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POLYA'S METHOD FOR THE ENUMERATION OF ISOMERS.

Oskar E. Polansky

Institut fiir Strahlenchemie im Max-Planck-Institut fiir
Kohlenforschung, 433 Miilheim (Ruhr), BRD

The aim of this lecture is to illustrate the practical uses
of G. Polya's method for the enumeration of isomers as described
generally by Prof. Kerber in the previous lecture. The enumeration

of the number of isomer alkylderivatives X presented by

CnH2n+‘I
Polya, Acta Mathematica 68, 145-254 (1937), is chosen as a demon-

strative example.

1. Introduction

Polya's enumeration method is characterized by the systematic
y y

derivation of enumeration series such as

8 (x) =E 5, @ (1)

In applying this series to a particular class of compounds, the

natural number n characterizes all the isomers corresponding
to the same melecular weight and the coefficient Sn represents
the number of these isomers: in the above example n is the
number of carbon atoms in the alkyl group. In more complicated
cases n may represent the samllest set of natural numbers

defining the brutto formula of the compounds considered. Sn is



- 12 -

then replaced by a function of the members of that set. The
variables in enumeration series like (1) correspond to figures
of a given set; e.g. x may represent carbon atoms, y those
carbon atoms which are substituted asymmetrically, etc.

The cycle index (Zyklenzeiger) of the corresponding group

plays an important role in the derivation of the enumeration
series. The meaning of the cycle index is illustrated in the
following example:

How many different distributions of differently coloured

spheres over the 6 points of an octahedron exist if the

octahedron is

(A) rotating freely or

(B) fixed in space?

(A) will be calculated first. The rotations of the octahedron

form the group

0= {E, 6C4, 3Cé, Gcé, 8C3} (2)

The axes of these rotations and the labels of the points of the

octahedron are shown in Fig. 1. Each rotation of the octahedron

Fig.1  Labelling of the points of an octahedron and axes of rotation.
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maps its points {1, 2, 3, 4, 5, 6} onto itself; therefore, each
rotation corresponds to a particular permutation of these 6
points. The rotations about the axis shown in Fig. 1 correspond

to the following permutations

& (1. 2, 3, 4, 5, 6) - (1)(2)(3)(4)(5)(6)
~ My, 25 3, 4, 5,6 1/(2/13/14/(s])\e
1, 2, 3, 4, 5, 6) _ (1){2, 3, 4, 5\(6
Gt @ (1: B Ay B 3 6) = (1)(3: 4, s, 2)(6)
& (1, 2, 3, 4, 5, 6) _ (1)(2, 4)(3, 5)(6) y
2~ A1, 4,5,2, 3,6/ % {1/la, 2/l5, 3/is (3)
i (1, 2 3, 4y 5y 6) _ (1, 6)(2, 5 (3, 4)
2"~ \s, 5, 4, 3, 2, 1 6, 1/\5, 2/\4a, 3
e (1, 2, 3y 4y 5, 6) _ (1, 24 5)(3, 4, 6
3 ™ (2% 85 Dy 65 N S - \2e B I N6 3

Similar rotations also follow for rotations about the axes not
shown in Fig. 1.

Each permutation may be partitioned into several cycles
of order v, where VvV gives the number of the points inter-
changed by the cycle considered. The permutation corresponding
to E 1is partitioned into 6 cycles of order 1; the permutation
corresponding to C, into 2 cycles of order 1 and 2 cycles of
order 2; and so on. Obviously, all the permutations correspond-
ing to rotations of the same kind are partitioned in the same
way.

