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[. INTRODUCTION

In these lectures we are going to discuss the use of graph
theoretical techniques in the study of the equilibrium statistical mechanics
of classical systems. The basic theory was developed largely during the
1950's in an attempt to develop approximate theories of dense fluids and
a large fraction of the development of liquid state physics since has
been concerned with the solution of the integral equations which came

from the approximate theories[]']o].

An excellent review of the basic
theory was written by Stell and published in 1964[11]. We shall attempt

to use the notation of Stell consistently in these lectures,

Since the early 1960's, the use of graph theory in deriving the
standard dense fluid approximations (such as Percus-Yevick and hypernetted
chain) has declined and been replaced by techniques of functional

differentiation[lz']s].

1t is often claimed (and possibly rightly so)

that the functional differentiation techniques give more physical insight
into the nature of the approximations developed than do the graph theoretical
techniques. However, as liquid state physics has progressed it has

become clear that simple application of standard approximations is not

a particularly useful way to proceed. In particular, "thermodynamic
perturbation theories" have been developed which give good agreement with
thermodynamic experimental results. Other new approximate dense liquid
theories have also been developed. A feature of these newer theories is

that the derivations of many of them were first published in forms using

graph theoretical techniques. The optimized cluster expansion of



Anderson, Chandler and Heeks[ls] is a typical example. A whole class of
newer problems, those of molecular fluids, has alsoc reguired the
development of new approximations. Again, this development has been via
graphical techniques at the first., The first analysis of the nature of
the RISM approximation for molecular fluids, for example, was carried out

(7,

by graphical techniques Much of the development of theories of

the dielectric constant of polar and non-polar fluids has been by

(18]

graphical techniques , and the difficult problems of divergences
associated with long-range electrostatic potentials are often most clearly
phrased in a graphical context. Finally we would mention the development
of thermodynamic perturbation theories for molecular fluids where there
are many different approaches. Most of them may be derived by graphical
techniques, which are particularly useful for choosing one method as more

[

quickly convergent than others

In many of these cases the original derivations have been
superseded by derivations using functional differentiation, and the new
derivations have made the nature of the approximations more clear. However,
the rather more direct link between graph theory and physical intuition
makes it appear that while graph theory may be an inelegant tool in
developing approximations in dense fluid physics, it is a successful tool.
Thus a solid grasp of the techniques used is an important part of a
theoreticians toolkit, and this provides the main reason for giving these

Tectures.

In the next section we define the statistical mechanical

quantities we shall be discussing, the idea of a graph and of functional



differentiation as they are used in statistical mechanics, and show
some of the connections between the two methods. In later sections we
derive the fugacity and density expansions for the pressure and the
correlation functions and prove twe "replacement theorems". These are
theorems which used in the technique called "topological reduction" by
Stell, where a sum over one set of graphs is replaced by a sum over a
smaller class of graphs. A proof of the convergence of the fugacity
expansion for the pressure in a finite circle of the complex fugacity
plane is derived by graph theoretical methods and the Percus-Yevick and
hypernetted chain approximations are derived. We then give a brief
introduction to the graphical methods used in the study of systems with
electrostatic interactions. Finally we discuss the way graphical techniques
are used in the development of some of the newer perturbation theories,
demonstrating these ideas with an example:® the Weeks, Chandler and

Anderson theory.

We hope that this probably rather personal view of the place of
graph theoretic techniques in modern theories of the liquid state may be
of some use to apprentice workers in the field. We thank those students
and colleagues whose attentive ears made the lectures possible in the

first place.
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IT DEFINITIONS.
{a) Statistical Mechanics.

We consider a system of N particles constrained to lie in a
region @ of volume |2| and whose surface area, |32| is small compared

h particle as (i), the

with |e]. We write the coordinates of the it
symbol representing both the centre of mass coordinates and interval
coordinates such as orientation or vibration coordinates. THE CANONICAL
PARTITION FUNCTION for the system is

ZN(Q,T) = ﬁT { d(T)...[ d(N) exp[-8V(1).....(N})] (2.1)
Q Q

where B8 = 1/kT, k is Boltzmann's constant, T the absolute temperature
and V{1,...,N) the potential energy of the particle configuration
{(1),..,(N)}. In these notes we shall assume V to be a sum of single

particle and pairwise interactions:

V(1)see s (W) =

o (i) + T e, (83) . (2.2)
i

T<i<j<N

he—z=
—

The one particle potential ¢p may include the effects of the walls

of the container, for example. Another example is,of course, the
potential of the gravitational field of the earth, which is responsible
for such important effects as phase separation in liquid-gas phase
transitions. Equation (2.2) represents the assumptions that three and
more particle potentials are unimportant in statistical mechanics. The

recent calculations of Barker et al. of the third virial coefficient of



- 11 -

argon[aoj indicate tkat even in simple real systems (i.e. a monomolecular

system with spherically symmetric potentials), the assumption of no
interactions of order higher than pairwise can be grossly inaccurate. The
major attraction of assuming the potential energy to have the form in
equation (2.2) is that while it seems to include enough physics to cover
all physical phenomena, it makes the theory we are about to develop rather
more simple to write down and manipulate. It is possible to develop this
theory with many particle interactions included but for dense fluids

it seems simpler to use an effective two particle potential.
The GRAND CANONICAL PARTITION FUNCTION may be written
v Lk
[ s
o (z.2,T) = Z 272, (2,T) (2.3)
k=0
where the fugacity z 1is given by
z =Py (2.4)

with A the thermal deBroglie wave length for the particles and u
the chemical potential of the system. The k = 0 term in equation (2.3)

is 1 by definition.

We may define CANONICAL AND GRAND CANONICAL DISTRIBUTION

FUNCTIONS. The k-particle canonical distribution function is

ot (100 = T [ d(k+1)..‘jd(N)DNm)x,...,wn (2.5)
Q Q

where

Dy ((1)sevea (W) = Wexp[-sv((l),---,m))] : (2.6)
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The k-particle grand canonical distribution function is

Pl st = 2 7 a0yt (2.7)

I n
& N>k
We now see the use of functional differentiation:these correlation functions,
which describe the microscopic structure of systems, are in fact functional

derivatives of the partition functions.

(b) Functional Differentiation and its use in Statistical Mechanics.

We now review the definitions of functional derivatives. A
useful reference on functional differentiation is the first[z1J since it
has been republished in paperback. A useful review of the techniques as
used in statistical mechanics has been given by Baxter[zzl. We begin
by considering yl,.‘.L(X} to be a function of L sets of position
coordinates (1),...,(L) and a functional of the function x which we
consider a function of an (L + l)th set of position coordinates. We
may ask what change in y occurs as a result of a small change in the

function x(L + 1). First we consider the function x to be appoximated
by a step function and hence represented by a table of its values

{d(L + 1)9}2=1 at pvalues {(L + 1)1}';1 of its argument (L + 1).

If we change x to x + £ , then the values of the function in the

table will change. We may consider the functional y as a function of
the P variables {x(L + l)fn$=1 and so the change in x will result
in a change

Nyaro X8 =0

As we take P + = , we may expect the sum in this equation to turn into
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an integral. Thus we try to make the functional Taylor series expansion

- (1)
Mol X S A J dib + 1) gy N, uea

1 2
taT l d(L+1) J d(L+2)EL+1£L+2y$,?..,L/L+1,L+2{X) st . (2.8)

This attempt is, however, a 1ittle glib, since t%ﬁ objects
y%??..,L/L+],...,L+M(X] are not unique, The addition to them of suitable
antisymmetric functions of (L + 1),...,(L + M) for M > 2 leaves the
expansion (2.8) unchanged. We impose a unique definition by inststing

M)

that y( be symmetric in its M extra arguments. We write this

symmetrized form as
GMyI . L{x]

—t R (2_9)

(M =
LA ISR/ TORRINEY L Sl oot

Mth

and call it the functional of y . In practice, the functional

derivative works in the same way as an ordinary derivative, e.g.
™) _ s (M-1) !
sl AP B P lisenillet] o i Wl 15100

To use the idea of functional differentiation in statistical

mechanics, we first define
z;(i) = z exp[-84;(i)] (2.11)

so that (2.3) may be written

f

= (z;) ]zo“l’[ dm...J a0 eol-s 1. op(1.0)] }5’] (1) . (22)

<i<j<
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We then have

» N
=z +8zy) =N§0 %[d(l)...[dm) expl-8 [ ¢,(1,0)] 1,0z, (i)+ez,(i)]

T<i<j<N

N
N 0%?‘]{0 _(N_M)"]_ Jd“) J 62 (]) 61] (M) EXP[ =B E ¢'2 !J)] D'] ]
A
M
) L‘L Z](J)]'} .

using the symmetry of the integrand with respect to (1),...,{N) to derive
the second gine from the first. We may now factorize out the M =0

term to find

e~ §

=|—

=iz + 6z} =2{z]}{1 5 L Jd(1)...Jd(M) 52;(1)...62; (M)

& E r—J NIM | { d(M+])---[d(N)
N=M L:J{Z]} 2

N M
1<)

Taph o 1 fao o L oy )
= - {2,} + = fd{(1)...{dM) —— ST
=z?{ s M!J } TN

zZ 1 ceeZy

— -

Comparing this result with equation (2.8) we see

2,0z ) 'Sz
Py((1)see (M) = —— 7, (1) - (2.1

BZ-I

We now introduce the URSELL CLUSTER FUNCTIONS uk((1),...,(*))

by the definition
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Pul(Decees D) = § v (lig)seosiy ) (2.14)

where the sum is over all partitions P of the set {1,...,M} and the

product for each partition P is over all the subsets o« of P , the

wth subset having elements i],...,in . Thereis only one partition

of the set {1} so that

Py(1) =y (1) . (2.15)
The set {1,2} may be partiticned in two ways: {1,2} or {1}, {2}. The
two particle Ursell cluster function is then

92(3,2) L u2(1,2) + u1(T) u1(2) . (2.16)

For M = 3, we have the partitions {1,2,3}; {1},{2,3};{1,2},(3};{1,3},
{2}; {1},{2}.{3}, and thus have

P4(1,2,3) = ug(1,2,3) + u(1)u,y(2,3) + up(3) uy(1,2)
+ (2) uy(1,3) + u](1)u1(2)u](3) (2.17)
and so on.

