ISSN 0340 - 6253

Closed–Form Formulas for Zhang–Zhang Polynomials of Hexagonal Graphene Flakes O(k, m, n) with k, m = 1-7 and Arbitrary n

Henryk A. Witek^{1,2}, Rafał Podeszwa³, and Johanna Langner¹

¹Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan

²Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan

³Institute of Chemistry, University of Silesia, Szkolna 9, 41-006 Katowice, Poland

hwitek@mail.nctu.edu.tw, rafal.podeszwa@us.edu.pl

(Received November 17, 2020)

Abstract

We report a closed-form formula for the ZZ polynomials of hexagonal graphene flakes O(k, m, n) with k, m = 1, 2, 3, ..., 7 and an arbitrary value of n. The discovered formula,

$$ZZ\left(O\left(k,\,m\,,n\right),x\right) = \sum_{i=0}^{k\cdot m} \sum_{j=0}^{\left\lfloor\frac{k\cdot m}{2}\right\rfloor-1} \sum_{l=0}^{(k-2)(m-2)} \sum_{h=0}^{l} c_{lj} \binom{l}{h} \binom{k\cdot m-2j-l}{i-2j-l} \binom{n+j+h}{i} \left(1+x\right)^{i},$$

where c_{lj} denotes structural parameters dependent on k and m but independent of n, is obtained by a combinatorial analysis of large families of isostructural hexagonal flakes. The presented results extend the available body of information on the ZZ polynomials of hexagonal graphene flakes O(k, m, n) by a factor of 10. The main reason for presenting these numerical results is to provide the chemical and mathematical communities with reference data necessary for deriving, understanding, and testing general ZZ polynomial formulas valid for a hexagonal flake O(k, m, n) with arbitrary values of the structural parameters k, m, and n.

1 Introduction

In 1996, Heping Zhang and Fuji Zhang introduced to chemical graph theory a combinatorial polynomial

$$ZZ(\boldsymbol{B}, x) = \sum_{k=0}^{Cl} c_k x^k, \qquad (1)$$

usually referred to in the recent literature as the Clar covering polynomial, Zhang-Zhang polynomial, or ZZ polynomial, which provides a generating function for the sequence $[c_0, c_1, \ldots, c_{Cl}]$, where c_k represents the number of Clar covers of order k for a given benzenoid \boldsymbol{B} and the number Cl, usually referred to as the Clar number of \boldsymbol{B} , denotes the maximal number of aromatic sextets that can be accommodated in B. (To keep this communication to a reasonable length, we refrain here from repeating all the formal definitions and refer the novice reader to the original papers of Zhang and Zhang [1-5] together with their two more recent reviews of the field [6, 7], an excellent pedagogical introduction to the topic of ZZ polynomials written by Gutman, Furtula, and Balaban [8], and our earlier papers on this topic [9–12].) Somewhat surprisingly, it soon turned out that the computation of the full sequence $[c_0, c_1, \ldots, c_{Cl}]$ of Clar cover numbers for a given benzenoid B—given naturally by the coefficients of the ZZ polynomial of B—is performed much more conveniently and robustly than the determination of a single of these numbers, owing to the inviting recursive properties of ZZ polynomials demonstrated in the original papers of Zhang and Zhang [1, 3, 4] and restated in slightly different verse by other authors [8, 9]. The theoretical development was soon augmented with practical considerations allowing to formulate fast and robust algorithms for computing ZZ polynomials [1, 8–10, 13] and resulting in freely available computer programs (initially ZZCalculator [9] and finally ZZDecomposer [11, 12, 14, 15]). With these automatized programs, a characterization and enumeration of Clar covers of an arbitrary pericondensed benzenoid [16] containing up to about 500 carbon atoms became a routine task. Even more importantly, ZZDecomposer allowed for determination and derivation of closed-form formulas for ZZ polynomials of whole isostructural families of benzenoids, allowing to extend the analogous heroic effort of determination of the number of Kekulé structures reported in the literature by Cyvin, Cyvin, Gutman, and their collaborators some three decades earlier. (For a detailed account, see [16] and numerous references therein including [17–28].) ZZDecomposer has been used in many applications [9–11, 29–39] to find closed-form formulas of ZZ polynomials for various families of basic catacondensed and pericondensed benzenoids, substantially extending the total body of previously available results [1–5, 8, 40–45]. The rapid development of Clar theory stimulated by these discoveries in recent years lead to many new interesting applications and connections to other branches of chemistry, graph theory, and combinatorics [13, 34, 35, 43–67].

