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Abstract

A decomposition of graphs into components which are either isolated
vertices or isolated edges is suggested. One arrives at these ultimate
components by a successive elimination of a vertex and all incident edges,
one at a time, and repeating the process until a fragment for dissection
no longer remains. Application of the procedure raises the question of
reconstruction of a graph from the data of a dissection. It appears that
in some instances such a reconstruction is possible. It is of interest
that 1isospectral graphs examined have a different dissection, hence the
potential use of the dissection in graph isomorphism problem should be exa-
mined. The analysis leads to a pair of numbers (A,B) which signify the
number of isolated atoms (A) and the number of isolated bonds (B) which
molecular graph contains when dissected by a successive elimination of the

vertices in various fragments generated by the process.
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Introduction

In graph theory and its applications, particularly in chemistry,
we are concerned with manipulations with structures, rather than in mani-
pulations with numbers as the basic quantities. We assume here structure
to be a system built according to particular rules from smaller units.
Molecular structure is an example of a system built from atoms, the rules
being the axioms of quantum mechanics. We are not necessarily concerned
with the rules as such, but are primarily interested in consequences of
those rules as manifested in the connectivity of the system. It is useful
to divorce the mathematical (abstract) aspects from the chemical (appli-
cative) aspects in such studies. While the latter frequently may stimu-
late initiation of a particular study, the former are more general and
apply to other branches of science. Among the mathematical topics one may
include problems of recognition of graphs,1 their characterization, and
classification. Related problems include comparison of graphs and their
ordering,2 most commonly in a sequence. These problems may require a
practical scheme for construction of graphs,3 and here it may be of use to
have lists of fragments and use these in composing larger structure. A
test for isomorphism is essential in order to avoid duplication and main-
tain high efficiency in solving the problem in question. In some problems
it will be essential to include all structures of prescribed type, hence
one has to watch for omissions. Enumeration of all graphs of the consi-
dered type is here of 1nterest‘4

Different problems may call for different fragments, hence dif-
ferent decompositions are of interest in different applications. For
instance, 1in the construction of a characteristic polynomial one is inte-
rested in isolated edges and isolated rings,S while a construction of Ke-
kuld valence forms can be viewed as a search for a set of isolated edges
which span molecular graph.6 In this contribution we will be concerned
with graph decomposition and will introduce the concept of graph dissection.
By dissection or total graph decomposition we understand here arriving at

fragments which are either isoclated vertices or isolated edges which are

considered in this exposition as ultimate fragments. One arrives at these
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fragments by a recurrent application of removal of a single vertex and all
incident edges. Generally, in such a process one or more fragments are
produced at first, and the number of fragments increases as one continues
the dissection. In the process all vertices are considered at each stage,
only isolated vertices and isolated edges already created are eliminated
from further decomposition. The first step in the process corresponds to
construction of Ulam's subgraphs.7 Since we wish to keep open the possi-
bility for graph reconstruction, it is essential to stop the dissection

once one arrives at isolated edges, since graph K an isolated edge,

2 ’
cannot be reconstructed (i.e. is not distinguished from subgraphs of two

isolated vertices).

Acyclic Graphs

We will limit our considerations to acyclic graphs and will discuss
polycyclic graphs in a separate contribution. The simplest graph then is
a skeleton of a triatomic molecule. It gives rise to three subgraphs,

each resulating by a removal of one of the three vertices:

4 2 3

o——0—90
2 3 L 3 1 2
o—o o o—o

Since, as a result, we obtained in each case either isolated vertices
(atoms) or isclated edge (bond) the process of dissection is terminated.
We can summarize the dissection by the expression: (2a + 2b) ,

where a and b refer to atoms and bonds, respectively, Observe, how-
ever, that the summation as an operation may result in a reduction of the
available information. Before the summation we knew which fragments con-—
stituted each subgraph, after the summation we know that the above frag-

ments appear, but in what combination, partitioned to give original sub=-
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graphs, needs to be investigated. If such investigations can recover the
proper partitioning, there was no loss of information involved, otherwise
the summation of the fragmentation products introduces a loss of the con-
tent of information on the system. Generally, whenever one has data re-
duction, a possibility for a loss of information arises. The problem of
recovery or reconstruction is concerned with finding conditions and circum-
stances when contraction of data does not lead to a loss of the information
content. Suprising as it may appear, there is not yet available a gen-
eral mathematical theory of reccnstruction.8 A special problem of great
interest in graph theory is Ulam's conjecture or the problem of graph re-
construction from a set of subgraphs derived by erasure of a single vertex
and all incident edges, one vertex at a time. The process that we con-—
sider is closely related, the difference being that we repeat the process
of vertex erasure for all derived subgraphs, and then for subgraphs of
subgraphs and so on until no fragment longer remains. During the perfor-
mance of the dissection, whenever an isolated vertex or an isolated edge
is found, they are registered and removed from further examination.
Ulam's conjecture is known to be valid for acyclic graphs as well as for
disconnected graphs.7 From this one can expect that a graph may also be
reconstructed from the smaller fragments, and ultimately from the set of
isolated edges and isolated vertices.

