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Abstract

The iterative procedure for the calculation of
the largest eigenvalue A1 of a graph based on eq. (4)
cannot be applied to all graphs. It is shown that
eqg. (4) converges to A1 if the graph is non-bipartite
or if it is bipartite and possesses an automorphism

group of the form SZ[B]'
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The largest eigenvalue A1 of a graph is a quantity
of some importance in theoretical chemistry and was sub-
ject of several recent investigations [1]. Therefore, one
might be interested in techniques for its evaluation which
are not based on a proper diagonalization of the adjacency
matrix. In matrix calculus there exists a suitable iter-
ative procedure for estimating the largest eigenvalue

of a matrix [2].

Thus let a square matrix M of order n fulfil the

equations M ¢, = xi Sy with A‘ > hz o wrsgen S ln being
its eigenvalues and Cqr Cpr +++r Sy the corresponding
eigenvectors. Let x = Xq be an arbitrary vector of the

same dimension as gi's. Then x can be expanded as
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Of course, x_ = Em x. Then the sequence of numbers Lm
% T M x xT 2m+1 -
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converds to A1 with increasing m, provided that both x
and the eigenvalues and eigenvectors of M fulfil certain
conditions [2]. Therefore, for sufficiently large m, L

can be used as a satisfactory approximation for A1. Oon

the other hand, however, Lm is a lower bound for A1 [14].

If we are interested in the largest eigenvalue of

a graph, we have to calculate
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where A is the corresponding adjacency matrix. In the
general case, however, the value of L is not equal to
A1. The aim of the present work is to determine those
graphs for which L = A1, that is those graphs for which

eq. (4) can be used for evaluation of 11.

The number of vertices of the graphs considered
is n. It is natural to restrict our discussion to connected

graphs only (i.e. graphs containing exactly one component).
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For these graphs it is A, * X, and lA1|2in| {1 = 2,800
Moreover, if [x,| = [A | (that is, Ay + A = 0), it must

be necessarily An # An-1 [3,4].

Proposition 1. If x is an arbitrary vector with
the property g1T Xx ¥ 0, L = 11 for all (connected) non-

bipartite graphs.

Proof. By substituting (1) back into (3) we get
T ,2m+1 2m+1 2

z y c"iajgi A gj ; Ai @y

B S T 2 B e

" I J a,0.c” A M, T ™ ol
i3 i J=, = =j it i

i T .m m i
since ¢,”" A" c. = A, §,.. F . {2
€; B gy 5 %15 rom eq. (2) it follows

that «, # O and therefore

(5)

It is known [3] that a (connected) graph is bipartite
if and only if X, + An = 0. Hence, for non-bipartite
graphs it is |AiA1|< 1 Ffor @all 4.= 2,3 h; and

from eq. (5) it follows simply that L = A1. //

Note that bipartite and non-bipartite graphs re-
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present alternant and non-alternant molecules, respec-

tively [4].

In the case of bipartite graphs it is An/A1 = -1
and eq. (5) yields
2
1 (o, /o))

U =
(an/a1)

-
+

Since both o =g =
1

choice of the vector x, the result of the iterative esti-

[0}
1k

and o, = gnT§ depend on the actual
mation of A1 will also depend on x. In particular, x
can be always chosen in such a manner that o, = 0 and
thus L = A1. If x is not chosen in an appropriate way,

i.e. oL # 0, L, can take any value between A1 and -«,

g

Let us now consider a special case when x = (1,1,...,1)",

which implies a; # O for all graphs. Eqs. (5) and (6)

are then transformed into

n n
2m+1
(A )
§=1 §=1 - =
Lm = n n (7)
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Proposition 2. If x = (1,1,...,1)T, the equality
L = A1 holds exactly for those bipartite graphs for which

the sum of the components of the eigenvector ¢  is zero.

Corollary. Regular bipartite graphs have L = l1.
Proof. Regular graphs (i.e. graphs, all vertices
of which are of equal valency) have gy = n-1/2 (1,1,...,1)T.
From the orthogonality of eigenvectors, g1ng = 0 it
n
follows that X c., =0 for all j = 2,3,...,n.//

i=1 I
Regular bipartite graphs are for example the cycles

of even length and the path P2 with two vertices.

Proposition 3. Bipartite graphs, the automorphism

group of which possesses an element 7 which interchanges
all vertices of one colour with vertices of the other

colour, have the property L = A1.

Proof. Let us consider two vertices p and q
which are interchanged by means of 7. Since p and g are
of different colour, the components of g4 belonging to

p and gq are c1p and ¢ while the corresponding com-

1q’

ponents of ¢ are Cap = S1p q

because of symmetry, c1p = c1q and consequently, cnp +

+ c = 0. All vertices of the graph can be grouped into

=)= “ e r
and <h c1q Moreover,
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n
such pairs, which finally gives E (o]
i=1

ni 0.7/
The requirements of proposiition 3 mean that the

automorphism group is of the wreath product SZ[B]' Where

B is the group of the automorphic mapping of vertices

of the same colour and S, the symmetric group of degree

2, In the point group of the corresponding molecule the

operation m may be represented for example by:

a) Reflecting in a plane which contains no vertex of
the graph;
b) Inversion with respect to the center of a 4m+2

membered cycle.
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Proposition 3 seems to give not only the sufficient
but also the necessary conditions for a bipartite graph
having the property L = A1. For example let us consider

the graphs Z, of the form

1 n-1

;\/3 4 n-3 n-2 (:

2 n
Zn

which all have A1 = 2. Besides, g1’1 = c1’2 = c1,n_1 =

= By B 1 and o T e c1'4 = s = °1,n-2 = 2, from which

one can calculate straightforwardly

2 for even n

zZ2 -=— for odd n

On the other hand, the graphs Zn fulfil the symmetry

reqguirements of Proposition 3 only if n is even.
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For this graph
010 o1
a={101 |, a*2=|o20 |, a%=2n3etc.
010 101

Using eq. (7) we deduce Lm = 4/3 and hence L = 4/3, which

is in disagreement with the value of v2 for the maximal

}

eigenvalue of P3. More generally, for all stars’’ one
gets é3 = {(n=1) A etc., and therefore from egn. (7) we
deduce Lrrl =L = 2(n-1)/n; the largest eigenvalue of

a star with n vertices is v/n-1.

In the absence of an appropriate group operation,

there is no reason why the sum of the components of S,

should be equal to zero. If graphs of this kind do exist

Stars are graphs having (n-1) vertices of degree 1

and 1 vertex of degree {n-1}; P, is the star with

3
3 vertices.
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at all, they are certainly rather rare. Therefore we
conclude our considerations with the following statement,

which we cannot prove at present.

Proposition 4. Bipartite graphs which possess no

group element described in Proposition 3 have L # A1.

Corollary. If in a bipartite graph the number
of vertices of one colour differs from the number of
vertices of the other colour, L # A1. In particular, all
bipartite graphs with odd number of vertices have the

above property.
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