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ABSTRACT

A method for the construction of simple, connected, bipar-

tite, cospectral graphs is described and illustrated by a few

examples.

Using this construction principle, it is shown that the
set of simple, connected, bipartite, cospectral graphs with a
countably infinite vertex set, but which are locally finite,

is uncountably infinite.
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1. Preliminary Remarks

The nomenclature used is that of Wilson [1] and of Biggs
[2], which in turn derives from the one introduced by Busacker
and Saaty [3]. The connex between graph theory and chemistry
(if any) is provided through topclogy conditioned independent
electron models [4] by defining an ad hoc pseudo-hamiltonian
H, such that its matrix elements

B <¢u|Hl¢>v> (1)

yield the matrix
H = gA+ «E (2)

where Eis the unit matrix of order n and A=(Au\)) the adja-
cency matrix of the simple graph G of order n, the elements
Auu of which represent the nearest-neighbour relationship
between the two ortho-normal basis orbitals ¢u and ¢v' (For
detailed information the reader is referred to the review by
Gutman, Graovac and Trinajstié [5]). The vertex set V(G), of
size n, represents the set of n ortho-normal basis functions
{¢u}, the edge family E(G) their interaction matrix elements

H and the spectrum {1 ,X A;---A_} of G defines the or-
uv 1 j n

PR

bital energies ej =a + Ajs.
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2. Alternant m-Systems and Bipartite Graphs

In a classical paper Coulson and Rushbroocke showed (6]
that r-systems come in two types, alternant and non-alternant
ones. Alternant n-systems are characterized, in the sense
described in section 1., by a bipartite graph G(V*,VO) with

vertex sets

V, (G) } leug n*

i
i3
<

1

1

1

L]
<

'

)

1

]
<

(3)

VO(G) = 4 ¥ wecway  } n*<u¢n

of size n* and n° respectively, so that n = n* + n®. By defini-
tion the edge family E(G) comprises only edges Eeu\J between
starred (*) and unstarred (o) vertices. Adopting the numbering
of vertices specified in (3), the adjacency matrix of the bi-
partite graph G(V*,VD) has the form

0*:3

A=|--g--- (4)

T
a o,
where Ch and (% are square null-matrices of order n* and n°
respectively, where @ is of order n*sn’ and aT its transpose.

The matrix Abeing symmetric, i.e. AT =A, the spectrum

Spec G = {Al---- Aj —————— An} H Aj = real (5)

of the bipartite graph G consists of n real entries Aj.
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According to a well known theorem of graph theory, the
square of the matrix A, that is LzAz, lists all the walks of
length 2 within G. Because of (4), the matrix L takes the

following form

\ .]O
Lx 7 ===~ (®)
01
] (o]
with
I, = aa’; | - d'a (7)

; o
in (7) I, and |o are square matrices of order n* and n

respectively, whereas the null-matrix 0 is of order n*xnor
and OT is its transpose.

If |* and |o of L are interpreted as the adjacency
matrices of two disconnected graphs L, and Lo’ then their

vertex sets V(L,) and V(LO) satisfy the relationship
VI(Ly) =V (6G)s V(L)) = VO(G) (8)

Note that the edge families E(L,) and E(LO) comprise loops, soO
that L, and Lo are not simple graphs. Except in the case that
G contains circuits of length 4, which we exclude from the

present discussion, L, and L0 will not exhibit multiple edges.
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As an example we use the bipartite graph G representing the

m-system of styrene (I):

Short-hand Notation. The number of loops at each

vertex vu of L, or vv of Lo equals the degree p(vp) or p(vv)
of these vertices in the bipartite graph G. For convenience we
shall use in the following sections the convention of replacing

the loops at each vertex vu of L,, or v, of Lo simply by the

number corresponding to the degree of the vertex in the origi-
nal bipartite graph G, e.q.
1

/00
2*/3*2 i? go/_ioz
\§/ ao)

1]

Qp

o/ \p

d \ / 0
N

Ly
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Construction of the L-Graphs from G. To construct L,

and/or Lo’ starting from a given bipartite graph G, proceed as
follows: Rewrite the vertices Y (vv) of the sets V,(G)

(VO(G)) separately. Link those pairs of vertices Vu ,vu, of
Vv, (G) (vv Vi of VO(G)) which are connected in G by a path of

length 2, by a single edge e (ev /). (Remember that we are

up’ v

not concerned with those cases where the original bipartite
graph G contains circuits of length 4.) Finally add to each
vertex vu (vv) of L (Lo) the degree p(vu) (p(vv)) which it
possesses in the original bipartite graph G. This construction
procedure is illustrated in (9) and (10).