For each cycle of the order v a function
£ = E x;= &Yy (4)

may be correlated wherein the xj's represent the particular
figures of the given set. So the symmetry elements (3) of the

group Q correspond to the following functions:
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2

6. - L - B2 22 ~ g3, .
E f1, C £o0£ c f1 f2, (8 fz, C3 f3 (5)

1
2 2
The cycle index Z(G) of a group G combines these functions
(5), corresponding to G symmetry elements (2), with the orders

of the group and the classes of the group. Following this

procedure the cycle index 2(Q) of the group Q results

z(9)=2—14-[ff+6f2'f +3f§'€+6fg+8t§] (6)

1 74
If spheres in 3 different colours are available, the set of
the figures may be denoted by {x, y, z}. The answer to (A) is

obtained by introducing the functions (4)

£, =(x ) = 2 yU B
into the cycle index (6). Simple straightforward calculation

results in the enumeration series RI(x, y, 2z)

R(x,y,2) = <x6> + <x5y >+ 2<x4y2)+ 2(x4yz)+

{7)
+ 260y 4 33y 2) + 6Pyle?)y

The coefficient of (xaybzc) in (7) is the number of different
distributions of a spheres of the first colour over the 6
points of the freely rotating octahedron.

If the octahedron is fixed in space each point can only be
mapped onto itself. The corresponding group contains only one
element, the identity. Therefore, the cycle index is given by

6

fi' In answering question (B) an analogous procedure leads to the

enumeration series Q(x,y,z)

Q(x,y,2) = (x +y + 2)6 =

(x% + 6(x7y) + 152+ 30¢xtyz ) + (8)

+ 20(x3y3)+ 6O(x3y22} + 90(x2y222
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for the different distributions of spheres in 3 different colours

over the 6 points of an octahedron fixed in space.

2. Free Trees and Rooted Trees

Since the alkanes are acyclic compounds their CH-graphs and
their C-graphs correspond to free trees. 1In the CH-graphs of
alkanes each carbon atom is represented by a vertice of degree 4
and each hydrogen atom by a vertice of degree 1. Therefore, the
CH-graphs of alkanes contain only two sorts of vertices: those
of degree 1 corresponding to H and those of degree 4 correspond-
ing to C. In the C-graphs only the carbon atoms are represented
by vertices which may have degree 1, 2, 3, or 4, respectively.

The CH-graph and the C-graph of iso-pentane are illustrated in

3T L.

CH-graph C-graph

Fig. 2

Fig. 2 CH-graph (a) and C-graph (b) of isopentane, CSHIZ’ (free trees).

The alkylderivatives result from the alkanes when one
hydrogen atom is substituted by the atom or the group X. In
the CH-graphs and the C-graphs this hydrogen atom is marked by

the root point (Wurzelpunkt) W indicated by a full triangle (w).
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Fig. 3. shows the CH-graph and the C-graph of the optically
active iso-amyl group. It should be noted that the root point

is not a vertex of the graph. Also, that edge connecting the
root point to a vertex of the graph, does not belong to the graph;
this edge is usually called trunk (Stamm) and the vertex at which

it ends, the main vertex (Hauptknotenpunkt). A tree connected to

a root point is called a rooted tree (Setzbaum).

CH-graph C-graph
Fig. 3
The rooted graphs of the optically active isoamyl group: (a) CH=-graph; (b) C-graph.

At any of its vertices each tree or rooted tree may be

partitioned into as many rooted trees (branches (Xste)) as the

degree of vertex indicates. If the partitioning occurs at the
main vertex of a rooted tree the resulting branches are called

main branches (Hauptdste). If, in a particular vertex, all the

branches or main branches are different, the vertex is an

asymmetric vertex. Fig. 4 illustrates the partitioning of the

rooted tree at the main vertex (C-graph; Fig. 3) and a partition-

ing of the free tree (CH-graph; Fig. 2).
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Partition of a (a) free tree (b) rooted tree.

b)

Fig. 4

3. Edge Wreaths and Their Groups. Congruency.

The edge wreath (Kantenkranz) consists of a vertex and all

the edges incident to that vertex. The vertex of the edge

wreath is the center (Zentrum). Since an edge wreath contains

edges which are incident to only a single vertex, it is neither a
graph nor a subgraph.
Fig. 5 shows an edge wreath around the center P containing

k edges which are labelled by the numbers
=T Z¢p By « » w3 K1y Kk

Fig. 5 also shows an image of that edge wreath which is around
the center P'. When the edge wreath P 1is mapped onto its

image P' a permutation of the edges is induced

T 2w g s«waesams oz =T g1
(9)