Despite of many successful applications of ZZDecomposer to finding closed-form formulas of ZZ polynomials for basic benzenoid families, two important groups of benzenoid structures, hexagonal graphene flakes O(k, m, n) and oblate rectangles Or(m, n), persistently defy revealing their closed-form ZZ polynomial formulas. In a recent article [68], we have presented a compilation of all the known facts pertaining to the ZZ polynomials of these two families of structures, augmenting the existing body of information with a compact, determinantal formula for the ZZ polynomial of O(2, m, n) suggested by an extension of the John-Sachs theory of Kekulé structures. Here, we only briefly summarize the available facts for hexagonal graphene flakes O(k, m, n) again, before we present our new results, which double or triple the amount of so-far accumulated information on Clar cover enumeration of hexagonal graphene flakes. We would like to stress, sharply and clearly, that the ultimate goal of our research is discovering the Holy Grail of the Clar theory: a ZZ polynomial formula of a general hexagonal flake O(k, m, n) applicable for arbitrary values of the structural parameters k, m, and n. While, unfortunately, the presented here results do not attain this goal, they constitute an important step toward it. We hope that the presented here equations give additional insight into how such a general formula for ZZ (O(k, m, n), x) might look like and may suggest a path leading to its discovery. In addition, once such a formula is discovered, the presented here results give a set of testing examples against which the newly formulated theory should be critically evaluated.

Figure 1. Graphical definition of hexagonal graphene flakes O(k, m, n).

2 Review of available results on ZZ polynomials of O(k, m, n)

Hexagonal graphene flakes O(k, m, n) are defined graphically in Fig. 1. The structural parameters k, m, and n can take on any positive integer value starting from 1. Since the ZZ polynomial of O(k, m, n) is invariant under the group S_3 of permutations of the structural parameters (it should be obvious for the reader how to establish the bijection between the sets of Clar covers of these six structures using geometrical rotations and reflections), we consider in this section explicitly only the hexagonal graphene flakes O(k, m, n) for which $k \leq m \leq n$. In the case when k = 1, the hexagonal graphene flake O(1, m, n) reduces to a parallelogram M(m,n), for which the ZZ polynomial is long known [9, 30, 42]. Very limited amount of information is available for the ZZ polynomials of the remaining hexagonal graphene flakes O(k, m, n) with $k \ge 2$. For (k = 2, m = 2) and (k = 3, m = 3), the closed-form ZZ polynomial formulas were given originally by Eqs. (35) and (37) of [10], respectively. Formal demonstration of the validity of these formulas was presented in [11] (Eqs. (47)–(51) for (k = 2, m = 2) and Eqs. (66)–(71) for (k = 3, m = 3)), together with a derivation of a closed-form formula for the ZZ polynomial of O(k = 2, m = 3, n)(Eqs. (52)–(65)) [10, 11]. A slightly more organized way of displaying these results was employed in [36] (Eqs. (12a-c) for (k = 2, m = 2) and Eqs. (25a-c) for (k = 2, m = 3)) and in [37] (Eq. (13) for (k = 3, m = 3)). Finally, the ZZ polynomial of O(k = 2, m = 4, n)has been reported as Eq. (54) of [37]. All the known formulas obtained in this way can

be summarized concisely as

$$ZZ(O(1,m,n),x) = \sum_{i=0}^{\min(m,n)} \left[\binom{m}{i} \binom{n}{i} \right] (1+x)^{i}$$
(2)

$$ZZ(O(2, 2, n), x) = \sum_{i=0}^{4} \left[\binom{4}{i}\binom{n}{i} + \binom{4-2}{i-2}\binom{n+1}{i}\right](1+x)^{i}$$
(3)

$$ZZ(O(2,3,n),x) = \sum_{i=0}^{6} \left[\binom{6}{i}\binom{n}{i} + 3\binom{6-2}{i-2}\binom{n+1}{i} + \binom{6-4}{i-4}\binom{n+2}{i}\left[(1+x)^{i}\right] (4)\right]$$