Symmetry. If n*#no, then [, and Lo are necessarily
different, but even if n* = no (see for example (9) where n* =
n® = 4) L, will in general not be isomorphic with Lo’ except if
G exhibits higher symmetry, as for example in the case of the
bipartite graph G corresponding to the wm-system of naphthalene

(II):

%
11 G (11)

00— 11—

However, we shall not discuss the necessary conditions for

this to happen.
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The matrix L defined in (6) can be considered as the

incidence matrix of the union

L =1, U I.D (12)
Because of L =A2 the spectrum

Spec L = {Al, .....Aj, ..... An} (13)

consists only of positive eigenvalues Aj 20, satisfying the
condition Aj = R? (cf. (5)). Assuming without loss of
generality that n* < no, it is easy to show [2][5], starting

from a bipartite graph G, that

Spec L = Spec L*U Spec Lo (14)
with
Spec L, = {Al> ..... Aj> ..... An*} (15}
and
Spec LO = {Al> ..... Aj 3w EEE An*,0,0, ....... 0} (16)
—_

o ;
n - n* times

It follows that the spectrum of G, see (5), contains at least n®-n*

zeros and that all other eigenvalues come by pairs Aj = _An—j+1

j=1,2,....n*, a well known result [2][4][5].
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3. Cospectral Graphs

As late as 1957 Collatz and Sinogowitz [7] have discovered
that, surprisingly, two non isomorphic graphs (necessarily of

same order n) can nevertheless possess identical spectra:
G W~ G' and Spec G = Spec G' (17)

Two such graphs are called cospectral [2] or isospectral [5].
Classical examples are provided by the following pairs [8][9]

[10]:

{é;é! Gl Gi

Spec Gl = Spec Gi = {2.776, 1.589, 0.276, 0, -1, -1.641, -2}

G, o——«r—-o—-—}<:: G,
(18)

Spec G, = Spec G} = {£2.303, £1.303, *0, =0}

Spec G, = Spec G} = {$2.214, :1.675, 1, 1, %0.539}
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Whereas the first pair is "strongly" non-alternant, the
other two pairs consist of bipartite graphs, of which the last
pair, GB' Gé corresponds, chemically speaking, to the two n-
systems of 2-phenylbutadiene (III) and of 1,4-divinylbenzene

(IV) respectively.

2 ~

Many other examples have been given by Herndon [9] and by

Randic [10], who have used a polynomial method [11] for their
derivation. As has already been pointed out by Herndon [9], we
note in passing that one is not limited to pairs of cospectral
graphs, as exemplified by the following triplet of cospectral,

bipartite graphs:

Spec G = Spec G' = Spec G"

= {#2.251,%2.194,+1.795,%1.590,+1.161,+1,+1,+0.811,+0.603, 0}
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This obviously raises the question, how many non-isomorphic
graphs can have the same spectrum, i.e. can be cospectral. The
(partial) answer to this problem is that for any positive num-
ber K there exists an integer N such that there are at least K
non-isomorphic weakly connected digraphs (of order N) or K re-
gular graphs (of order N) which are cospectral [12]. We shall
come back to this problem with regard to simple bipartite
graphs in section 7.