S Agw Sym v @ 5 @ 5 w0 Gpoge Ly

wherein the ij's are the images of the edges 7j. All the

permutations corresponding to such mappings form the group of the



edge wreath.
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2 3 in [

Fig. 5 Mapping of an edge wreath.
Congruency: Polya defines two graphs, G and G' congruent

if and only if a bijective mapping from G onto G' and from G'
cnto G  exists which has the following properties:
(1) each vertex is mapped onto a vertex of the same kind;
(2) each edge is mapped onto an edge;
(3) the edge relation is preserved; and
(4) the permutation of the edge labels in each edge wreath which
is induced by the mapping belongs to the concerned group.
It can be seen that congruency is a stronger concept than
isomorphism.
The group of the edge wreath to which condition (4) refers is

determined by the particular interpretation of the graph. There

are three types of interpretations:
(1) The graph reflects the pure topology of the edge relation.
This means that all edges of an edge wreath are equivalent

to each other. Therefore, each edge may be mapped onto each
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edge of the corresponding edge wreath. Consequently, all
the k! permutations of the k edges of an edge wreath
correspond to a possible mapping and, therefore, the group
of the edge wreath is the symmetric group S -
The graph reflects the relationships between the elements

(vertices or atoms) of a three dimensional object (molecule).

Only those mappings which preserve the relative geometry of
the object are possible. 1In this case a subset of the
permutations forms the group of the edge wreath which

consequently must be a subgroup of S The case where 4

k*
edges (k = 4) peint from the center to the corners of a
tetrahedron is of special interest. Two different types of

labelling, distinguished as right-handed and left-handed

tetrahedron are possible (Fig. 6). It is obvious that a
single transposition (interchange of the labels of two points)
leads from the right- to the left-handed tetrahedron and vice
versa. Consequently, only an even number of transpositions

preserves the relative geometry of the right- or left-handed

handed tetrahedron

Fig. 6
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tetrahedron. Furthermore, only these even permutations form
the desired subgroup of 84, the alternating group A4.

It is important to note that if two or more of the
figures interchanged by the permutations of an alternating
group Ak are equal, the positions of these equivalent
figures may or may not be interchanged without altering the
configuration. This means that if at least two of the figures
permuted are equivalent, the permutations leading from one to
the other configurations in Ak may always be made even.

If all the figures of the configurations are different,
two transitivity systems result in Ak: those of the odd
and the even permutations. However, if all the figures are
not different, only a single transition system occurs in Ak.
The combinations consisting of different figures are counted
once in the cycle index of Sy and twice in the cycle index
of Ak‘ Therefore, the enumeration for these combinations
is given by the cycle index of (Ak - Sk). On the other hand,
the enumeration for combinations of figures not entirely
different, counted once in both Sk and A
cycle index 8y - [Ak-Sk) = (2 Sk-Ak).

K" is given by the
(3) The graph reflects the relationships in a planar object.
Taking the congruency conditions into account only a
mapping which induces a cyclic permutation in the k edges
of the edge wreath is possible. The group formed by these
permutations is the cyclic group Zk'

In mapping a rooted tree the root point has to be mapped

onto a root point and the trunk onto a trunk. Consequently, in

mapping the edge wreath of the main vertex of a rooted tree from

all the above permutations only those permutations which preserve
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the label of the trunk are allowed. Exactly (k-1)! permutations
from the k! permutations of Sy obey that restriction and form
the symmetric group Sk—1' Of the 12 permutations of A, 3
permutations forming A3 = Z3 preserve the label of the trunk.
From the k permutations of Zk' however, only the identical

permutation obeys the restriction forming the identic group

For k=4 the following is obtained:

k=-1°
Interpretation i Three
of the graph: Topological Dimensional Planar
Ordinary vertex S4 A4 Z4
Main vertex S3 A3 = z3 E3

Since the configuration of carbon atoms in alkylderivatives
is non-planar, only the topological (54) and the three dimen-
sional (A4) interpretations of their graphs are meaningful.

