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Abstract

Graphs have been used to depict the paths of interconvertibility in various
stereoisomerization processes and other complex chemical systems. A need
has now arisen to go a stage deeper and use suitable graph theory to show how
relationships between graphs aid the study of the relationships between the
chemical systems which they represent. In this paper, products and quotient
structures of graphs are presented as a means of describing explicitly the
relationships between some recently studied reaction graphs, and as a system—
atic means of exploring new examples.

1. Introduction

Several recent papers in the chemical literature (see for example [2],
3], L13], [19]) involve chemical reaction graphs which portray the pattern of
interconvertibility in some complex chemical systems. In particular,
Desargues' graph (see Fig. 1) has been shown to be of great importance in the
description of various isomerization processes. Balaban, FErcagiu and
Binici ([3]) have used it as the first reaction graph in the study of problems
involving 1,2-shifts of carbonium ions, considering the independent paths
permitting interconversions. Balaban and Rouvray ([1], 2], [12], [13], [20])
have reviewed various applications of this graph. The same graph, sometimes
called the Desargues-Levi graph, was also found to depict isomerizations of
trigonal bipyramidal systems with five distinct ligands (see [7] and [18] and
their references).

As a second example, Petersen's graph (see Fig. 2) has also been used to
codify the alternative reaction-paths amongst a set of stereoisomers «sl, [7],
[81, (91, [11]1, [13D).

Chemical reactions, and hence the graphs which portray them, tend to
have a high degree of symmetry. Randié¢ (/7] - [11]) studied this symmetry
for both Desargues’' graph and Petersen's graph.

Qur main object in this paper is to draw attention to the ways in which
two or more reaction graphs may be inter-related. Having used graphs to

portray some chemical reactions, it is natural to go a stage deeper and use
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the theory of graphs to explore the pattern of inter-relationship between

the different graphs.

Fig.1, Desargues' graph, the Kronecker double cover of Petersen's graph.
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Fig.2. Petersen's graph.

2. The Kronecker Product of Graphs

We shall now present the fundamentals of the appropriate algebraic
graph theory for discussing relationships between such graphs, and then

return to Desargues' graph and Petersen's graph to make explicit the rela-
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tionship between them, and show how other examples can be similarly dealt
with.

We denote by VG the vertex-set of the graph G. There is an edge
[v,w] if the vertices v and w are adjacent, denoted v NG w. A homo-
morphism (or morphism of graphs) f:3 + H is a set-function f£:VG > VH
which preserves adjacency:

v mﬁ w implies f(v) m“ f(w).

Thus f maps vertices to vertices and edges to edges:
[v,w]l » [f(v),£(w)],
and never collapses an edge to a vertex.
There are many product-concepts in graph theory, but the one we need
here is the unique 'correct' one in the sense of category theory, called the
Kronecker product, [6]:

By definition, the Kronecker product G1 A G2 of the graphs G1 and Gz

has vertex-set V(G1 A Gz) = VGl x VG2 (the cartesian product of sets),

with adjacency defined by
(vl,vz) o (wl,wz) if and only if v_ ~ w and v_ W

a1 2 2°
1 G1 Gz

There are natural projection homomorphisms pi: Gl A G2 > Gi’ defined by

pi(vl,vz) = vi, (i =1,2).

In particular, if Gz is the complete graph K2 on two vertices then

the graph G1 A K has twice as many vertices and twice as many edges as

2

Gl, and Gl A K2 is called the Kronecker double cover of Gl'

This concept makes precise the relationship between our examples above:

Example 1. Desargues' graph is the Kronecker double cover of Petersen's
graph (see [4], [161).

Example 2. Balaban discusses a 35-vertex graph ([2], Fig.4) whose vertices
correspond to choices of three objects from 7, and refers to it as the
'regular halved combination graph' of a certain 70-vertex graph ([2], Fig.3).
The larger graph is in fact the Kronecker double cover of the 35-vertex

graph (which is also known as the odd graph 0 [4D.

4)

Such relationships can be clarified if we represent a graph G by its
adjacency matrix A = [aij]' where aij is the number of edges (0 or 1)
between the ith and jth vertices. The Kronecker double cover of & is
always bipartite, and a suitable labelling of its vertices gives its

adjacency matrix as



The problem of enumerating the spanning trees in a graph, which is of
considerable chemical interest, [17], can be greatly simplified by such a

matrix decomposition (see [6] and [15]),

3. Covering Projections of Graphs

There are other covering graphs of chemical interest, besides Kronecker
double covers. A homomorphism p: G + H is called a k-fold covering
projection (of graphs) if

(i) the valency of each vertex v in G is equal to the valency of
its image p(v) in H,

and (ii) each vertex im H 1is the image of exactly k vertices of G.

It follows from the definition that each edge [v,w] of H is the

image of exactly k edges between p_l(v) and p_l(w) in G.

Examples of current chemical interest are double covers (i.e. the case
k=2). The Kronecker double covers pz: G A Kz + G above have this form.
Also the 'Systems analysis' section of Rouvray's article [13] includes the
Dodecahedron graph D together with Petersen's grapk. Although D has
twice as many vertices and edges as Petersen's graph, it cannot be the
Kronecker double cover, but it is a double cover of Petersen's graph.

The covering projection p 1is obtained by identification of antipodal
pairs of vertices in D, which induces identification of antipodal pairs
of edges in D. For details concerning such double covers, see [14] and
[16].

Double cover projections can be applied in the search for symmetry in
graphs. If p: D> G is a double cover projection then the homomorphism
p can be used to relate the symmetries of D and G by the 'projection'
and 'lifting' of some automorphisms of these graphs (see Farzan [5] for
details). The homomorphism p enables us to relate the circuit-structure
and path-structure of G and D. An n-circuit Cn in G may be covered

in D by either the circuit C2n or two disjoint copies of Cn:



2n m m
P p P

[ G > C
n m

Here the circuit Cn is doubled by p and the circuit Cm is duplicated.
One can easily prove the following characterization result, which enables
Kronecker double covers to be recognised, and distinguished from all other

double covers:

Theorem The double cover projection p: D + G 1s Kronecker if and only
if

(i) all odd circuits of G are doubled by p,
and (ii) all even circuits of G are duplicated by p.

In contrast with circuits, a path (or tree) in G «can only be covered
by two isomorphic copies of itself (in any double cover D of G) (see

[14] for details).

Finally I should like to mention antipodality in double covering
projections. p: D> G is called antipodal if p(v) = D(;) if and only
if v and v are antipodal vertices in D (i.e., their distance apart is
equal to the diameter of the graph D). This 'pure mathematical concept’
can claim chemical relevance as all three of the examples of double cover
projections given above are in fact antipodal ones. These ideas
illustrate how products and covering projections provide unification and

coordination in algebraic graph theory and its applications.
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