Before we set out to develop the main theme of this paper,
we should perhaps add the following remark: Some of the pairs
of cospectral graphs listed in the literature (e.g. [9][10])
are pairs of graphs G, G', of which one or both are disconnec-
ted graphs, i.e. they are the union of at least two graphs

where in general all but one component are isolated vertices:

} [ ]

———— N (20)
Gs de b6 Gg

Also in some instances, cospectral pairs consist of graphs pos-

sessing one or more loops [9], e.g. the graphs 67 and G;:

N# z
) &5 @l ér(zl)

In this connection it should be remembered that according to

expressions (1) and (2) of section 1. a vertex vu in a graph 6
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representing the topology of a m-system, is interpreted within
zeroth order Hiickel theory [13] as a 2p basis orbital ¢u
centered on a carbon atom in position u. On the other hand a
vertex Vu with a single loop euu represents a 2p basis orbital
¢u of a hetero-atom, in position u, with higher electro-nega-
tivity, e.g. a nitrogen or an oxygen atom. It is in this sense
that the "interpretation" of the graphs GT and G% (shown in
(21)) as pertaining to the diaza-aromatic molecules V and VI
has to be understood.

In the following section we shall be concerned mainly with
"honest" cospectral graphs, by which we mean simple, (connected)

graphs without loops and/or multiple edges.

4. Cospectral L-Graphs

We discuss first a trivial, but potentially useful princip-
le for the construction of pairs of cospectral graphs which fol-

lows directly from the contents of section 2.

Given a bipartite graph G(V*,VO) with vertex sets V, (G)
and VO(G) of same order n* = n°, we construct the graphs L, and
Lo’ as shown above. Because of n* = no, it follows from (15)
and (16) that L, and Lo are cospectral, even if they are not
isomorphic. An example is provided by the pair L, Lo’ which

list all the paths of length 2 (between starred or between un-

starred vertices) in an arbitrary bipartite graph G with vertex
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sets V,(G), VO(G) of same order, n* = no, are cospectral.

Note, that for obvious reasons L, and Lo are not "honest"
cospectral graphs, because they possess necessarily p(vu) or
p(vv) loops at each vertex vu or Vv' the degrees p(vu) and
p(vu) being those of these vertices in the original, bipartite
graph G.

Starting with a given cospectral pair L, Lo we can now
construct any number of additional cospectral pairs L, (h}, Lo(h)
simply by adding (or subtracting) h lcops at all the vertices
vp of L, and at all the vertices v of Lo. Using the shorthand

notation introduced in section 2. (cf. (10)), this is exempli-

fied with respect to the L-graphs shown originally in (9):
2 1 1
L [ )
/ \ 3‘ h=__1 / \ 2. (22)
/\ = / \

20——e@2 o1
° ° o—@
2 2 1 1
2 1
L, b Ly (-1) Ly (-1)

The proof is trivial. The spectrum of [, and of Lo is the set of
eigenvalues Aj of I* or Io (see (6)(14) (15) (16)). Changing the
number of loops at all vertices of L, and of LO by h, yielding
L, (h) and Lo(h) is equivalent to changing |* into l* + hE ana
Io into lo + hE (E= unit matrix of order n* = no). The eigen-
values of I, + hE and of Io + hE are equal to Ay + b, d.e. they

are simply shifted by h relative to those of I* and 'o‘ Thus:
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spec Ly(h) = {Aj+ h, .....Agt by, .....f o+ h) = Spec L (h) (23)

Because of (23) L, (h) and Lo(h) are cospectral, whatever the
value of h. In particular, there is no need that h be an

integer.
Of course the result (23) can be generalized for any pair

of arbitrary cospectral graphs G, G':

If Spec G = Spec G' then Spec G(h) = Spec G' (h) (24)

5. Construction of Cospectral Graphs by the "Wrapping"-Pro-

cedure.

Let G and G' be two bipartite graphs of same order, n =
n', having vertex sets V,(G),V,(G') of same order n* = n*'
(and therefore vertex sets V_(G), VO(G')of same order n° =
no‘), but different edge families E(G) # E(G'). Consequently
G and G' are not isomorphic: G “¥~ G'. We now construct L,
and LO from G, and L, and L] from G'. If at least one of the
two graphs L,, LO of G is isomorphic with at least one of the
graphs L}, Lé of G ' (i.e.LxﬂwL; for at least one of the
combinations x,y = **,6 oo, o*, *o) then G and G' are co-
spectral. This follows from the results reported in the pre-
vious section. An example is provided by the pair G3, Gi shown

in (18) of section 3.:
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2¥——%2

* i
W }/
k 1 (25)

»x,
\? 2*—*2
G — L L
* 3 *,3
—k
1

ﬁ Lcl)'3 1 2 L;r3
X AN
2

o *
In this particular case we have L, 3™~ L 3 (and also
r ’
Ls ;*'Lé 37 because of the symmetry of Gé) and therefore 63
’ 2

and Gs are cospectral, as has been shown before by different
means (see ref. [5][9] and [10]).