Since functional derivatives work in the same way as ordinary

derivatives, we have the result

s 1 =2 1 82
sz]?g) "% ) (2.18)

If we use (2.18) to write 6M1ogE/621(1)...6z](M) in terms of
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functional derivatives of = we see from (2.14) that

1 _ 1 dmlo =
Ul suM]) = Eyfecti M g2 e

We may define several other useful correlation functions. They are

(). (M)
gy((1),.. (M) BN O

and for M > 2

while for M =1
h] (1) = 10g[u-|('|)/2-|('|)]
For the two particle functions we have
hy(1,2) = g,(1,2) - 1 .

For the ideal gas, equations (2.20) and (2.7) show that 92(1,2) =1,
Equation (2.23) then shows that h2(],2) is a measure of the departure

of a system from ideal behaviour.

There is one further correlation function we shall require:
N
the ORFTEIN-ZERNIKE DIRECT CORRELATION FUNCTION is defined as the

solution of the integral equation
hy(1:2) = e1,2) + [a(3) c(1,3) py(3) hy(3,2) .

An alternative function definition of ¢(1,2) is

(2.19

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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= ¢ Tog =/ 6z, (1)1
c(1,2) = W logls Tog =/ 641\])_,

1

We shall show, in section that this functional definition is the

n
same as the definition via the Oq@tein—Zernike cquation (2.24).

(Cy Grepnical Lafinitions.

In our graphical definitijons we use the definitions of
Stell, and do not-ﬁft any of the many alternative names which most of
the defined objects have. A LINEAR GRAPH is a collection.of circles,
between some pairs of which there are lines calledbonds. Two circles
are ADJACENT if they are joined by a bond. A PATH is a sequence of
adjacent ¢§fedes joined by bonds. Two paths between the circles 5
and Lo are INDEPENDENT if they have no intermediate circles in
commen. A graph is CONNECTED if any pair of circles in the graph are
joined by a path. There are two types of circles: WHITE CIRCLES,
{which carry a label and whose coordinates are not integrated out) and
BLACK CIRCLES(which are unlabeiled and whose coordinates are always
integrated oved. If there are at least n independent paths between
any pair of circles in a graph then it is AT-LEAST-n-TUPLY-CONNECTED.
In general, a graph consists of several disconnected COMPONENTS. A
component is a maximal connected subgraph. A MAXIMAL subgraph with a
property is the subgraph with the property which is properly contained
in no other subgraph with the property. A MINIMAL subgraph with some
prope&?y properly contains no other subgraph with the property. In a

SIMPLEFRAPH, there is at most one band between any pair of circles,
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With each graph we associate two objects: an integral and a symmetry
number. The most general integral necessary for our purposes is of
the form
m (i,3)
[d(n +1)...[d(w){ n B, (1,3)] ° }{ 1 ol v

s a T<i<n n+1<i<N
Equation (2.26) is the integral associated with an N circle graph in
which n of the circles are white and labelled 1,...,n while the other
N-n circles are black. With each black circle there is associated a
function yz(i) and with each whife circle a function y](j). The
set S is the set of pairs of circles (i,j) between which there are
bonds. The product over a is over types of bonds and 'Ma(i,j) is

the number of a-type bonds between (i,j). With each a-type bond we

associate a function Ba(i,j) which has the property Ba(i,j) = Ba(j,i).

For the (simple) case of the complete N circle graph, one integral

would be

NIZy = [dl1)...[dN) expl-s T 4y(1.0)]
i<
S is the set of N{MN + 1)/2 pairs (i,j), there is only one type of
bond, with, B] (1 ’J) = EXP['MZU :j)]: n] (71.]) =1Y (11J) and

yi(i) = Yz(i) Y i . Another example is

which has the associated integral

(2.26)
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[a3) [ata) 8,01,3)* 8,01,2) 8(2,3) 8,01,2)%0 (v, (2Dyl3Iryfa) . (2.27)

Each integral corresponds to the graph with which it is associated

times the factor

v=o Il {ma(i,j)!} . (2.28)
s a

The number o is the symmetry number of the graph, which is the order
of the automorphism group of the graph. To define this group we make a
dummy labelling of the black circles of the graph. The group is the
group of permutations of the dummy labels of the black circles which
leaves unchanged the adjacency of the relabelled graph. This is, the
values of ma(f,j) in the original labelling, and in the permuted
labelling are the came for all i,j and a in the graph. For the graph

drawn above there are two labellings of the graph

and (ii)

In (i), 3 s bonded to 2, but not in (ii). Hence the automorphism
group contains only the dentity and o = 1. m1(1,2) =1; m1(2,3) =1,
m1(3,1) = 4 while m2(1,2) =2 . Thus

w=1x (11,10, 41) x (21) = 48 .

A graph with integral I and number v corresponds to the term I/v .



= O

REFERENCES.

20. J. A. Barker et al. IBM research report #RJ1409. Quoted on p. 187
of ref. 8.

21. V. Volterra. "Theory of Functionals", Dover Publications Inc.

New York (1959).

22. R. J. Baxter. See reference 12.



111, PRELIMINARY THEOREMS

In this saction we prove the "PRODUCT THEOREM" which relates
sums over connected graphs to sums over disconnected graphs. We also
interpret functional derivatives of graphs as graphical expressions. When
we speak of a graph (or a sum of graphs), we may mean either the graph as
drawn, or the term corresponding to it (or the sum of such terms). We
won't make the distinction very often, trusting that the meaning is

obvious from the context.

We now introduce the idea of a PRODUCT OF GRAPHS. We Tlet r1
be a connected graph with n white T-circles. A l-circle is a circle
whose function y is unity {see (2-26)). We label these circles
11,...,Tn . We let Iy be a connected graph with m white 1-circles

labelled by j],...,j We now consider the white circles Tabelled by

s 5
k],...,kQ where k],...,kQ are the labels common to { Tpaeeaniy } and
{ j],...,jm } . The product of T and T s denoted r1*r2 , is defined

as the graph Ty containing the white circles k ’kQ and such that

100
the removal of the circles labelled k1,..,,kQ separates the graph into

two pieces, one piece being r minus the white circles k},‘..,kQ -

the other piece being T, minus the white circles k],...,k If we

Q-
remove the graph (rz minus its white points) from Iy we get s if
we remove the graph (F] minus its white points) from ry we get T, .
We say that Iy is ™ and Iy connected in parallel at the points

k],...,kQ . Note that if either r] or TZ contains no white circles,

it is still possible to form Ty but it is a disconnected graph.

- .
. AT E\c ] Tat &03’3”‘1“2' *
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If I1 is the integral corresponding to vl and 12 is the integral

corresponding to vl then the product I]I2 does not necessarily
correspond to  vyvy (r]*rz) . The integral associated withE=r1*TE is
certainly 1112 , but there is no guarantee that the symmetry number vg
of Ty is equal to vyv, . However, despite the fact that I]IZ/v1v2
may not equal rl*rz , we can prove the following theorem. It is basic

to the derivation of the fugacity expansions in the next section and

crops up frequently in subsequent work.

PRODUCT THEOREM

Let G be a set of distinct connected graphs F1,r2,...,rj,...,
each consisting of some or no black circles, some or no white 1-circles
and some or no bonds. We assume that NO products of members of G are
members of G . Let F be the set of all graphs in G and all possible
products of graphs in G {including multiple products). The product

theorem then states

{THE FUNCTION REPRESENTED BY THE SUM _ exp THE FUNCTION REPRESENTED BY 1.3

OF ALL GRAPHS IN THE SET F} THE SUM OF ALL GRAPHS IN G

PROOF :

A tyuical graph in F  has the form

%* * *
: P1*r2 PE* RO Pn

i n



_23_

so that the integral associated with the graph has the form

o =PI LR ”'Inﬂ1jvﬁ (3.2)

where V¢i is the factor associated with ¢; and [1 = vr1 ry . Because
of the construction of product graphs, there is no bond from any black
circle in any graph in the product to a black circle in another graph in
the product. Thus the only difference between Vgi and ?%] [(vri)Pi]

is associated with the way the fﬁ graphs r; are ordered in the product

graph. We can order them in ¢i! ways so that

[n }n [ )Pi] {3.3)
v o= R v e
o LG Pyt

If we now sum equation (3.2) over all graphs in the collection F and

use equation (3.3), we see that

I
exp{—] + £ o+ J—+...} -1 = exp{ 5 JE T 5 B
“r] I‘z Vi J
J (3.4)
The Teft hand side of this equation is the right hand side of equation (3.1)
and the right hand side of {3.4) can be shown to be the left hand side of
(3.1) by expanding the exponential. Hence we have proven the product

theorem.

We now proceed to give two results on functional derivations of

graphs.

Let T be a connected graph consisting of bonds and black circles
such that some (or none) of the circles are y-circles and some (or none)

of the bonds are B bonds. Then we have
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&r ’ ( THE SUM OF ALL THE DISTINCT GRAPHS THAT ARE
sv(1)...6v(n) OBTAINED FROM T BY CHANGING n BLACK v-
( CIRCLES TO WHITE 1-CIRCLES LABELLED 1,...,n
RESPECTIVELY.
(3.5)

If n exceeds the number of black y-circles, then the derivative
is naturally zero. We also have

8r .1 THE SUM OF ALL THE DISTINCT GRAPHS THAT ARE
§B(1,j) 2 OBTAINED FROM T BY REMOVING A B-BOND AND
CHANGING THE TWO CIRCLES AT EITHER END OF B
FROM BLACK CIRCLES TO WHITE CIRCLES LABELLED
i AND j RESPECTIVELY.

(3.6)
We use these results in the succeeding sections. Their proof is not
difficult starting from equation (2.26) and the definition of functional

differentiation. A simple example of (3.5) might be

[ ]
/

s _ 0/‘& % ‘x?/’ )

sv(1) !

where all the black circles in the original graph are y1—circles.
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IvV. FUGACITY EXPANSIONS
From equation (2.12) we can see that

E: =1+ THE SUM OF ALL THE COMPLETE SIMPLE GRAPHS WITH

ALL BLACK zT—CIRCLES AND e-BONDS (4.1)
4.1

The complete simple graph of N-circles is the graph of N circles in
which every pair of circles is joined by one and only one bond. An e-bond
may be written

o 1,3
e(i,g) = & &7 21D (a.2)
and the ith black circle has the function
1 .
- 7 99 (1)
2, (i) =ze KT . (4.3)

We can rewrite (4.1) pictorially as
=1 +@® + o—» +2113..

However, this is not a useful expansion because since e(i,j) + 1 as
the distance r(i,j) between i and j gets large, the n circle term
in (4.1) is proportional to | o |" . The series in fact diverges.