$$ZZ(O(2, 4, n), x) = \sum_{i=0}^{8} \left[\binom{8}{i}\binom{n}{i} + 6\binom{8-2}{i-2}\binom{n+1}{i} + 6\binom{8-2}{i-2}\binom{n+3}{i}\right] (1, k-1)^{i}$$
(5)

$$ZZ(O(3, 3, n), x) = \sum_{i=0}^{9} \left[\binom{9}{i} \binom{n}{i} + (10\binom{9-2}{i-2} - \binom{9-3}{i-2}) \binom{n+1}{i} + (20\binom{9-4}{i-4} + \binom{9-6}{i-3} - \binom{9-6}{i-5}) \binom{n+2}{i} + (10\binom{9-6}{i-6} + \binom{9-7}{i-5} + \binom{9-7}{i} \binom{n+4}{i}] (1+x)^{i} \right]$$

Recently, motivated by the great successes of the John-Sachs theory [69–75] in finding determinantal formulas for the number of Kekulé structures of benzenoid hydrocarbons, [17, 21, 73, 76, 77] we performed [78] an *ad hoc* extension of this theory to the world of Clar covers, which resulted [68] in discovering a determinantal ZZ polynomial formula applicable to hexagonal graphene flakes O(2, m, n) with arbitrary values of the structural constants m and n

$$ZZ(O(2,m,n),x) = \begin{vmatrix} \sum_{i=0}^{\min(m,n)} \left[\binom{m}{i} \binom{n}{i} \right] (1+x)^{i} & \sum_{i=0}^{n-1} \left[\binom{m-1}{i} \binom{n+1}{i+2} \right] (1+x)^{i+1} \\ \sum_{i=0}^{m-1} \left[\binom{n-1}{i} \binom{m+1}{i+2} \right] (1+x)^{i+1} & \sum_{i=0}^{\min(m,n)} \left[\binom{m}{i} \binom{n}{i} \right] (1+x)^{i} \end{vmatrix}$$
(7)

In particular, Eq. (7) reproduces Eqs. (3) and (4) as special cases. The diagonal entries of the determinant (7) have the form of ZZ polynomials of the diagonal peak-valley paths, being a natural extension of the John-Sachs theory; the off-diagonal entries of the determinant have a rather surprising polynomial form, which at the moment cannot be connected in any respect to any natural extension of the John-Sachs theory and remains to be understood. It is important to emphasize that the determinantal formula for the ZZ polynomial of O(2, m, n) given by Eq. (7) was given without a proof, so it should be

-170-

treated as a conjecture until an extension of the John-Sachs theory to the world of Clar covers is formally formulated, fully studied, and properly understood, even though considerable numerical evidence accumulated using ZZDecomposer, together with the clear regularities and patterns observed in the process of deducing the result, leave no doubt for the validity of the obtained determinantal formula. The ZZ polynomial of O(2, m, n)can be also obtained by generalizing the sequence of Eqs. (3), (4), and (5) to the following form

$$ZZ(O(2,m,n),x) = \sum_{i=0}^{2m} \sum_{j=0}^{m-1} \frac{\binom{m-1}{j}\binom{m}{j}}{j+1} \binom{2m-2j}{i-2j}\binom{n+j}{i} (1+x)^{i},$$
(8)

where the sequences (1, 1), (1, 3, 1), and (1, 6, 6, 1) in Eqs. (3), (4), and (5) are identified as members of the sequence A001263 in OEIS [79] representing Narayana numbers $T(m, j + 1) = \frac{\binom{m-1}{j}\binom{m}{j}}{j+1}$ or consecutive rows of the Catalan triangle. The two equations (Eq. (7) and Eq. (8)) are consistent with each other.

3 New results

3.1 Road to the discovery

We explain in this subsection on the example of the hexagonal graphene flakes O(3, 5, n) how the formula given later by Eq. (26) has been discovered. In the first step, we have computed a collection of ZZ polynomials for the consecutive members of the O(3, 5, n) family of benzenoids for n = 1, ..., 23. These ZZ polynomials have a maximal order of Cl = 15 and can be expressed in the basis of $(1 + x)^i$ monomials in the following way

$$ZZ(O(3, 5, n), x) = \sum_{i=0}^{Cl} c_i (1+x)^i$$
(9)

with the coefficients c_i given in Table 1. For the first few structures O(3, 5, n), the highest coefficients vanish, as their Clar numbers are lower than 15; the corresponding zeros are not displayed in Table 1.