In Table 1 we illustrate the decomposition of small acyclic graphs
( butane and pentane isomers). The first step, which gives Ulam's sub-
graphs, 1s pictorially represented. In deriving the enumeration of dis-
sected vertices and edges for larger graphs one uses the already available
results for smaller graphs. In Table 2 we show the dissection for hex-
ane isomers, while in Table 3 and Table 4 the final results for hep-

tane and octane isomers are given, respectively.

Properties of the Dissection

Each molecular graph is characterized by a pair of integers (A,B).
Some regularities in the magnitudes of A and B are immediately evident.
We see that n-alkanes (path graphs) have always A = B, while in all
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Table 3

The Dissection of Heptane Isomers
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other cases A 1is greater than B. In cyclic graphs, except K3 3
again A = B, but for polycyclic systems ( without pendant bonds ) one
finds A to be smaller than B. Moreover, for n-alkanes the magni-

tude of A 1is simply related to the size of the system:

n-3
A =2 (3)

where n 1s the number of the vertices in the graph. Branching of the
skeleton introduces complications in the expressions for A or B, but
even here, 1if one consider a family of structurally related graphs, regu-
larities in the values of A and B become apparent. Consider for in-

stance homologous series shown below:

(A, B) Difference
/k/ ( 26, 21 ) 5
/k/\ (78, 68 ) 10
/I\/\/ (234, 214) 20
/l\/\/\ (702, 662) 40

We see that the difference A - B doubles for each vertex added. Each
such family of graphs which has a simple regularity for magnitudes of A
and B 1indicates graphs for which reconstruction is possible, at least
within the so qualified class of graphs. For a reconstruction to be abso-
lute we would need guarantees that no other graph with the same pair of
parameters A, B 1s possible.

From Table 1 - 4 we see that for graphs of the same size A (and
B, which parallels A) generally increases as the number of branching
vertices increase or as their valency increases. This suggests a possi-
bility of using the parameters A, B for ordering graphs with an expecta-
tion that the sequence may parallel some properties of branched skeletons.

The possibility for ordering of graphs and reconstruction of some suggests
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that isospectral graphsg are discriminated. We illustrate in Table 5
the dissection for isospectral graphs having eight and nine vertices. It
remains to be investigated how generally the above will hold. However,

in view of the exponential growth of the number of components with the size
of a dissected graph, even if the dissection is to be shown to be unique,
the approach nevertheless may find only a limited application for graph

isomorphism test.
Table 5

Dissection of Selected Isospectral Graphs
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Classification of Acyclic Graphs

We will now describe a classification of acyclic graphs which fol-
lows from the first step in the dissection: a construction of Ulam's sub-
graphs. We define a residual R of a graph as the collection of the iso-
lated vertices and isolated edges obtained when deriving Ulam's subgraphs.
We find that structurally related graphs have identical residuals, as il-
lustrated in Table 6:

Table 6

Grouping of skeletons of alkanes in families with the same residual
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(4,2) (5,0) (5,1)

N
o8

The number of isolated vertices and edges is given as an ordered pair
(AN, B In some instances, two or three homologous series will be
characterized by the same residual. In these situations it is not diffi-
cult to recognize certain structural operations which relate different
members in the class. For instance, the class (4,0) shows thﬁt we can
imagine a process of augmenting a graph by creating a new edge between two
"halves" of a vertex. The opposite process, that of contraction of an
edge until eventually the end points fuse into a single vertex, 1s perhaps
easier to recognize. The derived classification merely provides a subdi-
vision of a relatively large body of acyclic graphs in a number of smaller
groupings. A' represents the number of terminal vertices, while B' re-
presents the number of bonds (1,2), where 1 and 2 stand for the va-
lency of the involved vertices.10 We see that the rule for augmentation
of a graph permits "splitting" of any vertex if that does not creates new
(1,2) - bond types. The parameter A' characterize the number of bran-
ches, while B' characterize the relative sizes of the branches present.
The outlined concept of dissection of a graph, which can be viewed
as a generalization of Ulam's procedure for deriving subgraphs by deleting
a single vertex at a time, reflects some structural differences among
acyclic graphs. To what extent such an approach will be of interest in
applications remains to be seen. An important result is the possibility
of considering a two-dimensional ordering of graphs ( in contrast to the
usual one-dimensional sequencing of structures). One can also consider a

further classification of acyclic graphs, or only graphs within selected
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acyclic families, by considering residuals of Ulam's subgraphs, and iter-
ating the process if necessary several times. A simple visualization of

a two-dimensional "

ordering" of graphs is achieved by considering the para-
meters A and B ( of Table 1 - 4 ) as coordinates in a plane. Along
the diagonal A = B we have n-alkanes, while the more branched struc-
tures approach the horizontal A-axis. As one can see, the range of
values of A and B grows fast with the increase in the size of graphs,
so it is not suprising that no pair of graphs has yet been found which have

the same A, B parameters.
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