However, if we use the bond
f(i,J) = e(i,j) -1 (4.4)

then f(i,j) » 0 as vr(i,j) >« . Using (4.4) in (4.1) we find
tﬂ =]+ THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING
L
OF BLACK 21—CIRCLES AND SOME OR NO f-BONDS.
(4.5)
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=] +® + 00+ 00 +.f; +-}., +‘t. +‘£¥ + ...

We may now use the product theorem to obtain an expansion for log =

We find

THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS
COMPOSED OF BLACK z,-CIRCLES AND SOME OR NO
! f-BONDS .

s +o00 +¢(1p4—‘£& + ...

The integrand of each graph in this expansion is given in terms of the
coordinates of one circle and the coordinates of all the other circles
relative to the first circle. The integration over the coordinates of
the first circle then gives, for homogeneous systems, a factor || .
Equation (4.6) is the fugacity expansion of |a| times the pressure.
We can now use equations (3.5) and (3.6) and the functional definitions
of the correlation functions. We have

-
Tog o,

(4.8)

"

M s
Uy ((1) 5.0 (M)) g W oo jsles
SigM 6z,(1)...62, (M)

{equation {2-19)). Using (3.5) we obtain

up((1)s...0{K)) = ( THE SUM OF ALL DISTINCT CONNECTED SIMPLE
GRAPHS COMPOSED OF K WHITE z,-CIRCLES
LABELLED 1,...,K RESPECTIVELY, SOME OR
NO BLACK z;-CIRCLES AND SOME OR NO f-BONDS.

(4.7)

E.g.‘ le(],Z) =C"H€+fz‘%+?3i+?/\g+@i+ o



If we now use the rel

oy = Uy

B s A

01(1)

Qz(]yz)

Every graph in (4.8) occurs in
the white circles.

e-bonds between the white circl

ol (1) (K)

The proof is most simply given
(4.9) and then multiplying out.
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ation (equation (2.14)), we find

THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING

OF WHITE Zl-CIRCLES LABELLED 1,...,K RESPECTIVELY,
SOME OR NO BLACK 21-CIRCLES AND SOME OR NO f-BONDS
SUCH THAT THERE IS AT LEAST ONE PATH FROM EACH
BLACK CIRCLE TO A WHITE CIRCLE.

(4.8)

assorted forms with or without f-bonds between

We can thus replace groups of graphs by graphs with

es to obtain

THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS
CONSISTING OF K WHITE z]—CIRCLES LABELLED BY
1,...,K RESPECTIVELY, SOME OR NO BLACK z,-CIRCLES,
SOME OR NO f-BONDS AND AN e-BOND BETWEEN EVERY
PAIR OF WHITE CIRCLES.

(4.9)

by writing e =1+ f for the bonds in
An example is

o1.2) = gs o rordis .

with ~ representing an e-bond.
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Note further than as z - 0 ,

Pm((]):---s(M)) i
e Gt o = f T e{i,i) {4.10}
2, (1)a00 002y (M) {i,0)eky

where KM is the complete graph of M circies.
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V. CONVERGENCE OF FUGACITY EXPANSIONS

In this section we show that the fugacity expansion derived in

the previous section can have a finite radius of convergence in the fégacity

[23]

plane, The proof is by graphical methods, and is due to Penrose

[24,25]

There are other proofs by different methods , but this one suits

the lecture course. We start with the equations

B L el B2

and equation (4.6). We may write them in the form

(z 2 .5 2
= b.z . (R E b,z (5-1)
T 2=1 g=1 *

where b, = iﬁ [d(]) Jd(m) A1) 2]
L1Q
9] i

= lim 1 { THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS

@ [ WITH & BLACK 1-CIRCLES AND SOME OR NO f-BONDS,
(5.2)
and thus
Aheail)) = 3 nfiLg) (5.3)
r (‘i:J)CI“'-—-.___‘_

SUM OVER ALL CONNECTED PRODUCT OVER ALL PAIRS OF

GRAPHS WITH CIRCLES CIRCLES WITH BONDS BETWEEN

LABELLED 1,...,% . THEM IN THE GRAPH T .

We now develop an estimate of the size of the ]la's.
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To each graph T we associate a unique Cayley tree "
in the following way. The graph T is labelled. To each circle i

in I associate a weight s which is equal to the number of bonds in

the shortest path from i to 1 . Delete i 2 5
W=
from T all bonds joining circles of equal wy st
wy s |
weight to get the graph ' . From each u:t z
e 22
circle i =1 in r' there are one or more "’i’}
: s &3, Sk
bonds to circles of weight wz- -1. u; 23
Delete all these bonds except the one to T"- & :j“ ':!3
. _L 1o
the circle whose Tabel is least. This gives ‘ e
the Cayley tree r" . From any Cayley tree 1 .' q T'" 2
3 .
T we may construct the set of graphs S(T) L 2 $ ¥
1
consisting of all graphs T with r" =T. 4

The minimal graph in S(T) is T and the ¥
minimal graph is T, which is constructed (T") !
as follows. Join all pairs of equal weight
and then join every circle i = 1 to all

the circles whose weight is Wy - 1 and
whose label is greater than the label of |

the circle of weight Wy - 1 to which

i is already connected. Notice in oMe

examplg that there is no 7-2 bond, nor a
10-4 bond. The number of graphs in S(T)
is 2" where n s the number of bonds
which are added to T to make T* . We

now write equation (5.3) as
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f(i,3)

f(i,j)% ] } n
reS(T) ((i,j)er-r

A= ] { n
T U, §)eT
P
SUM OVER L ABELLED
£-CIRCLE TREES

so that

R Z}H f(i,:‘l){ o (L) (5.4)
T Y

i sj )CT (] ’j)(T =T
To proceed further we must specify the potential energy. We assume

d(r) =+ r<a

-V-€

¢(r) < Ar Pl (5.5)
where v is the dimensionality of the system. It has been showntzs]

that for these potentials there is a lower bound ¢ on the energy per

particle in any configuration. That is, +here ewists & & such +hat
n
z ‘b(‘lsj) 2 -2¢
j=2

so that

- e2:1>/kT (5.6)

n
jﬂz (1 +7(1,3)) = q
for all n > 0 for configurations without hard core overlap.

For each circle 1 in T we define the set of circles

S_i = SET OF ALL CIRCLES SUCH THAT (i,j):T*-T
AND EITHER Wi =Wy +1 OR Wy = Wy AND j @ i. (5.7)



- 32 =

51 is empty. Let M be the largest label on a circle with
maximum weight. By (5.7), SM is empty. Thus there are at

most (2-2) non-empty sets of this type. The circles in Si are joined
by bonds of T*—T , by (5.7). Thus, every circle of weight Wy #i']

that is joined to i by a bond of T 1is joined by a bond of T*-T to
every circle of weight Wy and label greater than i . These bonds of
T*~T joining every pair of circles in Si correspond to factors 1 + f

in the product in equation (5.4). The hard core condition implies that

if this product is non zero, then the configuration is a non-overlapping

one.
Hence

n (0 + £i,§))  ¢*2

*
(1,J)CT -T

s0 that

1A, ﬁq“; no IfGL)] . (5.8)

(i,d)c

If we now define B = I d3£|f(g)| than we have

{5.9)

The single f integrals are the only ones needed for a Cayley tree, The
number of labelled Cayley trees of & circles if (e7] 11'2 so that we

now have an estimate of the bg‘s 3
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Ib,| < (qz}Q‘ZB“'vf[ (5.10)

Cuachy's nth root test then gives us a lower bound on the radius of

convergence R of the series (5.1). We have

R > 1/eqa B . (5.11)

This means that at Tleast for some potentials, the graphical expansions

converge at small but finite fugacity.

For hard core systems we can find an upper bound on the radius
of convergence. MWe can write

M
g(z) = n (1 -2z2/z)
@=] L

where M s the maximum number of hard spheres which will fit into the
M
region @ , and { z, }u=] are the zeros of =(z) , a finite polynomial.

However,

_..1._ }095 =

|| .

3
b,z
1%

ne~18

so that
» -2
|n[ﬂb£ = - Iza
¢4
Now, the radius of convergence must be closer to the origin than the

nearest zero of the partition function so

=L
91 B4 < LI
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Hence

1/2
R5R£~( - ) Ve (5.12)

|9|zb£

and a useable Tower bound can be constructed using b2 with ¢ =2 .
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VI. FIRST REPLACEMENT THEOREM

This is the second "topological reduction" theorem, the first
having been the product theorem of section 3. This theorem is used to
change the fugacity series of section 4 inte density series, and the
name is given it because it enables us to replace parts of the graphs
in the fugacity series by p- circles. The other important feature of
the theorem is its proof, since the method is used later in other
topological reductions, especially the reductions used in modern

perturbation theories.

We now define the concept of an ARTICULATION CIRCLE. A circle
@ 1is an articulation circle if, upon its removal the component of which
it is part separates into two or more pieces in such a way that at
least one piece contains no white circles. The MULTIPLICITY of o« is
the number of pieces into which the graph separates. A graph free of
articulation circles is called 1-ineducible. Two examples might be

: P [

(1} P20 and (ii) Ty 2

In (i), the black circle is not an articulation circle while in (ii) the

arrowed black circle is an articulation circle of multiplicity 3.

We start with the h-correlation functions:

hd1)sne s (K)) = uf1)sen s (K))oq (1o (K) K2 2
and h1(]) = log[u](1)/z1(1)] 5

and we prove
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hK((l),...,(K)) = THE SUM OF ALL DISTINCT CONNECTED SIMPLE
GRAPHS CONSISTING OF WHITE 1-CIRCLES
LABELLED 1,...,K RESPECTIVELY, SOME OR
NO BLACK 21-CIRCLES AND AT LEAST ONE f-BOND
SUCH THAT THE GRAPHS ARE FREE OF WHITE
ARTICULATION CIRCLES.

(6.1)

To see how this theorem works, consider the graphical sum for h, from

K
equations (5.1) and (4.7). Attached to the K white circles will be

graphs:
3
kp ete.

I 2
so that we can write the sum of a large number of graphs as
3
o ¢ o—o ¢ di: + —a—e 4 ﬁil e
X H ] 3 3 3
¢z

and the graphs in the square braces form the fugacity expansion for p,(3).

To prove (6.1) for K> 2 , we write
uK((]),l-.!(K)) = hK((1)s-..:(K))p1(])--.91(K)

We substitute (6.1) for hK and (4.8) for each p](i} and carry out
the multiplication. The result is the expansion {4.7) for Ug » and
(6.1) is proven. For K =1 the result follows by using the fugacity

series for u](1) {equation (4.7)) and the product theorem.