Our next task here is to understand what the dependence of the coefficients c_i on the flake width n and on the Clar cover order i is. A comparison of Eq. (9) with Eqs. (2)–(5), Eq. (8), and particularly Eq. (6) suggests that the dependence on n can be expressed via binomial coefficients $\binom{n+j}{i}$ with j assuming small integer values, and the dependence on i can be expressed by two binomial coefficients, $\binom{n+j}{i}$, mentioned already in the context of n, and $\binom{Cl-2j+s}{i-2j+t}$, with s and t assuming some small positive or negative integer values.

n	c_0	c_1	c_2	c_3	c_4	c_5	c_6	c7	c_8	c_9
1	1	15	30	10						
2	1	30	195	440	380	120	10			
3	1	45	495	2155	4360	4360	2141	505	49	1
4	1	60	930	6020	19365	33600	32487	17694	5336	858
5	1	75	1500	12900	57025	141603	206448	180752	95385	30005
6	1	90	2205	23660	133175	431018	842499	1022424	778965	371888
7	1	105	3045	39165	267855	1069383	2624405	4080285	4078275	2626805
8	1	120	4020	60280	485310	2305128	6811882	12926220	16014348	13014482
9	1	135	5130	87870	813990	4483578	15499704	34741608	51394002	50485116
10	1	150	6375	122800	1286550	8062956	31925256	82555704	142027050	163700790
11	1	165	7755	165935	1939850	13630386	60824533	178264713	349730865	462804111
12	1	180	9270	218140	2814955	21917896	108836585	356549050	785707780	1174098640
13	1	195	10920	280280	3957135	33818421	184956408	669806280	1638109187	2728327173
14	1	210	12705	353220	5415865	50401806	301036281	1194217232	3209828583	5896149194
15	1	225	14625	437825	7244825	72930809	472335549	2037062781	5968794195	11987687855
16	1	240	16680	534960	9501900	102877104	718118852	3345408792	10613260200	23136639644
17	1	255	18870	645490	12249180	141937284	1062302800	5316276720	18154823940	42693416480
18	1	270	21195	770280	15552960	192048864	1534151094	8208417360	30022124916	75756120324
19	1	285	23655	910195	19483740	255406284	2169018093	12355805241	48188409729	129872834517
20	1	300	26250	1066100	24116225	334476912	3009140827	18182971158	75326375520	215953753950
21	1	315	28980	1238860	29529325	432017047	4104479456	26222290336	114993932845	349437067837
22	1	330	31845	1429340	35806155	551087922	5513606175	37133343720	171854757305	551758254300
23	1	345	34845	1638405	43034035	695071707	7304642565	51724469885	251937727635	852178545185
n			c_{10}		c_{11}		c_{12}	c ₁₃	c ₁₄	c ₁₅
4			71		2					
5			5516		566		31	1		
6			109881		19532		1998	110	2	
7			1081287		278205		42962	3692	137	1
8			6896952		2338604		488891	58688	3365	56
9		3	2785104		13837382		3666349	570431	44632	1176
10		12	5974002		63710304	:	20487838	3930626	391038	14112
11		41	1945732		242987150		92000678	21024220	2541994	116424
12		118	6979079		800318870	3	48893376	92609796	13190926	731808
13		308	8572344	:	2343739892	11	56511733	349860479	57386920	3737448
14		738	9394727		6233536660	34	35186677	1166920138	216653781	16195608
15		1647	8155083	1	5298661599	93	13989581	3510958185	727915779	61408347
16		3461	2630728	3	5074477464	233	81039110	9686069920	2218219906	208416208
17		6905	6497776	7	5846722980	549	48397322	24816195502	6221692912	644195552
18		13174	2979476	15	5899844224	1219	70485616	59645600308	16248774080	1837984512
19		24164	5111440	30	6512029596	2575	61042384	135588246196	39882167892	4892876352
20		42807	5043759	57	9419616586	5204	67581020	293474329688	92699273888	12259074816
21		73518	3691044	105	7695607834	10114	10446839	608179695825	205321802768	29115302688
22		122798	7633653	187	1256849020	18979	06264980	1212351518350	435642916640	65937597264
23		200031	2898023	321	8538393585	34511	07444480	2333846757910	889376153085	143107211709

Table 1. Coefficients in Eq. (9) for the ZZ polynomial of hexagonal graphene flakesO(3,5,n) expressed in the basis of the $(1+x)^i$ monomials.