The cycles indices of these groups are

3
Z(S,) [f1 + 3 E, + 2f3]

[f? " 2f2]

The cycle indices for combinations with and without repetitions

(10)

]

wl= o=

Z(A5)

are:

|
Hh
Hh

2.2(33) - z(A3] = £,f,
1)

Z2(Aq) - Z(Sy)
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4. Enumeration Series

Three enumeration series are considered

s(x) = EE: Sxxn
s(x) = E R_x" (12)
q(x) = E o x"

All of the three series count the numbers of different rooted
trees with n vertices of degree 4 of which o are asymmetric.
s(x), the first series, counts the different rooted trees if the

graph is interpreted three-dimensiocnally; the group of the edge

wreath of the main vertex is A3. r(x), the second series,
counts the same rooted trees as s(x), but the graph is interpre-
ted topologically; the group of the edge wreath is S3. q(x),
the third series, counts only those different rooted trees which

\ave no asymmetric vertices if the graph is interpreted topologi-

cally; no group can be defined for the edge wreath.
Since the chemical graphs of alkylderivatives are rooted
trees, the coefficients in the series (12) count the number of

different Cn“2n+1x=

S, o+ v - all sterically different CnH2n+TX'S (group A3)= each

member of a pair of antipodes is counted once for itself;

R . . . all topologically different CnH2n+1X's (group 83):
stereoisomer alkylderivatives are counted only as pairs
of antipodes;

Q2. . . . all those CnH X's which do not cccur in pairs of

2n+1
antipodes (no particular group).
q(x) enumerates a subset of that set which is enumerated by

r{x): therefore, Q 5 R - Since the concerned group of the
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edge wreath used in establishing s(x) 1is a subgroup of that
group used in establishing r(x), it is less transitive and

therefore, Rnisn. It follows that

<
s Rn Sn (13)

Q

In order to evaluate the enuneration series (12), a rooted
CH-tree with n vertices of degree 4 is considered. The main
vertex is K. As shown in Fig. 7, two cases are distinguished:

(1) The main vertex K has degree 1 (Fig. 7a):

This is only possible if n=0. No main branches exist.
Only the single rooted tree shown in Fig. 7a meets these
requirements. Since this rooted tree is counted in each of
the series (12),

Qp = Ry = 55 =1 (14)

(2) The main vertex K has degree 4 (Fig. 7b):

There are three main branches which together contain (n-1)
vertices of degree 4. The group of the edge wreath of K

is either S3 or A3.

a) b)

Fig. 7  Edge wreaths, the main vertex has (a) degree 1; (b) degree 4 .
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Two rooted trees with n vertices of degree 4 partitioned
at the main vertex are congruent to each other only if the
configurations of their 3 main branches are equivalent in respect
to the group concerned. The following theorem (Polya, loc. cit.):
is formulated:

The number of the incongruent rooted trees with n

vertices of degree 4 is equal to the number of the

inequivalent configurations of three rooted trees

(respecting the group concerned) which together

contain (n-1) vertices of degree 4.

The number of the inequivalent configurations is given by

the cycle index (10) of the group concerned in which the functions
f? have to be replaced by s(xa)b or r(xa)b. Both of these
cycle indices correspond only to the (n-1) vertices of the 3
main branches. In order to establish a correspondence between
chese cycle indices and the whole rooted tree which contains an
additicnal vertex (the main vertex K), the cycle indices must be

multiplied by x. Use of eq. (14) leads to:

]
-
+

s (x)

WX

s + 25 = Jn 5 %"
0

r(x) =1 +% @) + 3r00rx?) + 20(x)) (15)

o X

As shown in the appendix, eq. (15) leads to recursion formulas

such as
5 -5 -8
Seer = $Be/3* 2 L) ). T (16)
£+1 3°t/3 (1+6 _+§ J1{1+6 -6 )!
0Sulviw Y= 0w T
t=u+v+w

It should be noted that the summation indices, u, v, w=t-u-v,
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reflect the different possibilities for the distribution of the
t=(n-1) vertices over the 3 main branches of the rooted tree.
In this way the series s(x) and r(x) can be explicitely

written as

3 4

1T+ x + x2 + 2x” + 5x ]