A graph G in {6.1) contains a MAXIMAL 1-IRREDUCIBLE ROOTED
SUBGRAPH, GM . This is the maximal subgraph of G which contains all

its white circles but no articulation circles. We can construct G from
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GM by replacing each black-circle of GM by a graph B of the z]—circie,

f-bond expansion of p](]) :

91(1) 1T N e 2<;: + éxﬁl + ... (6.2)
2 T TL T}

T n

For example

& T
[#) "
w ,,'/.
l = ]

1 &, ps_v

We now prove the
FIRST REPLACEMENT THEOQREM:

The sum of all graphs appearing in the hK expansion in (6.1)
that have the same GM is equal in value to the graph GM which is

Gy with py-circies instead of z;-circles. (6.3)

To prove this theorem we first write (6.2) as
py{i) = E r (i) . (6.4)

We may write GM =1 , and the integrand in I, contains the density.
M M M

We replace the density by (6.4) whenever it occurs. We write r, as
IOL / Gy s where o, is the symmetry number of T, - The result is a
product of sums of integrals. We can multiply out and get a single sum
of integrals multiplied by factors. If GM has M black circles, then

a typical term in the sum is an integral I x (UMO vee0 ) where
(!vl G-M
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the integrand is a product of f(i.,j)'s and 2,(i)'s. Every integral

in this sum can be seen to occur in (6.1) and every integral associated
with a graph in (6.1) occurs in our new sum. The only problem remaining
is to ensure that the integrals in the new sum are counted the same way
as in (6.1). A given term t in the new sum will correspond to a graph
of (6.1) times a number not necessarily 1 because the symmetry number

of the graph is not necessarily °M°u1"'°uM . In general there will be
other terms in the sum which are indistinguishable from t in that they

have the value I / Oy, Ty but black circles will have different
1 M

dummy labellings. Let there be S such terms, including t . Their
S

M0a1 o 'ouM

sum is then For our theorem to hold we must now prove

that the symmetry number aq of the graph GI associated with I s
Gl s, PS5
Ma] Oy

Proof:

We calculate oy using a second labelling. We whiten all the
black circles of GM and label them K+1,...,KtM . S is then the
number of distinguishable ways of labelling the circles K+1,...,KM
with labels Apseeasly - i.e. the number of distinguishable ways of
attaching the L graphs to GM . Note that @ and oy may be
equal for i = j so that ra_ may be the same as ra. . If they are

1 J
all the same, S =1 and if they are all different S = M! We put
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where o is the number of permutations among the Gy e Oy (or among
the second set of labels K+L,...,K+M) which leave the doubly labelled
graph invariant. But the group of permutations among the labels L ERRRRL
that leaves the doubly labelled graph invariant is a subgroup of the
larger group of permutations whichlﬂave the singly labelled graph invariant.
By Lagrange's theorem on the order of subgroups of finite groups, the

ratio of the orders of the two groups is just the number of distinguishable

ways that the double labelling can be done.

That is
$=M/¢
whence
[o P J
o ® M % “M
S

and our result, and thus (6.3) is proven. From (6.3) and (6.1) we obtain

hK((]),...,(K)) = ( THE SUM OF ALL DISTINCT CONNECTED SIMPLE
GRAPHS WITH K WHITE 1-CIRCLES LABELLED
1,...,K RESPECTIVELY, SOME OR NO BLACK
pl-CIRCLES, AND AT LEAST ONE f-BOND SUCH
THAT THE GRAPHS ARE 1-IRREDUCIBLE
(6.5)

for K =2 while for K =1 we obtain

hy(1) = loge(1)-1ogz; (1) =  THE SUM OF ALL DISTINCT CONNECTED
SIMPLE GRAPHS CONSISTING OF A WHITE
1-CIRCLE LABELLED 1, ONE OR MORE
BLACK 91-EIRCLES AND f-BONDS SUCH
THAT THE GRAPHS ARE 1-IRREDUCIBLE.
(6.6)
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In the next section we proceed to use the first replacement theorem
to develop density expansions of other interesting quantities.
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VII. DENSITY EXPANSIONS

Equation (2.14) gives us

il Bl = F 10 B, 3

[v]
If we factor out the density functions attached to the white circles in

this expression we find
g ((Msee oK) = T b (3y,..001 )
5]

substituting for h, in this expression from (6.5) and (6.6) we find

QK((I),...,(K)) = THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING
OF WHITE 1-CIRCLES LABELLED 1,...,K RESPECTIVELY,
SOME OR NO BLACK p]—CIRCLES AND SOME OR NO
f-BONDS SUCH THAT THERE IS A PATH FROM EACH
BLACK CIRCLE TO A WHITE CIRCLE AND THE GRAPHS
ARE 1-IRREDUCIBLE
(7.1)
We can go a little further by the argument leading to {4.9) and insist
that each graph contain a complete graph KK of e-bonds:

gK((l)....,(K)) =( THE SUM OF ALL DISTINCT AT-LEAST DOUBLY CONNECTED
SIMPLE GRAPHS CONSISTING OF K WHITE 1-CIRCLES
LABELLED 1,...,K RESPECTIVELY AND FORMING
A KK WITH e-BONDS, SOME OR NO BLACK p‘~CIRCLES
AND SOME OR NO f-BONDS.

(7.2)

To develop a density expansion for log = , we note from (3.13)

that

D](.I) =
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or

slogs = [d(])sz](1)p1(l)/z](1) ’ Jd(])]ogz1(1)sp1(1) , (7.3)
- s Id(l)p](1)1ogz](1) ; Jd(l)logz](l)ép.l(]) . (7.4)

Equation (6.6) now gives us

Mw5=skﬂhﬁnhwﬂﬂ

8 Jd(])a;»](]){]ogpl(]) - [SUM OF GRAPHS ON RIGHT SIDE OF (s.s)]},
(7.5)

We now use the functional differentiation concept backwards to give

Togs = Jd(1)o](1)10921(1) - Jd(ﬂp]U)[]Ogo]ﬂ)-]] + Hlpf)
(7.6)

apart from an additive constant incdependent of p which may be
evaluated by using the ideal gas result. The term H(p],f) is given by
THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS

COMPOSED OF BLACK p1—CIRCLES, ONE OR MORE f-BONDS
{ AND 1-IRREDUCIBLE.

H(Q] ,f) =

(7.7)
This is usually called the Helmholtz free energy or excess Helmholtz
free energy.

Since h1(1) = loge,(1) - 10921(1) we have

logs - Jd(1)p1(1) + Hpysf) - Id(1)p,(1)h](a) : (7.8)

For a uniform system this result reduces to



.

plal 1 k1 K+l
T D|QE + |R| z k+1 [ Bk - E [ Sk

or the well known virial expansion of the pressure

P/kT =p -] F§T pk+,Bk : (7.9)
k

We now turn to the direct correlation function C(1,2) introduced

in equations (2.24) and {2.25). The functional definition is
2 § =
c(1,2) = 35;177» log [6109:/621(1)]
Since u1(1)/z](1) = 61095/621(1) . 91(1) = u1(1) and
h](T) = 109[91(1)/21(1)] , C(1,2) wmay be written in the form
c(1,2) = 6h1(1)/601(2) (7.10)

To carry out this functional differentiation we use the graphical
expansion (6.6) of h](1) and the result (3.5). Each graph in (6.6)
contains only one white circle, so that it cannot be disconnected by

the removal of any one circle. We call a circle a CONNECTING CIRCLE

if its removal disconnects the component of which it is part. The graphs
in (6.6) are free of connecting circles and remain so when one circle

is whitened in the differentiation process. Thus

€(1,2) = THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS
CONSTSTING OF TWO WHITE 1-CIRCLES LABELLED 1 AND 2
RESPECTIVELY, SOME OR NO BLACK 07-CIRCLES AND f-BONDS
SUCH THAT THE GRAPHS ARE FREE OF CONNECTING CIRCLES.
(7.11)



I

We now call a NODAL CIRCLE a circle such that all paths between two
white circles in a component pass through the circle. A nodal circle can

P x necessaril . A .
be a connecting circle but notAan articulation circle. We may rewrite

(7.11) as

Cc(1,2) =| THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING OF
TWO WHITE 1-CIRCLES LABELLED 1,2 RESPECTIVELY, SOME
OR NO BLACK pl~CIRCLES AND f-BONDS SUCH THAT THE GRAPHS
ARE 1-IRREDUCIBLE AND FREE OR NODAL CIRCLES.
(7.12)
We can now split the sum ] of graphs in equation (6.5) for h2(1,2)

into two parts:

L = Ec

+

I

"

SUM OVER GRAPHS WITH NO NODAL CIRCLES

SUM OVER GRAPHS WITH AT LEAST ONE NODAL CIRCLE.

Any graph in ET has the structure
T T T, T
O--—-._.._‘l_o = f'{-”((l)___%)*(:’ ?.)
I £ [3
where P—:—? is a graph in the set J. and g»—b——? is a

graph in h2(3,2). Hence we may write

I = nlg®
) o

and we have
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or

hy(1,2) = £(1,2) + Jd(s)C(1.3)p1(3)h2(3,2) : (7.13)

This is the Ornstein Zermike equation, previcusly encountered as (2.24)
and we have now proved the equivalence of the two definitions (2.24) and

(2.25) of the direct correlation function C(1,2).

We now develop some expansions of higher order distribution
functions which are useful in studying the asymptotic properties of
K-particle distribution functions. One such relation which is well
known is the Kirkwood superposition approximation: 93(1,2,3)z92(1,2)gz(2,3)
92(3,1) . We assume K > 1 and define the POTENTIAL OF MEAN FORCE
wK((1),...,(K)) as - kT]oggK((1)....,(K)). We subtract the actual

potential VK and work with the quantity

M ((1)sees(K)) = Tog gp((1)sea(KD) + g1 ¥, ({1)500000KD)
(7.14)

We can write NK as a sum of a set of graphs with two white circles plus

a sum of a set with three white circles etc. Hence

M) = ] I Uaisat]
S

ﬁ%
< K ! 11""’iS 3574/q ;
7.15)

where p/f/qis the set of ail S-tuples of the form { i],...,is } such

2=

that 5 < ij for i¢j and 1 < i <K ., We now use (7.2) to give a

graphical sum for gK({l),...,(K))/exp[— E%'VK((T)""’(K))] and then

use the product theorem toc find the logarithm of the sum. I[f we compare
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the resulting expansion with (7.15) we find

“k((l),...,(K)) = THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS
CONSISTING OF K WHITE 1-CIRCLES LABELLED BY
1,...,K RESPECTIVELY, AT LEAST ONE BLACK
p]-CIRCLE AND f-BONDS SUCH THAT EACH GRAPH IS
FREE OF ARTICULATION CIRCLES. ALSO, EACH
PAIR OF BLACK CIRCLES IN A GRAPH IS CONNECTED
BY AT LEAST ONE PATH THAT DOES NOT PASS
THROUGH ANY WHITE CIRCLE AND THERE IS NO BOND
BETWEEN ANY PAIR OF WHITE CIRCLES.