It is obvious that the condition LxﬁiLY (for at least one
of the combinations x,y = **,00,%*0,0%) is a sufficent but not
a necessary condition for the two bipartite graphs G, G' to be
cospectral. An example is provided by the bipartite pair GZ' Gé
shown in (18), which incidentally happens to be the cospectral
pair of tree-graphs of smallest order. For G2 we have n* = n° =
4 and for Gé we have n*'= 2, no' = 6. Therefore 62 and Gé can
not yield isomorphic pairs of L-graphs.

This result suggests a rather amusing method for the con-

struction of cospectral, bipartite graphs which we shall name

the "wrapping"-procedure (W). Let us assume that a bipartite
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graph G(V*,vo) with edge family E(G) is given. From G we con-
struct L, (and/or Lo) as has been shown above. We now ask the
question whether L, can be "wrapped" by a vertex set VO of same
order as VO(G) (and/or Lo by a vertex set V, of same order as
V,(G)) using a new edge family E(G') .# E(G) in such a way, that
a new bipartite graph G"#JG is produced for which L[} = L,
(and /or Lé = Lo) by construction. If this is possible, the G
and G' are by necessity cospectral.

Let us demonstrate this "wrapping" procedure for a par-

ticular example. We give the bipartite graph GS’ which corres-

ponds to the w-system of 1,l1-diphenylethylene (VII):

i

*
* T (26)

S @

VII G

From G, we construct L and L H
8 o,

3 SEVAVER
JAVAVANEER VARV,

Le,g L

i'B

(27)

We now add to L, 8 a vertex set VO(Gé) of size n° = 7 and an
r

edge family E(Gé) # E(GB) (indicated by the dotted lines in the
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in a

first diagram of (28)), which "wraps" the graph L, 8

valid way, i.e. in such a fashion that L, 8 lists also all the
r

paths of length 2 in the resulting new bipartite graph Gé. The
latter corresponds, within a Hiickel model to the n-system of

4=-vinylbiphenyl (VIII)

‘oh
o,i*'_..qq*f '_\i' - / >_ / X _f (28)
/ !:/6\ oo'\ -l ! * *
\‘,‘ .y
L*,S; wrapped I A

VIIX /

Thus, the two graphs G, and Gé ((27) and (28)) are cospectral

8
and consequently 1,l-diphenylethylene (VII) and 4-vinylbiphenyl
(VIII) are called "isospectral" molecules, according to the
terminology proposed in refs. [5] and [10].

At this stage we shall not further elaborate this proce-
dure for the construction of bipartite, cospectral graphs, but
instead illustrate it with some examples chosen at random.

To begin with, we generalize the previous result, starting
with the bipartite graph Gg. which is representative for a para-
vinyl-substituted polyphenyl containing N benzene moieties. For
convenience the case N = 5 is depicted in formula IX and in the
graph 69 of (29). With the starred vertex set V*(Gg) defined in

the diagram of G the graph L is first obtained as

9’ *,9

described above. From it we derive by the "wrapping" procedure
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(W) two different bipartite graphs Gé and G; which are thus co-

spectral with the initial graph Gg' and thus with each other.

il ’;i:)o /f\f * *
j;\*j ZK?*Z fg;; g

*
ha
?\\

\Jl_/’ w
y

‘;y

(29)

fr-
e
=

b

|
>
l
/w\l>$
us
026
el

I,
-
>

*

*?>"*
o
P

W\,

d{ﬁ,ﬂ
oo
-

05
S\P”
;rﬂ*
9
=Y
i

* *

] "
5, g ¢} 6y

The trivial generalization of the particular result pre-
sented in (29) is that all the following graphs G{g), with K =

0,1:2, .cue [(N-1)/2, 1f N =o0dd, or K= 0,1,2,...:N/2 1f N

even, are cospectral for a given value of N:

KA, v -

B #= 0keds swvevgdnis (N-1) /2; N odd
KE Dyl g2y o wmvasmmes N/2 ; N even
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Here and in the examples below, the subgraph in brackets

stands for:

._—\o = .1_./ 2 '—_/_ .\ L
X o—o

Note that each graph Gfg) with K > (N=1)/2 for N = odd, or

K > N/2 for N = even, is isomorphic by symmetry with one of

.__

the previous graphs of the set {30).
In a similar vein, we can derive a generalization of the

pair G3, Gé (cf. (18)) by applying the "wrapping" procedure to

the graph LiKil' which yields the sets of cospectral graphs
’
G{f), each set being characterized by the number N of circuits

of length 6:

1
/
3
W

% = UOMO)

N-K
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The two graphs G3 and Gé shown in (18) are special cases of

(32) with N =1 and K = 0 and 1.

Whereas the cospectral graphs Gii)

(K)
0,1

)

all have the same

(K)
Ls 1

morphic. Starting with the graphs G(

1 -graph by construction, their L 1 graphs are not iso-
with K =1, 2, ceeuy

N-1, one obtains:

it *2\[>€3 I\a{-\{\ X

N-K-1

(K) iR .
Lo,ll X L2 wmiesoia N 1
(0) (N) : (0) (N)
The graphs Lo 11 and L 11 derived from G and Gll are

(Q)

unique, in the sense that L does not yield a new cospectral

0,11
graph other than G(O) by the "wrapping" procedure, and that
(N} ; : 5 ; N) (N)
Lo 11 is isomorphic with Li (. due to the symmetry of G .« On

()

the other hand the remaining graphs L 11 presented in (33) can

be "wrapped" in such a way that they yield the new set of
(K)

graphs Gl2 , all of which are again cospectral with the graphs
G(K), for a given wvalue of N:
v}‘ )
6,50 K=1,2, «couan (8-1)/2 , N = 0dd

K= 1,2,s+vene-e+ .N/2 , N = even
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(As before, the set of those graphs with higher K-values is

isomorphic with one of the previous graphs). Thus, from a

chemical point of view, the following, partially crossconjuga-

ted polyphenyls (X,XI) with N > 2 benzene moieties form a set

of "isospectral" alternant molecules fi
k’ N-r
r
| r gZH HS@ (35)
N-r

K i B O L N RE € & & L menian (N-1) /2; N odd

...... N/2 ; N even
To conclude this section, we domonstrate how the "wrap-

ping" procedure can be used to generate more complicated pairs

of cospectral, bipartite graphs, by choosing a self-explanatory

example from the work of Herndon [9]:

—'_/ N0
_‘yi %Y
gAY ‘\r;r

Nk 2 2 *

N

N /L*,l

/,_

=

i
G *,13

It has been argued in a previous communication [14] that

the fact that two molecules (or their w-systems) are "iso-

spectral"” (in the above defined sense) is not relevant for their
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chemical and/or physical behaviour. The two m-systems XII and
XIII, corresponding to the graphs 613 and Gi3 respectively are
a case in point. Whereas XII consists of a [l0]annulene peri-
condensed to a naphthalene moiety, i.e. two weakly coupled,
self-contained m-systems obeying Hiickel's rule, the molecule

XIII could be locked at as a bridged [18]annulene in a first

approximation.

XIT XIII X1V
Most probably the latter will undergo second-order bond locali-
zation [15], yielding XIV as a lower energy conformer. Obvious-
ly the two molecular systems XII and XIII (or XIV) will have

very little in common.

6. Construction of Cospectral Graphs from a Set of Simple

Cospectral Graphs

In the previous section we have shown how a bipartite
graph G' cospectral with a given bipartite graph G can be con-
structed by applying the "wrapping" procedure to the L, (or Lo)
graph of G. We shall now comment briefly on the problem, how a
new set of cospectral graphs can be derived from a given set of

(simple) cospectral graphs which are not L-graphs, e.g. the pair
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of graphs G1 and Gi shown in (18) of section 3.