+ 11x” + . . .

s (x)

(17)
r(x) =1+ x + x2 + 2x3 + 4x4 + axs R,

For n=4 there is 1 pair of antipodes; for n=5 there are 3 pairs
of antipodes. Since the members of a pair of antipodes are
sterically different but topologically identical, each member of
the pair is counted once in s(x); but only the pair is counted
in r(x). Therefore, the number of pairs of antipodes is given
by

(S = R) (18)

n n

5. The Enumeration Series g(x)

The derivation of the enumeration series gq(x) is somewhat
more complicated. The coefficients Q, count exactly those
isomers ¢ H, . .X which do not contain an asymmetric vertex of
degree 4. It is necessary to distinguish between symmetric and
asymmetric vertices. The variable x represents all vertices
of degree 4. A further variable y 1is necessary for those
vertices of degree 4 which are asymmetric.

If Rn; denotes the number of rooted CH-trees with n
vertices of degree 4 of which o are asymmetric, the Rn

represents the sum

n
Ry = RnO + Rn‘l * RnZ Fow v B %? Rna (19}

Series (19) contains Qn since by definition
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Qn & Rno (20)

If y represents the asymmetric vertice of degree 4, the
enumeration series Rn(y) counts the number of the rooted

CH-trees containing n vertices of degree 4 of which ¢ are

asymmetric:
n
R (y) = R_, + R + Ry + = jo R ¥" (21)
n no n1¥Y n2 L na¥
(0]

For y=1 the series (21) changes into R, but for y=0 series

(21) gives Qn:

Rn(1) R

n
(22)

R (0) = Q

n
The introduction of the variable y necessitates an expansion
of the original figure set {x} to {x,y}. Consequently, the

one variable series r(x) changes into the two variable series
[¢] n o n
- n: . n_ o
o (x,y) = E E[Rnay"} % E Enmx v (23)
0 o] 0O O

The two possible cases, n=0 and n<0, are considered
separately. For n=0 the following relationship corresponding

to (14) is obtained
R, = R = QO =1 (24)

However, for n>0, a somewhat more detailed discussion is
necessary. For the R, rooted trees considered here two
different situations may occur: the main vertex K may be
symmetric or asymmetric.

If the main vertex K is symmetric at least 2 of the 3
main branches are congruent. As discussed at the end of section 3,

for combinations with repetitions the cycle index is given by
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z(2s3 - A3) = £,£, (25)

Taking into account that the 3 main branches contain n-1
vertices of degree 4 of which ¢ are asymmetric, the contribu-

tions of these rooted trees are

x®(x,y) (x2,y%) (26)

Multiplication by x = x.yo

is necessary because the main vertex
K 1is not counted in (25) and is a symmetric vertex.
If the main vertex K 1is asymmetric the 3 main branches

are congruent to each other. In this case combinations without

repetitions are considered. The cycle index is given by

- 3 _
z(A3 - s3) = [f1 3f1f2 + 2f3] (27)

o=

Since the 3 main branches contain n-1 vertices of degree 4 of
which @-1 are asymmetric, the contributions of these rooted
trees are obtained by the multiplication of (27) by xy

Yl oe,y? - 3eypexd,y?) + 200,y | (28)
Summing up the different contributions to ¢(x,y), namely the
equations (24), (26) and (28),

= 2 =2

(x,y) = 1 + x0{x,y)0(x",y7) +
Xy 3 2.2 8 3
+ 3 (xy)7 - 3 (x,y)elxTyT) + 20 (x7,y7) (29)

By inserting y=1, egq. (29) becomes r(x); but by inserting y=0,

eqg. (19) changes into the series

1+ xq(x)q(xz) =
3

q(x)

1+ x + x2 + 2x° + 3x4 + 5x5 *+ % s ow (30)

Since a particular combination of the 3 main branches
containing asymmetric vertices is counted twice in Sn’ once in

R , and not at all in Q , the following relationship is obtained

n’
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Q, =R, - (85, - R)) =2R -8 (31)

With the enumeration series s(x) and r(x), eqg. (15), and

the series gq(x), eg. (30), all the enumeration series for

alkylderivatives are explicitely given.