(7.16)
By induction from (7.15) we can express ﬂk in terms of the WK )
U (), (K) = F I (13U ()55 (1))
2SRk Tysoslgle 4
(7.17)

We can take the exponential of (7.17), exp«ﬂ<) being calculated from
(7.16) by using the product theorem. Interchanging the sides of the

equation we find

gg((1),-.-,(K))

P _)S+k#1 = 1+ THE SUM OF ALL DISTINCT
n{om WL () SIMPLE GRAPHS CONSISTING
SHE {hyen "S)izf/g OF K WHITE 1-CIRCLES
LABELLED 1,...,K
RESPECTIVELY, AT LEAST ONE
BLACK p,-CIRCLE AND f-BONDS SUCH THAT EVERY
GRAPH IS 1-TRREDUCIBLE, EVERY BLACK CIRCLE
IS CONNECTED TO EVERY WHITE CIRCLE BY AT
LEAST ONE PATH NOT PASSING THROUGH OTHER
WHITE CIRCLES AND NO BONDS JOINING ANY
PAIR OF WHITE CIRCLES.
(7.18)
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In this equation, the left hand side has gK(1,....K) with as accurate

an approximation possible to g, made from {g ]K:] factored out. We
K N°N=1

can, instead, factor out an approximation made solely from P This

yields
gK((])""’(K)) = 1+ [THE SUM OF ALL DISTINCT SIMPLE GRAPHS
it gg(i,j) CONSISTING OF K WHITE 1-CIRCLES LABELLED
T€i <3<k

1,...K RESPECTIVELY, AT LEAST 1 BLACK

{ p]-CIRCLE AND f-BONDS SUCH THAT EVERY GRAPH
IS FREE OF ARTICULATION CIRCLES, EVERY BLACK

CIRCLE IS CONNECTED TO AT LEAST 3 WHITE

CIRCLES BY A PATH USING NO INTERMEDIATE

WHITE CIRCLES, WHILE THERE IS NO BOND

\JO[NING ANY PAIR OF WHITE CIRCLES.

(7.19)
Equations (7.18) and (7.19) are the same for K = 3 and setting the sum
of graphs equal to zero yields the Kirkwood superposition approximation.
These equations give ways to improve the approximation in a consistent

way and show two methods for generalizing the approximaticon for K > 3.

We note that g, -1 for r(i,j) = where 1=i<JsK
As all distances = = , the left hand Guedes of (7.18) and (7.19) both
tend to 1, but the first one tends more rapidly. This suggests that $L+Hﬁj +he
sums of graphs on the right hand sides equal to zero yields a better
approximation from (7.18) than from (7.19). Further, if a single point
ry is moved away from the others, the left and right sides of (7.18)
tend to 1 . This is not true for (7.19) if K > 3 and showsagain that

(7.18) can yield a more accurate expansion of gy than does (7.19).
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VIII. SECOND REPLACEMENT THEOREM

The techniques introduced in this section are not much used
directly, but the theorem proved to use them is crucial in the development
of perturbation theories. We now define an ARTICULATION PAIR OF CIRCLES.
Two circles Y1 and ) constitute an articulation pair if, on their
removal from a component of the graph, the component separates into two
or more parts, one of which contains at least one circle but no white
circle, another of which contains at least one circle. A graph free of
articulation circles and articulation pairs is 2-IRREDUCIBLE. We now use
this circle to affect a topological reduction of the graphs in equations

(7.16), (7.18) and (7.19).

We consider a typical graph G from one of these expansions
for n > 3 , and call the maximal subgraph of G which is free of
articulation circles and articulation pairs of circles and yet contains
all the white circles of G the MAXIMAL 2-IRREDICIBLE ROOTED SUBGRAPH
of G and denote it by GM . Every graph in these f-bond p]-circ1e
expansion has a unique GM . MWe can construct G from GM by replacing
each bond of G, with some graph of the f-bond p]—C1TC1E expansion of
h2(1,2) (see equation (6.5)). A typical bond B in Gy touches two
circles 2 and Yy » One at each end. We replace B , | and Yo
by a graph Pq of the f-bond p]-circie expansion of h2(1,2) . The
white circles of T = must be delabelled and blackened before one

goes on vy , the other on Ty

We write (6.5) in the form
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h2(1,2) = E Fa(T,Z) (8.1)
=c~—o+of—o—o+c<>i ¥,
' % ,rl 2 ]
1 % T-,j
An example might be
P g T ‘/‘F3
G : > GM - Z()j;\\\YD + G
3 I/"«'«- 3
2
T

We now state and prove the

SECOND REPLACEMENT THEOREM.

The sum of all graphs appearing in (7.16), (7.18) or (7.19)
that have the same GM is equal in value to the graph GM obtained by
letting all the bonds of GM be h2 bonds. A1l black circles remain

black circles and all white circles remain white circles. (8.2)

The proof proceeds in exactly the same way as for the first
replacement theorem. We may write éM .4 IM . The integrand in IM
M
contains h2{1,2) . We replace h2(1,2) wherever it appears by the
expansion (8.1) and expand the resulting products so that éM is a sum
of integrals multiplied by factors. If éM has M bonds, then a
typical term t in the sum is an integral I x (UMoa eeOy )—]
1 M
where the integrand is a product of f(i,j)'s and zl(j)'s. Each of

these integrals occurs in the expansion we are considering, and each
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integral in the expansion occurs in the sum. The only thing remaining
is to ensure that the symmetry number ¢ of the graph in the expansion
with the same integral as in the term t s given by

o =°M0u]"'cuM/S (8.3)
where S s the number of terms in the expansion from éM which are
indistinguishable from t , except for different dummy labellings. The
proof of (8.3) goes through in the same way if for the first replacement
theorem. The only non-trivial change is the double labelling used.
Each label in the second set of labels is attached to a bond of éM
rather than a circle and it has a direction as well as an index. Typical
labels can be o + ) or a{ « ) . If o =) implies that the graph
ru(i,j) is attached to the circles (i,j), then o « ) implies that
ru(j,i) is attached to (i,j) . The label o = ) is different from
af « ) only if ru(i,j) = ra(j,i} . With these changes the proof of

the second product theorem goes through without too much difficulty.

This theorem implies that for K = 3 , equatiens (7.16), (7.18)
and (7.19) can be changed by replacing f-bonds with h,-bonds and
insisting that each graph be free of articulation pairs. The result
for (7.19) means that we can change {(7.2) by insisting that the graphs
be at least triply connected, and as well as changing the f-bonds to

hz—bonds, we change the e-bonds to gz-bonds. Thus
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gK((I),...,(K)) = THE SUM OF ALL DISTINCT AT LEAST TRIPLY
CONNECTED GRAPHS CONSISTING OF K WHITE
pI-CIRCLES FORMING A KK WITH gZ—BONDS AND
LABELLED 1,...K RESPECTIVELY, SOME OR NO
BLACK p,-CIRCLES AND SOME OR NO hz-BONDS.

(8.4)

This completes our analysis of exact graphical expansions in
classical statistical mechanics. In the remaining sections we shall
apply the techniques developed above to the study of approximate methods.
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IX. GRAPHICAL DERIVATIONS OF STANDARD APPROXIMATIONS

In this section we discuss two approximate techniques for studying
the graphical expansions derived in the previous sections. The two
techniques are the Percus Yevick approximation (PY)[ZSJ and the hypernetted

chain approximation (HNC)[29’30]. We emphasize these two approximations

[31]

because of their importance in liquid physics Both approximations

work in the same way: a large class of graphs in the expansion for
h2(1,2) is summed in terms of h2(1,2) , C(1,2) and ¢2(1,2) and an

integral equation for h2(1,2) and C(1,2) is developed. These can

[1-5,32,33] [9,10]

then be solved analytically numerically or even

approximately.
We start with the expansion for h2(1,2) of equation (6.5):

h2(1,2) =| THE SUM OF ALL DISTINCT CONNECTED SIMPLE GRAPHS
CONSISTING OF 2 WHITE 1-CIRCLES LABELLED 1,2
RESPECTIVELY, SOME OR NO BLACK pq-CIRCLES AND AT
LEAST ONE f-BOND SUCH THAT THE GRAPHS ARE 1-IRREDUCIBLE.
(9.1)

In section 7 we developed a similar expansion for C(1,2) .

C(1,2) ={THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING
OF TWO WHITE 1-CIRCLES LABELLED 1,2 RESPECTIVELY,
SOME OR NO BLACK p]—CIRCLES AND f-BONDS SUCH THAT
THE GRAPHS ARE 1-IRREDUCIBLE AND FREE OF NODAL CIRCLES.
(9.2)

From the argument leading to equation (7.13) we can write

h,(1,2) = €(1,2) + t(1,2) (9.3)

so that t(1,2) must be defined by
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t(1,2) = [THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING OF
TWO WHITE 1-CIRCLES LABELLED 1,2 RESPECTIVELY, AT
LEAST ONE BLACK pq-CIRCLE AND AT LEAST 2 f-BONDS
SUCH THAT THE GRAPHS ARE 1-IRREDUCIBLE AND CONTAIN
AT LEAST ONE NODAL CIRCLE.
(9.4)

We are now able to develop the PERCUS-YEVICK approximation.

We divide equation (7.2) for g2(1,2) by e_¢2(]’2)/kT to find
(1.2)/KT 3 4 THE SUM OF ALL DISTINCT CONNECTED
1-IRREDUCIBLE SIMPLE GRAPHS WITH
THO WHITE 1-CIRCLES LABELLED 1,2
RESPECTIVELY, AT LEAST ONE BLACK pq-CIRCLE
AND £-BOND WITH NO BOND BETWEEN 1 AND 2.