Since there exist many binomial identities and Eq. (6) can be expressed in many equivalent forms owing to these identities, in the first step we decided to assume that s = t = l, with l being some small positive or negative integer, and to test if the basis of binomial products $\binom{n+j}{i}\binom{Cl-2j-l}{i-2j-l}$ is sufficiently flexible to encode the n- and i-dependence of the coefficients c_i . It remained to be decided how large the basis actually needs to be by choosing a maximal value of j and minimal and maximal values of l. The form of the binomial basis functions suggests that $Cl - 2j - l \ge 0$. The actual maximal values of j and l needed to be found experimentally. We have discovered that the choice of $0 \le j \le 8$ and $-3 \le l \le 3$ is sufficient to express all the coefficients c_i in question as linear combinations of binomial products $\binom{n+j}{i}\binom{Cl-2j-l}{i-2j-l}$, and at the same time such a choice of j and l recovers all the linear combination coefficients d_{lj} uniquely. Owing to these observations, the ZZ polynomials of the hexagonal flakes O(3, 5, n) could be represented using the following formula

$$ZZ(O(3,5,n),x) = \sum_{i=0}^{Cl} \sum_{j=0}^{8} \sum_{l=-3}^{3} d_{lj} \binom{Cl-2j-l}{i} \binom{n+j}{i} (1+x)^{i}$$
(10)

with the table of the coefficients d_{lj} given by the following matrix

\mathcal{N}^{j}	0	1	2	3	4	5	6	7	8
-3	0	0	0	0	0	0	1	2	1
-2	0	0	0	0	10	49	65	23	0
-1	0	0	10	120	415	505	202	15	0
0	1	30	260	871	1215	676	117	0	0
1	0	10	120	415	505	202	15	0	0
2	0	0	10	49	65	23	0	0	0
3	0	0	0	1	2	1	0	0	0

Since this formula was discovered by an empirical analysis based on a finite and rather small (n = 1-23) family of ZZ polynomials, it was important to confirm that it could be used to recover also the ZZ polynomials for n > 23. To this end, we computed with ZZDecomposer the ZZ polynomials ZZ(O(3, 5, n), x) for n = 1, ..., 1000 and confirmed that all of these polynomials can be reproduced by Eq. (10) with coefficients d_{ij} given by Eq. (11). This agreement provides quite strong evidence for the correctness of the conjectured Eq. (10), but of course it cannot replace a formal proof of this fact, which remains to be found. Similar considerations performed for the family of hexagonal flakes O(3, 3, n) show that their ZZ polynomials can be represented by the following formula

$$ZZ(O(3,3,n),x) = \sum_{i=0}^{Cl} \sum_{j=0}^{4} \sum_{l=-1}^{1} d_{lj} \binom{Cl-2j-l}{i-2j-l} \binom{n+j}{i} (1+x)^{i}$$
(12)

with Cl = 9 and the table of the coefficients d_{lj} given by the following matrix

Note that Eqs. (12) and (13) provide yet another representation for the ZZ polynomials of the graphene flakes O(3,3,n) equivalent to Eq. (6). Similar considerations performed for the family of hexagonal flakes O(3,4,n) show that their ZZ polynomials can be represented by the following formula

$$ZZ(O(3, 4, n), x) = \sum_{i=0}^{Cl} \sum_{j=0}^{6} \sum_{l=-2}^{2} d_{lj} \binom{Cl-2j-l}{i} \binom{n+j}{i} (1+x)^{i}$$
(14)

with Cl = 12 and the table of the coefficients d_{lj} given by the following matrix

We have confirmed that Eqs. (12) and (13) reproduce the ZZ polynomials of hexagonal flakes O(3,3,n) and that Eqs. (14) and (15) reproduce the ZZ polynomials of hexagonal flakes O(3,4,n) computed in a brute-force manner using ZZDecomposer with n = 1, ..., 1000.