6. Enumeration of Alkane Isomers

Analogous enumeration series are derived for the isomer
alkanes. The CH-graphs of alkanes are free trees which do not
contain a main vertex. The partition into branches, therefore,

takes place at the so-called centers of the free trees.

The centers are non-ordinary vertices of the free tree. The

ordinary vertices are defined as those vertices at which one

branch containing more than half of the vertices of the graph
grows. Fig. 8 illustrates that:
(1) a free tree consisting of n vertices has either 1 or 2
centers;
(2) if the free tree has only one center no branch with n/2 or
more vertices grows from it;
(3) if the free tree has two centers then
{3.1) these centers are neighbors
(3.2) the number of vertices n is even and
(3.3) from each center exactly one branch with n/2

vertices develops.
Fig. 8a shows the CH-graph of 2,3-Dimethyl-pentane, C7H16' as

a free tree with one center. Fig. 8b shows the CH-graph of

2-Methyl-pentane, C6H14' as a free tree with two centers.
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2 center 1 center
(CGHM) (C7H16)
Fig. 8 The centers of free trees.
APPENDIX

Derivation of Enumeration Series s(x)

As discussed in the text for the enumeration series s(x)

expression (15) is obtained

st =1 +2%[s0? + 2502 ] = Jo " (15)
(o]

It follows from definition (4) that s(x3) is expressed by
00
s = s xm (32)
o}

On the other hand s(x)3 is calculated as follows
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s(x)3

[s(x)]3 =
[F I o o]
E E E SuL,:"’S."“_xu+v+w

The indices u, v, w are independent of each other; they run

from O to =« . By ordering the terms into increasing powers

xt, t=u+v+w, the following results

sx)2=. . .=
=SOSOSO+
* (58,8 * 5548y * 5¢5gSp) x +
+ [(8,5080 * 808,50 *+ SoSgSy) + (51845 * 81805, + 558,5,)] x* +
+ [(535050 + 5,535, + 558S3) +
+(S,8,55 + S,8,5, + $,5,5, + 5,508, + 55,8, + 5,5,5,) +
+ 5,85, ] % +
*+ [(845050 + SoS4Sp * SpSpSq) *

+ (8.8,8, + S.8.8, +8.5.8. + 8§.5.85, + 8.5.8

+
3815p * 83855, 15380 * 555354 05153 *+ 518053

+

(525250 + 525052 & SOSZSZ) +

+ (8,8,5, + 8,5,5, + $,5,55) ] " RS
= 52 + 3825 .x + (m2s, + 35,50 %" +

+ (3828, + 68,8,8, + 81w *

+ (3825, + 65,5,5, + 35,55 + 3sZs,0xt 4+ L L L =
There are only three types of coefficients, Sg, SESC, Sdsesf
which appear 1, 3, or 6 times, respectively, in the coefficients

of xt, if t=3a ot t=2b+c or t=d+e+f. The numbers are precisely
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those numbers which correspond to different distributions of

3 objects over 3 distinct places: if the 3 objects are equivalent,
1 different distribution is possible; if 2 of the objects are
equivalent, 3 different distributions are possible; and if all

the objects are different, 6 different distributions exist.

Sa ¢ &% & % L= (30)/(3))
Sbsc . 3 = (31)/(2111) (34)
sdsesf ¢ wow 6= 30011118
For ufviw (34) can be generalized to
=1
(3!) - [(1+6uv + éuw)!(1+6vw = ﬁuw)ll (35)

Inserting (35) into (33)

(3t)s s 8
s(x)3 = E[ {zz E (1+6uvTSuw)'L;115:w_6uw)! }:I -

0lulviw
t=ut+viw

Introducing (32) and (36) into (15) the following expression is

obtained
S = E xt+1{ EZX zsuSvSw }
3 t/3 (148 v+ (6 w)!
u =V W
t~u+v+w

The comparison of the coefficients leads to eq. (16). Starting

with 8= 1 the S5 's are expanded consecutively.
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