®
g,(1,2)et2

"

1+ ¢(1,2) + B{1,2) (9.5)

A11 the t(1,2) graphs appear on the right hand side of (9.5) because
by (9.4) any graph in t(1,2) has a nedal circle and hence no (1,2)

bond. The sum of graphs written B(1,2} 1is given by
B(1,2) THE SUM OF ALL DISTINCT SIMPLE GRAPHS CONSISTING
OF TWO WHITE 1-CIRCLES LABELLED 1,2 RESPECTIVELY,
SOME BLACK p1—CIRCLES AND f-BONDS AND WITH NO
ARTICULATION CIRCLES, NODAL CIRCLES OR (1,2) BONDS.
(9.6)

[l

:
R
:

We have shown the first contributions to B(1,2) . The two leading order
terms may be added together to form one term with an e-bond as shown.
Since the symmetry number of both these graphs is 2 we have
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2
m - %fd(a)Idc:nm,3)f(z,a)f(1,4)f(z,4)p,(3>91(4)exp(-¢2(a,¢>/m

U

It has become apparent that the Percus-Yevick approximation, which we'll
introduce in a moment, is accurate for short-ranged highly repulsive
interactions. Below we plot f(r) and exp(-¢{(r(/kT) for short-ranged

repulsive interactions and hard sphere interactions.

Fe)
dua | xp [~ dte) fer ]
|
| —
\ 1 T R
] ]
! !
|
| |
i >
£ i
Real Potential = ------e-e-e- Hard sphere potential

e
We see that when f(r) 1in the integrand of IM‘_ is large,
exp[-¢(r)/kT] is small, and when exp[-¢(r)/kT] ds large, f(r) fis
small. Thus in the integrand, when the particles are close together,
exp(-¢(r)/kT] is small and when they are far apart f(r) is small.
Thus thee'integral is always fairly small. The two f-bond graphs making

up m have nearly cancelled each other. Similar arguments

! T
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apply to the rest of the graphs in B(1,2) suggesting the
PERCUS YEVICK APPROXIMATION
B(1,2) = 0 , (9.7)

or, using (9.7) in (9.5) and then using (9.3) ,
c(1,2) = [1 + hy(1,2)] [ - e?2(1,2)/KT; (9.8)

Equationw (9.8) and the Ornstein-Zermike relation then form a soluble

set of equations for h2 and C .

We now proceed to derive the hypernetted chain approximation.

We consider (7.14) for K = 2 , which, by (7.16) may be written
Tog g,(1,2) + g7 8,(1,2) = Wy(1,2) = @y(1,2)

= THE SUM OF ALL DISTINCT CONNECTED SIMPLE
GRAPHS CONSISTING OF 2 WHITE 1-CIRCLES
LABELLED 1,2 RESPECTIVELY, AT LEAST ONE
BLACK p}—CIRCLE AND f-BONDS SUCH THAT EACH
GRAPH IS T-IRREDUCIBLE, THERE IS NO f(1,2)
BOND AND EACH PAIR OF BLACK CIRCLES IS
CONNECTED BY AT LEAST ONE PATH WHICH DOES

NOT INCLUDE A WHITE CIRCLE.
(9.9)

An examination of (9.4) shows that the right hand side of (9.9) contains

t(1,2) (a sum of graphs with nodal circles) and other graphs. Hence

log 9,(1.2) + oF 45(1,2) = £(1,2) + £(1,2) (9.10)

where E(1,2) is the sum of graphs on the right hand side of (9.9) which
do not have nodal circles. We make the HYPERNETTED CHAIN APPROXIMATION:
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E(1,2) =0 (9.11)
or, using (9.3) again and rearranging,
C(1,2) = hy(1,2) - 7 62(1,2) - Tog(1+h,(1,2)) , (9.12)

which again may be used in conjunction with the Ornstein-Zermike
relation to obtain h, and €
To compd#e the two approximaﬁions. we note that a graph in
E(1,2) 1is in B(1,2) , but noéjcztgitgrsa, so that HNC counts more
graphs than does PY , and should therefore be a better approximation.
This is true for some systems with long range interactions[34] 7
However, for systems with only short-range repulsions, the PY approximation

[35,

is better than the HNC approximation This is apparently because
PY ignores two classes of graphs which approximately cancel each other
(as seen in the analysis of . o ) while HNC sums part

of one of these classes and hence misses the cancellation. For example
E(1,2) includes m , but not ,M and hence misses

] z e z
the approximate cancellation in ; 4 due to the e-bond. We
might note that it is possible to extend these approximations by summing
another class of diagrams not summed in either approximation[gﬁj.
Experience has shown, however that these new approximations, the PYII
and HNC II are not really worth the extraordinary effort needed to

use them[37].

For comparison we outline the derivation of these approximations

by functional differentiation. We start with the relation (7.10)
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€(1,2) = shy(1)/80(2) (9.13)

from which we deduce

s exp[hy (1)1 = explny (1)] Jd<z)apl(z>cu,z) v o((s?)  (9.14)

[38]

Percus suggested that exp[hl(l)] should be almost 1linear in density

so that the first order term in b0y in (9.14) should be sufficient, and

chose as the perturbation producing the changes.
6 log zy(i) = - ﬁT ¢2(0,1) {9.15)

that is, he considered the effect of introducing another particle,
labelled 0 into the system. We have for the new density function
*
Q] “);
* . . . .
O] (1) = Dz(osl)/ﬂ1(0) = 01(1)92(0;1)
For the new h1(i) we then have

explhy (i) = o (1)g,(0,1)/2;(1)e ™2 O IV/KT — exprin, ()19, (0, 1)et2 (01K

Hence

80q(1) = 07" (1) = (i) = o (i)hy(0,1)

while e .
cog L0061 - eafh 2]
s exp[hy(i)] = WW = explhy (1)] [92(0,1)e¢2(0’1)/kT-1]
Inserting these results in (9.14) and ignoring the (501)2 CEHHS e

find



- 59 -

92(0,])32(0,1)/“ = - [d(z)[)] (Z)hZ(U,Z)C(],Z}

h,(0,1) - €(0,1)

by the Ornstein-Zermike equation. Rearranging, we get the PY equation
(9.8). We can derive the HNC approximation in the same way by

assuming h](]) rather than exp[hT(])] is linear in 8pq-

From (9.13) we have

shy (1) = [d(2)691(2)c(1,2) + 0((691)2) ; (9.16)

and we can also write

h,"(i) = 1og [91(1)92(0,1)/21(1)e’°2(0’1)]

= hy(3) + og g,(0,1) + ¢,(0,1)/kT

Thus we have, using the earlier estimate for 5p](2) 5

+

log g5(0,1) + 4,(0,1)/kT

1]

Ja(z)p](z)hzto,z)cn,z)

hy(0,1) - €(0,1)

by the Ornstein Zermike relation. Rearrangement of this result gives

C(0,1) = hy(0,1) = 7 ¢,(0,1) - Tog(l + hy(0,1))

the HNC approximation of (9.12).
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IONIC SYSTEMS

In this section we discuss how to adapt the graphical theory
developed in the previous sections to handle systems with ionic interactions.
Certain divergences in the theory are removed by recourse to the overall
electrical neutrality of the system. We note that for dipolar systems the
divergences are not quite so severe, but their handling is very much mere

comp]icated[393

, since they appear in spite of the electrical neutrality
of the system and give rise to shape dependent effects. In this section
we use the method of Friedrrlan[m:F to derive the Debye-Huckel free energy of

a heutral jonic system.

We study a simple system of positive charges inversed in a
uniform neutralizing background. The second virial coefficient for this
potential then diverges and the upper bound R, {from equation (5.12))
on the radius of convergence of the fugacity expansion is then zero. It
is clearly necessary to do something, since power series in fugacity

or density do not have any meaning at any finite values of z or o .

We begin by examining G , the excess free energy density over

the ideal gas free energy density which may be written in the form

6=7] g (10.1)
n=2

The two particle potential is ¢(1,2) = qz/r(1,2) . If we examine

) R 2
-q-/
28, = R'l'"w J 42 (e /KT ygr

0
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by putting x = 4nq2/kT we find

R
o n :
n =\ Tim T-n
28, = n£1 l—nL [o (4qr)) "dr

R+

For n < 4 , these limits deverge a R » = , while they diverge for

n =3 near r =0 . The divergences at zero are artificial since the
original form containing the exponential does not diverge at r = 0

and further, there is usually a strongly repulsive core to handle it.

The divergence as R -+ » 1is real, however, and a similar divergence occurs

in all the coefficients If we consider a finite system and then

BM s
add up all the divergent parts, then take the infinite system limit, we
may expect a convergent result, in accord with physics. To carry out

this program, we introduce the k-bond:
k1,3) = 1/r(i,3) (10.2)
so that

A% o a1 o gyl
f(1s-]) o ng] ( by 4") . n! [)‘(1).])]

If we now compare the f-bond graphs for G with the resulting k-bond

graphs, we find
f-bond graphs k-bond graphs

—e I+
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N
-

ety

The divergences which worry us are at large r in the integrands. Thus

XN

the most divergent terms of the M-circle graphs are those with fewest
bonds. We add up the most divergent graphs for each M to get a first
approximation for the free energy. We note that the e—e graph gives zero
by the charge neutrality managed by the uniform neutralizing background.
The most divergent graphs are the M-BOND polygons. We have

o M &
Gy = 7 l:%)_ l%)— [dr-lz [drw... [dr-lnk(I,2)k(2,3)...k(n—1,n)k(n,])

m=2
(10.3)

where we have used the facts that the symmetry number of an M side polygon
is 2M and a factor M! in the numerator accounts for all the ways of

labelling the graphs. We define 'K.z = xp and let

plryansy) = [k(1,2)k(2,3)...k(n,n+1)dr]2...dr1n

and introduce

9(r) = ET(-’l@)“'lpn(r) : (10.4)
n:

From (10.3) and (10.4) we see that

1.4
6y = [mx Tin [k(r)-q(r)] . (10.5)
0 r >0



.

If we now take the Fourier transform of (10.4) we find

Ale) = Jq(r)e"f"fdr= El(—nz)”'1[1?(t):|"
n=

by using the convolution nature of p(r) . The Fourier transform of
k(r) 1s
k(t) = 1/¢2

so that

~ -2 5 2, N 1
t) = - X =
q(t) = K n;( /i2) 2

Thus

R I dt a(t)e Tt = oK amy (10.6)

q(r)
()

and equation (10.5) gives us
G = ¥ : (10.7)
D 12 ;

This result is proportional to 93/2 and hence non-analytic in p at

p =0 . It is the well known Debye-Huckel expression for the excess
free energy of a dilute electrolyte, with ‘K being the inverse Debye

length for the electrolyte.
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XI PERTURBATION THEORIES I: DEFINITIONS AND TECHNIQUES.

