also based on our

Lemma.
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If G is alternant, then the atomatom polarizability
jt;s of the atoms r and 8 is given by the integral for-
7

mula

(G-vr)(G—vs) - (G)(G—vr—vs)

dax (4)
()2

Property 4., Let Gn be an arbitrary alternant polymethine.
Let W and Ty be atoms belonging to the polymethine chain

of G (r <s), whose distance is d(r,s). Then
sign T (6)) = (-1)3(¥:8)

Proof. According to eq. (4), the sign of .ﬁ:s(Gn) coin-
cides with the sign of the expression (Gn-vr)(anvs) -
- (Gn)(Gn-vr-vs), provided it has the same sign for all

values of the variable x.

Let first introduce two auxiliary polymethine graphs

Am and Bm'
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Then

(Gn'vr) = (Ar-l)(Bn—r)
(Gn—va) = (As—l)(Bn—s)

(G v vy) = (Arul)(Bnes)(Ps—rhl)

(G = (A, + (A_)(B___ 1)

and consequently, (Gd-vr)(cn-vs) - (Gn)(Gn-vrrvs) =

= (A _)(B,_ ) (B, (A1) - (AD(B, (B, ) -

= Gl 308, o AT oa ¥ F o R B, IE A o308, 3
Bt = (o g B, o s HP_ .3 ) beceuse of
(AP 1) = (&g 1) - (A _1)(P,__ ,)e Further we have
(G v ) (G V) = (6 (G vv) = (A )2 (B
BBy n) = (B n )Py 1) ) = (A 102 (B, )
G5 BB e = BB s V)
because of the Lemma. For k =8 - r - 1 we finally
gain

2

(6,-v)(G-vg) = (6)(Gvmv) = (1T (a2 (B, )

Statement # follows now from eq. (#) and the fact that
d(r,s) = 8 - r. Q.E.D.
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Some additional topological pi-electron properties

polymethines can be found elsewhere.?’8
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