The matrices of the coefficients d_{lj} given by Eqs. (13), (15), and (11) have similar structures and are characterized by a high degree of internal symmetry. The non-zero entries in rows +l and -l are identical, but are located in different columns. This symmetry can be utilized to discover even more compact representations of Eqs. (12), (14), and (10) given by

$$ZZ(O(3,3,n),x) = \sum_{i=0}^{9} \sum_{j=0}^{3} \sum_{l=0}^{1} \sum_{h=0}^{l} c_{lj} {l \choose h} {9-2j-l \choose i-2j-l} {n+j+h \choose i} (1+x)^{i}$$
(16)

$$ZZ(O(3, 4, n), x) = \sum_{i=0}^{12} \sum_{j=0}^{5} \sum_{l=0}^{2} \sum_{h=0}^{l} c_{lj} \binom{l}{h} \binom{12-2j-l}{i-2j-l} \binom{n+j+h}{i} (1+x)^{i}$$
(17)

$$ZZ(O(3, 5, n), x) = \sum_{i=0}^{15} \sum_{j=0}^{5} \sum_{l=0}^{3} \sum_{h=0}^{l} c_{lj} \binom{l}{h} \binom{15-2j-l}{i-2j-l} \binom{n+j+h}{i} (1+x)^{i}$$
(18)

with the coefficients c_{lj} given by the following matrices

10 49

1

and

 $2 \mid 0$

3

Immediate generalization of these investigations to O(3, 6, n) and O(3, 7, n) yields readily the following matrices of the coefficients c_{lj}

65 23

2 1

			\mathcal{N}^{j}	0	1	2	3	4		5	6	7	8			
			0	1	45	625	3583	9355	1124	49 58	20	1045	29			
			1	0	20	400	2524	6418	688	82 28	58	322	0	for	$O\left(3,6,n ight)$	(22)
			2	0	0	50	468	1330	13'	79 4	73	25	0	101	$O\left(6,3,n ight)$	(22)
			3	0	0	0	20	86	10	04	34	0	0			
			4	0	0	0	0	1		2	1	0	0			
														and		
\aleph^{j}	0	1	2	3	3	4	Į	5	6	7		8	9			
0	1	63	1281	1137	54	49515	11013	9 124	1349	67182	1	14942	907			
1	0	35	1050	1054	5 4	46330	9681	9 96	6448	42478		6608	159		$O(3 \ 7 \ n)$	
2	0	0	175	268	5 1	13566	2862	7 26	5209	9477		934	0	for	O(7,3,n)	(23)
3	0	0	0	173	5	1374	337	7 3	3100	953		44	0		O(1, 0, n)	
4	0	0	0		0	35	13	7	154	47		0	0			
5	0	0	0	(0	0		1	2	1		0	0			

The isostructural form of Eqs. (16-18) allows us to conjecture that the ZZ polynomial of a general hexagonal graphene flake O(k, m, n) can be expressed as

$$ZZ(O(k, m, n), x) = \sum_{i=0}^{km} \sum_{j=0}^{lmax} \sum_{l=0}^{lmax} \sum_{h=0}^{l} c_{lj} \binom{l}{h} \binom{k \cdot m - 2j - l}{i} \binom{n + j + h}{i} (1 + x)^{i}$$
(24)

with the structural constants c_{lj} specified separately for each k and m (but being independent of n) and with the upper summation limits j_{max} and l_{max} given as a function of the parameters k and m. (Note that the values of j_{max} and l_{max} for O(3, 6, n) and O(3, 7, n) in Eq. (24) are implicitly defined through the vertical and horizontal dimensions of the tables of structural constants c_{lj} given in Eqs. (22) and (23).) To discover the actual functional dependence of j_{max} and l_{max} on the parameters k and m, we have computed explicitly ZZ polynomials of hexagonal graphene flakes with k, m = 2, ..., 7and n = 1, ..., 100 and used them to find the values of j_{max} and l_{max} matching Eq. (24). The results of this investigation

			$j_{ m m}$	ax							$l_{\rm ma}$	ax		
k^{m}	2	3	4	5	6	7		k^{m}	2	3	4	5	6	7
2	1	2	3	4	5	6		2	0	0	0	0	0	0
3	2	3	5	6	8	9		3	0	1	2	3	4	5
4	3	5	7	9	11	13	and	4	0	2	4	6	8	10
5	4	6	9	11	14	16		5	0	3	6	9	12	15
6	5	8	11	14	17	20		6	0	4	8	12	16	20
7	6	9	13	16	20	23		7	0	5	10	15	20	25

allow us to decipher the k- and m-dependence of j_{max} and l_{max} to be $j_{\text{max}} = \left\lfloor \frac{k \cdot m}{2} \right\rfloor - 1$ and $l_{\text{max}} = (k-2) (m-2)$.