In the last two sections of these lectures we shall discuss the
graph theoretical approach to theomodynamic perturbation theories. These
theories are at present one of the main theoretical routes to the equilibrium
properties of real and complex model systems and, so are of considerable
importance in modern theories of denge fluids. In this section we introduce
a variety of concepts which may be used in perturbation theories and in the next

section we use them in an example.

The first thing we must examine is the interparticle potential
¢2(1,2). We consider systems of several species of particles. The only
important difference that this makes to the preceding theory is that an
integration of the form I d(i) must now be taken to include a summation
over particle species as well, the other modifications are all obvious.

We write the two particle potential between o and B8 in the form

¢u,B(]’2) = Ppagl1>2) * vu,B(]’z) (11.1)

where ¢Da8(1’2) is chosen so that the properties of a system with just

that potential are w€l1 known and Vo S(1,2) is small. Of course, it may
t]

not be possible to satisfy both these requirements at once, and usually we

are forced to make compromises over one or the other or both.

The potential determines the f(1,2) bond, and for these

potentials there are two ways of writing the f-bond. We have

fa’B(l.Z) = expl-¢_ ,(1,2)/kT] -1 .
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If we define

. §
b g(1:2) = - gr v, ,(1,2)

then we may write

102 = fpg g(12) + 11+ fp (1201 | or Ly 00,207

where

fon,a(1:2) = expl-4y (1,200 -1 .

Using equation (11.3) we may replace graphical expansions with simple
graphs with f bonds by composite graphs, between any two circles of
which we may have no or one fD-bunds and any number (including zero) of
y-bonds. If wa,s(l,z) is small we may expect that only graphs with a
small number of y-bonds contribute to the properties of the systems
discussed. This break up of the f-bond into a perturbation part (the
y-bonds) and a reference part (the fD—bcnds) appears to be particular
useful when the perturbation part 1is long-ranged. The most well known
treatments of such systems are those of Lebowitz, Stell and Baer[4]] and

of Andersen, Chandler and co-workers[42].

isthe hard sphere potential
potentia](,since we have good analytical approximations for its properties

[43]

An often used reference pair

via the Percus-Yevick approximation
[44,45]

and even better numerical data

via simulation techniques
An alternative way to split the f-bond might be to write

£ U2 wty, JliE) #F 0.2)

(11.2)

(11.3)

(11.4)

(11.5)
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with

Fop(152) = expl-¢p o (1,2)/KTT{exply ,(1,2)] - 11,
= fapt,0) - {;,‘pn,n.
This division of the f-bond will give graphs with no or one fD-bonds
and no or one F-bonds but never one fD—bond and one F-bond between any
pair of circles in the graph. It would appear appropriate for systems in

which the perturbation potential is repulsive and short-ranged, but

has not been used as frequently as has (11.3).

We might note that the perturbation theories we develop are based
on graphs with p-circles. However, there is very little understanding at
present of the convergence properties of these expansions. A basic problem
is that while the reference system may be in a one phase state, it is
entirely possible for the perturbed system to be in a two phase state.

The perturbation theory attempts to act at constant density, but this

may not reflect physical reality. A recent attempt to modify this
situation is that of Kumar and Penrose[46] who devised a constant fugacity
expansion. They managed to write down the most general terms in their
perturbation expansion, but have not yet been able to find any convergence

properties of the series.

We have now introduced the ideas of reference and perturbation
potentials, reference and perturbation bonds and composite graphs made
up of such bonds with black and white circles. In the context of such
composite graphs we introduce the idea of a REFERENCE ARTICULATION PAIR
OF CIRCLES. This is a pair of circles whose removal from a component of

a composite graph leaves the component in disconnected pieces, one of

(11.6)
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which pieces has only reference bonds, at least one black circle and

no white circles.

If we draw an fD bond as ... and a ¢ bond as then some

composite graphs might be

The pairs of circles marked with asterisks are reference articulation pairs.
The object of this definition is, of course, to exclude such pairs from the
graphs of a graphical expansion by replacing them with an hDa5(1,2)—bond,
whose structure is assumed known along with the rest of the properties of
the reference system. That this replacement is possible is a consequence
of the second replacement theorem of action 8. The new graphical

expansions will thus contain only hD-bonds and y-bonds and no reference

anticulation pairs of circles.

The final idea which we want to introduce is that of the
HYPERCIRCLE. It often occurs that we get parts of a graph being either

of the form

(i)  ———rrrp—— R (1]) ———— . (11.7)

We can add the two possibilities together as
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6%2 (11.8)

T."

°
where FD is a hypercircle and

Foagl1:2) = PPahp.a(1.2) + P 5, 8(1,2) . (11.9)

Integration over the circle coordinate (2) in the delta function will
reproduce graph (ii) in (11.7). It iswsually the Fourier transform of

F, which is of interest and the Fourier transform@ of a delta function

D
is particularly simple. The point of this new concept is to simplify

the structure of some of the graphs which are added up in perturbation
theories. The hypercircle in (11.9) has two circles on it. We point

out that Lebowitz, Stell and Baer[4tl introduced hypercircles with k-

circles on them, which were related to sums of products of hB,k’ hD,k—]""hDﬁ
and delta functions. This enabled them to sum larger pieces of graphs

than (11.9) will allow us to. However, since we at best know the two-
particle distribution functions for the reference system, we shall restrict

our attention to the simpler hypercircles of equation (11.9). We now go

on to discuss an example of a perturbation theory to show how the ideas

introduced in this section may be used.
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XII PERTURBATION THEORIES II : EXAMPLE

The perturbation theory of Andersen and Chand]er[47] is

developed for a hard sphere reference potential. That is, we can write

¢u8(1’2) = @ r(1,2) « RaB
vop(1:2l r(1,2) > R o (12.1)
and
¢Du,ﬁ(]’2) = o r(1,2) < RuB
0 r{1,2) » Rns (12.2)
so that
9,5(152) = %us“’z) + vl . (12.3)
We should notice that Vus(l’z) is undefined for r(1,2) < Raﬂ . The

perturbation theory takes advantage of this later, by assigning values
to Vu8(1’2) for r(1,2) < Rcze which improve the accuracy of the
approximation developed. From equations (12.2) and {(12.2) we find the

f-bond function for the full and reference potentials to be

fgl1h2) = el o (121 - 1= [ 1 r(12) <R

exp[-vaB(I,Z)/kT] = r(1,2)>ﬂuB
(12.4)
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and
fDaﬁ(]’2) = -1 r{1,2) < RaB
0 el B (12.5)
while
bygl1s2) = - E%-vuﬁ(1,z) . (12.6)

We may write the excess Helmholtz free energy in the form

=4 == 1~ | THE SUM OF ALL CONNECTED 1-IRREDUCIBLE SIMPLE

|l kT 121 ) GRAPHS WITH NO WHITE CIRCLES, TWO OR MORE
BLACK p,-CIRCLES AND f-BONDS

(12.7)

The two particle distribution functions have the expansion

pape[gzu8(1.2)—]] = papsh2a8(1,2) = | THE SUM OF ALL CONNECTED SIMPLE GRAPHS
WITH TWO WHITE p]-CIRCLES (ONE
SPECIES LABELLED 1, ONE g SPECIES
LABELLED 2) SOME OR NO BLACK pI-CIRCLE&
f-BONDS AND 1-IRREDUCIBLE.
(12.8)
We now make the perturbation expansion of f splitting it into a reference

part plus powers of the perturbation potential ¢ (see equation 11.3)

and then find

L§§7f= e ( THE SUM OF ALL MORE THAN SINGLY CONNECTED GRAPHS
WITH NO WHITE CIRCLES, 2 OR MORE BLACK pl-CIRCLES,
AT MOST ONE fD-BOND AND ANY NUMBER OF -BONDS

BETWEEN ANY PAIR OF CIRCLES,
(12.9)
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while

punﬁhzaB(],Z) =[ THE SUM OF ALL CONNECTED GRAPHS WITH TWO WHITE
py-CIRCLES, (ONE « SPECIES LABELLED 1, ONE
g8 SPECIES LABELLED 2) ANY NUMBER OF BLACK
p]-CIRCLES, AT MOST ONE fD—BOND AND ANY NUMBER
OF ¢~BONDS BETWEEN ANY PAIR OF CIRCLES.
12.10)
We are now able to develop our perturbation theory. If we consider
(12.9) we see that there is a class of graphs with no -BONDS. The sum

of this class of graphs is the excess Helmholtz free energy for the
reference system, d?% . The other graphs all have at least one ¢-bond.
If we replace this sum of graphs by a sum over graphs free of reference

articulation pairs of circles and having hD-bonds rather than fD

bonds, we get the same result. This can be seen by taking this new

sum and inserting expansion (6.5) with K = 2 for each h A1l the

D -
terms in the result occur in (12.9) and vice-versa, and by appeal to
the second replacement theorem of section 8, we see that we get the

terms counted correctly. Thus we have

L§§7’=L§&g’+ el THE SUM OF ALL MORE THAN SINGLY CONNECTED GRAPHS
la| WITH NO WHITE CIRCLES, TWO OR MORE BLACK p]-CIRCLES,
AT MOST ONE hD-BOND AND ANY NUMBER OF y-BONDS
CONNECTING ANY PAIR OF CIRCLES, AT LEAST ONE
y-BOND AND NO REFERENCE ARTICULATION PAIRS OF
CIRCLES. (12.11)

while

Daﬁahzusu W2 & pathDuB{] 12)
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+ THE SUM OF ALL CONNECTED GRAPHS WITH TWO WHITE p]—CIRCLES
(ONE SPECIES o LABELLED 1 AND ONE SPECIES g LABELLED
2) ANY NUMBER OF BLACK pl-CIRCLES. AT MOST ONE hD-BOND
AND ANY NUMBER OF y-BONDS CONNECTING ANY PAIR OF CIRCLES,
AT LEAST ONE y-BOND AND NO REFERENCE ARTICULATION PAIRS

OF CIRCLES.
(12.12)

We can now add up parts of the graphical series in (12.11) and
{12.12). First, we add up those graphs in {12.11) with but one w-bond.
Since, by {12.6) ¢y~ 0 as T+« , this sum is a good approximation
to the total at high temperature. We call the result the High
Temperature Approximation. In the rest of this section we represent a
y-bond by _  and an hD bond by ------- . There are only two

graphs in# with only one ¢-bond so that
InLSa/HTA = —e + @ (12.13)

Any decoration of these graphs with more circles and hD—bondn's in

fact just writing down a part of the hD-bond. That is, for example in

U » the two circles at either end of the y-bond form

a reference articulation pair. Hence since

IDeg (1,2) =1+ hDuB(1,2) . we have
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st = 3 T owrs Jdm fd(Z)gDms(l,z)wﬁau,z)
. ;— ol 3&”6 [d’fgnus(f) b, (1), (12.14)

The & voximation L}&fz L§¥%:+Ljaf;TA gives Lgﬁfzorrect to oft™!) .