Obviously G1 and G!, not containing any loops, can not be
the graphs listing all paths of length 2 in some bipartite
graph. However, according to the rule developped in section 4.
and summarised in the formulae (23) and (24), we can transform
them into the cospectral pair Gl(h), Gi(h) (e.g., with h = 2 or
3), which are now perfectly good L-type graphs to which the

"wrapping" procedure can be applied as in the cases discussed

in the previous section.

h h /h
hq——eoh he——%h
G, (h) | 61 (h)
h h oh (38)
ik /
h h h

Iy

For example, if h is assumed to be 2, so that all the vertices
of Gl(2) and Gi(Z) shown in (38) possess two loops, we can add
a vertex set V0 of order n° = 7 to both 61(2) and Gi(Z) i.e. of
i.e. of same order as the vertex set V, (with n* = 7) implied
by Gl(Z) and Gi(Z). Applying the "wrapping" procedure to 61(2)
and then to Gi(z) yields the following pair of cospectral, bi-

i ' -
partite graphs Gl4 and qu.
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A

w w
<==Gl(2) -6, (2)

G!

(39)

On the other hand, if h = 3 is assumed in the two graphs shown
in (38), then the triplet of cospectral, bipartite graphs G1

L n 1 1 i i
GlS' GlS or the pair Gls' Glﬁ can be obtained according to the
same procedure by adding a vertex set of order n® = 13 or no =

14 respectively.

Y\ ¢ Y L

MO T
Ly 1

W W i “
G, (3)—=G, o G, (3)—G], 6} (3)—”»(3
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- Y
SRR

7. A Comment on Infinite Sets of Infinite Cospectral Graphs

To conclude this note, we shall investigate the case of an
infinite set of cospectral graphs, by examining one particular
case.

In section 5, formulae (25), it has been shown that the

graphs L, ;~ L can be "wrapped" to yield either G, or 6],

0,3
a classical cospectral pair of bipartite graphs. For convenien-
ce we name these two different types of "wrapping" W(0) and

W(l), i.e. of type 0 and of type 1 respectively:
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2
]| wo w(1)
/ *— 2 2 =
(type0) (type1) (42)
e 3
1
, by 3 Gy

Consider now the infinite graph Lm shown in (43), which
consists of an infinite chain of linked subgraphs SK with K =

7 15, A «, Note that each SK is identical to L of (42),

*,3

except for the fact that the bottom vertex carries now 3 loops

instead of a single one in L . The numbering of the subgraphs

*3
r
SK starts at the left-hand side of Lw, where we have introduced

a vertex Lo to break the symmetry of the infinite graph L.

2

ZT — —p 2 2 2 (43)
2 2 2
I{ Y \ \
Vo &— ® ® T .".___l___“"uh
1 3 3 3 K] 3
5 &, g 8, 5
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We now add to each subgraph SK of L_a vertex set vo’ con-
sisting of n® = 7 vertices each. If we now apply the "wrapping"
procedure, we can produce a set of infinite bipartite graphs
Gm(alazaa....aK....) where ap = 0 or ap = 1 indicates whether
the subgraph SK of LDo has been "wrapped" according to W(0) or
to W(l). Note that the type of "wrapping" of the subgraph SK

is independent of the type of "wrapping" of the previous sub-

graphs SI with I < K. For example:

(44)
Va
ul:1 a2=u a3ﬁ0 u4=l 05=0
Gw(lrororl,o, .......... )
The vertex set V(Gm) of the infinite, bipartite graph Gw =
Gm(ula2a3 ...... uK...) is countably infinite, independent of

the particular type of "wrapping" W(ax) of the individual sub-

graphs SK' i.e. of the o, describing a particular graph Gm. On

K
the other hand it is easy to see that the set of all the infi-

nite graphs G_ = Gw(alu2u4.....ux...) is uncountably infinite.
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Indeed, to each of the graphs Guo = Gm(u 0,0 eelleaes) COXrres-

3 K

ponds exactly one point x = 0.a (in binary notation)

lu2u3. . .GK
of the interval 0 < x < 1 and not two of these graphs are iso-
morphic (because of the presence of the vertex va). Thus it
has been proved, that it is always possible to construct an
uncountably infinite set of simple, bipartite and locally

finite cospectral graphs on a countably infinite set of

vertices.
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