3.2 Compilation of additional results

In the previous subsection we have conjectured that the ZZ polynomial of a hexagonal graphene flake O(k, m, n) with general values of indices $k, m \ge 2$ can be expressed using a single equation given by

$$ZZ(O(k, m, n), x) = \sum_{i=0}^{k \cdot m} \sum_{j=0}^{\lfloor \frac{k \cdot m}{2} \rfloor - 1} \sum_{l=0}^{(k-2)(m-2)} \sum_{h=0}^{l} c_{lj} \binom{l}{h} \binom{k \cdot m - 2j - l}{i} \binom{n+j+h}{i} (1+x)^{i}$$
(26)

with some appropriately selected coefficients c_{lj} , depending parametrically on k and mbut not on n. In this section, we proceed to test this hypothesis by determination of structural constants c_{lj} which satisfy Eq. (26) for various values of the indices k, m, and n. This task is achieved by taking a large collection of ZZ polynomials of hexagonal graphene flakes O(k, m, n) with indices $2 \le k, m \le 7$ and $1 \le n \le 100$ and solving an overdetermined system of linear equations for the coefficients c_{lj} . In every case studied here, we have been able to reach the solution in the form of a unique set of structural constants c_{lj} satisfying these equations. Detailed tables of these constants corresponding to all choices of the indices $2 \le k, m \le 7$ are presented later in this section. Clearly, the solutions obtained by us are formally valid only for $n \le 100$. To further test their legitimacy and plausibility of correctness for a general value of n, we have computed a larger collection of ZZ polynomials for hexagonal graphene flakes O(k, m, n) with indices

 $2 \leq k, m \leq 7$ and n up to 1000. (The reader should be aware that the largest of these ZZ polynomials, ZZ (O(7, 7, 1000), x), is a real numerical monster, with the largest coefficient (corresponding to $x^{24})$ equal to 50 909 322 696 394 350 082 772 496 801 903 352 $514\ 969\ 943\ 953\ 390\ 091\ 610\ 237\ 817\ 825\ 177\ 029\ 987\ 781\ 807\ 068\ 252\ 953\ 119\ 773\ 192\ 428$ 410 207 708 792 804 942 850 $\approx 5 \cdot 10^{122}$ and that it takes a few days to compute these results with our new implementation of ZZCalculator.) The formula given by Eq. (26)—with the structural constants c_{lj} determined as described above and given in tables below—is able to reproduce all these ZZ polynomials with $n \leq 1000$. The fact that a single formula with a handful of coefficients c_{li} is capable of reproducing dozens of coefficients in thousands of ZZ polynomials strongly suggests that Eq. (26) is valid for an arbitrary value of n, but since we cannot offer a formal proof of this fact, it remains for the time being a conjecture until such a proof is furnished. Unfortunately, the structural constants c_{lj} do not display too many clear patterns in their evolution with k and m (for details, see the discussion in Section 4), and at the moment their only way of determination is finding them directly from ZZ polynomials. A promising path of evaluation of the structural constants c_{li} might be offered by the connection to the generalized strict order polynomial $E_P^{\circ}(n, 1+x)$ in poset theory [80], but research along this line is too preliminary at the moment to be reported here.

In Tables 2–11, we report the structural constants c_{lj} for Eq. (26) for $3 \le k, m \le 7$. Note that when one of these two indices is equal to 1, then Eq. (26) is not valid (due to the negative upper summation limit) and the ZZ polynomials of the O(1, m, n) and O(k, 1, n) families of hexagonal graphene flakes are given by Eq. (2) (or its equivalent with m replaced by k). Similarly, when one of these indices is equal to 2, then the ZZ polynomial O(2, m, n) (or O(k, 2, n)) is given by Eq. (8) (or its equivalent with mreplaced by k, respectively). This equation is structurally similar to Eq. (26) and we could possibly give the tables of structural constants c_{lj} also for these cases. However, for k = 2 (or m = 2), the structural constants can be actually expressed in a closed form related to Narayana numbers as described in Eq. (8) above. Structural constants c_{lj} for (k = 3, m = 3-7) and (k = 3-7, m = 3) are given by Eqs. (19–23). Therefore, the tabulation below reports only the structural constants c_{lj} for the remaining cases. We would be happy to present the results even for a larger collection of hexagonal graphene flakes O(k, m, n), but unfortunately, MATCH does not support supplementary materials