To go further in adding up the perturbation graphs of equations
(12 ©.) and (12.12), we must introduce the idea of a hyper circle and a

“re rrmalized" potential. We define the RENORMALIZED POTENTIAL as

pupBDaB(].Z) = [ THE SUM OF ALL CHAINS OF ONE OR MORE y-BONDS
CONNECTING TWO WHITE p1-CIRCLES (ONE SPECIES
o LABELLED 1, ONE SPECIES g LABELLED 2)
TOGETHER WITH THE RESULTS OF ALL POSSIBLE WAYS
OF INSERTING SEPARATE hD-BONDS AT THE END OR

IN THE MIDDLE OF THE CHAIN.
(12.15)

We note that for the potentials being discussed Due(l,z) is a function

oriy of the distance r(1,2) . Also, we can write

0afalua(r) = e 04 E Das(n)(T) (12.16)
n=1
where DaB("){r) is the sum of all the chains in (12.15) with exactly
n y-bonds. Since we are using this jdea to add up parts of the
graphs in (12.11) and (12.13) we do not allow the chains to have any
reference articulation pairs of circles. This means that the graphs
do not have any hD-bonds laid end to end. We call these objects

"“generalized chains".
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Thus we have

(”(r)= o—=C + O---0—0

pc:pBDaB | 2 | 2
+ O---0—8---0
! 2
while
(
Pl (1) QW } B —e—o,

+ o880+ O e e
t

O 0—0--—0 ¢ O---—0—@---O
| .

kS

+O—-0----0—.~--oz + ?""H"H"'oz
1

These chains are to be added by the use of the hypercircle

FDQS(]’Z) = pméuﬂé(l’z) + pc»thDaB(]’z)

]

* i -0 =.@.,

(12.17)

Fy depends only on the difference between its two arguments for the

potentials we are considering. MWe now have
I -
Pl (1) ] A
o) oe—e—P
PePalag (1) ‘ 2

Note that the symmetry

number of all the graphs in (12.15) are

1

(12.18)

and

that for the purposes of calculating symmetry numbers, a hypercircle is

to be treated as an ordinary circle. We can write papSDQB{")(r) as a
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chain of (n+1) hypercircles separated by n w-bonds. We then define

Voalk) = Jdr exp(-ik » rly .(r)

FDas(B) = jdr exp(-ik - [)FDus(r)
so that we have

(n) - 1 'i|»_<. -7 - ne
Al = {dk e {[FD(E)ME)] FD(K)}QB
(12.19)

To aid our summing the series (12.16) we define

pk) = ?D(Ig)w(ls) {12.20)

(where ﬁD , ¢ are square matrices of order the number of particle

species in the system) so that we can sum (12.16) using (12.19) to obtain

1

papBDaB(r) = fgﬁ§§

Jdk e lron-r a1 My}

Another useful guantity which is related to the renormalized

potential is given by

pmpswu8(1,2) = ( THE SUM OF GRAPHS WITH TWO WHITE p1-CIRCLES,
(ONE SPECIES o« LABELLED 1, ONE SPECIES &8
LABELLED 2) WHICH ARE CONNECTED BY TWO OR MORE
GENERALIZED CHAINS AND WHICH MAY OR MAY NOT
HAVE AN hD—BOND BETWEEN THE WHITE CIRCLES.
(12.22)

= [1 +hp(1,2)]

X ( THE SUM OF DIAGRAMS WITH TWO WHITE p]-CIRCLES
(ONE SPECIES o LABELLED 1, ONE SPECIES g
LABELLED 2) WHICH ARE CONNECTED BY TWO OR MORE
GENERALIZED CHAINS.
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If we write a generalized chain as amwws  and retain -------
for hD then

‘VB(],Z)= |mz + f%z * @7_

The symmetry number for these graphs is (2.28) n. so that the series
are just exponential series in DuB without the first two terms.
Thus

Wa8(1,2) = []+hDas(1’2)] { exp[Du5(1,2)]—1—DuB(1,2) } (12.23)
We are now able to add up two more classes of perturbation diagrams:
the RING diagrams, and the Bz—c1ass. We consider the diagrams in the

series for eﬂt which are generalized rings of y-bonds connected by FD

hypercircles. The first few of these are

5‘?"” f3) (4}

We define

Iﬁ\‘ﬁinms= %=2%“) . (12.24)

Since the generalized rings are in fact polygons, their symmetry number

is 2n so that

a

+

+

Zg =2n Il L PoPp [drﬂus("'”(r)wm(r) (12.25)
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since a generalized ring is a generalized chain whose ends have been joined
by a y-bond. From (12.19) and (12.20) we then have, by viewing (12.25)

as a Fourier transform at zero wave vector,

(n) _ 1 | n
= Q] |dk Tr [P(k)] (12.26)
K 2n(2R)3 | jo :
which on substitution into (12.24) gives
1
- (Y. dk { Tr P(k) + Tog det[1-P(k)] } (12.27)
RING 2(2!)3 J {
where we have used log{1-x) = - J x"/n to sum (12.24), and then
n=

Tr logA = log det A , a matrix identity. The Be-class of diagrams is

By = w +{§5} +w:f@ +@ e

= 1 2
- 2 gspupB Jd‘f hpaglr) - 3 [Dyg(r)]

2
1 = n

3 Lews Idr ) I dr D0,5(0))

= 3 Lo, [dr v () - L0 (r)12 (12.28)
2 og @ B |~ “aB 2 ap *

We note that m , a natural member of this class, has already been
included as part of m in Jz{RING. The remaining graphs in JQ/
may have further replacements made in them, making use of the replacement
theorem of section 8. In the resulting graphs we may have between each
pair of circles an hD—bond, a D-bond or a ¥-bond, and at most one of
each type. Note that a ¥-bond may not occur with an hD - or D-bond,

that «---@an~ and waa@ue~  are part of the D-bond sum and will
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not occur and that there may be no reference articulation pairs of circles.

The result is

RAE AN AN

e [ SUM OF ALL MORE THAN SINGLY CONNECTED GRAPHS WITH

155 NO WHITE CIRCLES, THREE OR MORE BLACK ol—CIRCLES
hDh’ D- AND y-BONDS, NO MORE THAN ONE BOND OF ANY
TYPE BETWEEN TWO CIRCLES, NO y-BOND BETWEEN ANY TWO
* CIRCLES CONNECTED BY ANOTHER BOND, NO BLACK CIRCLES
WITH ONLY A D-BOND AND AN hD—BOND ATTACHED TO IT,
NO REFERENCE ARTICULATION PAIRS OF CIRCLES AND AT
LEAST TWO ¥-BONDS OR TWO D-BONDS OR ONE ¥ - AND ONE
D~BOND.

\ (12.29)

A similar reduction and partial summation of the graphical
expansion of hzaB(l,Z) is possible, using the same bonds. The reduction
works in the same way and so will not be given here. The result is

Paaaal152) = oo, d g (1,2) + 0 (1,2) + my (1,20 ,(1,2) + v, (1,2)}

+  THE SUM OF ALL CONNECTED GRAPHS WITH TWO WHITE p1—CIRCLES
(ONE SPECIES o LABELLED 1, ONE SPECIES 8 LABELLED 2)
AT LEAST ONE BLACK 91-CIRELE hn-, D- AND ¥-BONDS, NO
ARTICULATION CIRCLES AND NDLART CULATION PAIRS OF CIRCLES
THE SAME RESTRICTIONS ON THE NUMBERS OF BONDS CONNECTING
ANY PAIR OF CIRCLES OR ATTACHED TO ANY ONE BLACK CIRCLE
AS IN (72.28) AND AT LEAST ONE D- OR ¥-BOND.

(12.30)

The power of the replacement theorems is seen in these last two results,

where the number of graphs has been greatly reduced.
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The great virtue of the Andersen and Chandler theory is that

(as one can see from (12.14) and (12.27)) the quantity
UQ/D + % J&/RING (12.31)

depends on the value of the perturbation potential vas(r) inside the

hard sphere. Since this function is arbitrary, we can minimize

S+

HTa ¥ RING + Bp)

or

L§¥7i (LJH%?+-L§¥7'

WA ¥ ping!

with respect to vaB(r) inside the hard core. Thus we may optimize

the accuracy of the approximation (12.31) to L§f7i The expansion (12.29)
is closely related to that of Stell and Lebowitz[qej for coulombic

fluids and are generalizations of the cluster expansions of Friedman[4gJ
where the perturbation is coulombic for all r . However, the present

expansion is superior to these approaches because of the optimization

of accuracy possible.

From the functional differentiation result (3.6) and the

definitions of RING and Dms(r) , we have

GIQI#RING/ 5('V0_5(r)/kT} = %DGPBDuB( ) . (12.32)

Andersen and Chandler propose choosing vus(r) for r <Rna so that

Das(r) =0 r o< RGB (12.33)
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It is fairly easy to show from (12.27) thatLﬁfigNG is a positive definite

functional of VuB(r) for 0 <r <R, Thus it is possible to find a

g
value of vus(r) on 0 <r <Ry, for which (12.33) is satisfied. They
also give arguments to show that (12.33) does indeed enhance the accuracy
of the approximation (12.31) considerably. They show the connection between

this theory and the mean spherical model is given by

gzuB(MSM)(P) s gDuB(PY)(r) + 0, (PY) (1 (12.34)

(PY)

where gDO‘B is the two particle correlation function for hard spheres

(PY)

in the Percus-Yevick approximation and DaB is Das calculated using

PY) . . .
gDuB( ) instead of 904 ° and using the perturbation that makes

D B(P”(r) = 0 —— (12.35)

o aB

In a later paper[soj Andarsen, Chandler and Weeks show that their
optimization procedure gives good agreement for jonic systems with

computer approximations.

In this section we have shown how the perturbation ideas introduced
in the last section and the graph theory developed earlier is used to
develop a perturbation theory. We hope the exercise will be instructive

to some of our peaders.
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