-177-	

		λ^{j}	0	1	2	3	4	5	6	7
		0	1	36	395	1732	3253	2524	671	28
Table 2. $O(4, 4, n)$	\Rightarrow	1	0	16	252	1192	2124	1392	248	0
10010 21 0 (1, 1, 10)	,	2	0	1	43	256	456	261	25	0
		3	0	0	2	22	42	22	0	0
		4	0	0	0	1	2	1	0	0

\mathcal{N}^{j}	0	1	2	3	4	5	6	7	8	9	10	11
0	1	90	2835	42106	330696	1444370	3557648	4863646	3505103	1191712	148567	2926
1	0	80	3900	68112	562134	2413114	5548332	6730646	4038766	1028034	73566	0
2	0	15	1750	40272	367650	1593298	3462420	3727373	1829197	325812	9321	0
3	0	0	300	11118	120770	546472	1138102	1085616	423740	46418	0	0
4	0	0	15	1510	21932	108131	218754	183945	54456	2637	0	0
5	0	0	0	86	2238	12934	25750	18892	3868	0	0	0
6	0	0	0	1	122	947	1878	1184	131	0	0	0
7	0	0	0	0	2	40	82	44	0	0	0	0
8	0	0	0	0	0	1	2	1	0	0	0	0

Table 3.	O(4,6,n) O(6,4,n)		\aleph^{j}	0	1	2	3	4	5	6	7	8	9
	0 (0, 1, 10)		0	1	60	1195	10557	45799	100479	108946	53396	9391	260
			1	0	40	1200	12074	52986	108740	102328	39166	4178	0
	O(4.5.n)		2	0	5	370	4803	22491	44241	36268	10408	486	0
Table 4.	O(4, 5, n) O(5, 4, n)	\Rightarrow	3	0	0	40	846	4572	8856	6346	1258	0	0
	O(0, 4, n)		4	0	0	1	71	502	972	604	65	0	0
			5	0	0	0	2	30	60	32	0	0	0
Table 5.	O(5, 5, n)		6	0	0	0	0	1	2	1	0	0	0

 \Downarrow

\nearrow^{j}	0	1	2	3	4	5	6	7	8	9	10	11
0	1	100	3575	61498	570996	3014170	9210008	16151778	15663239	7753602	1658789	100360
1	0	100	5598	114502	1129524	5932174	17166844	27228706	22636108	8877682	1284814	29808
2	0	25	3060	81528	890668	4753620	13152024	18858772	13264624	3957229	335046	0
3	0	1	720	28802	368514	2050898	5479194	7083750	4133562	877247	30370	0
4	0	0	69	5484	88929	532296	1385033	1603484	752781	100206	0	0
5	0	0	2	566	13090	88088	224382	229494	82350	4982	0	0
6	0	0	0	31	1191	9714	24012	21101	5291	0	0	0
7	0	0	0	1	66	744	1714	1221	172	0	0	0
8	0	0	0	0	2	39	80	43	0	0	0	0
9	0	0	0	0	0	1	2	1	0	0	0	0

Tables 2 – 5. Structural constants c_{lj} of hexagonal graphene flakes $O\left(k,m,n\right).$

5	4		7.	-	-	2	n	4	o	2	_	-	0		a	Π	TT	77	-
É C	(n, n)	€	0	1	26 57	761 1292	1 923	1606995	11748122	51965874	140079	9872 22	27463265	2152557	44 1112	95513	27810631	2578865	37865
5	((Ч	0	40 100	080 2714	80 5	3632662	26881096	115274542	29052	0968 42	25358576	34768048	82 1460	71040	26609756	1369106	0
			2		35 55	950 2142	90 S	3244678	24981230	105482287	25034	7508 33	30378638	2309283	51 766	32505	9386697	183614	0
			e	0	0 14	100 814	1 01	1496238	12411132	52557378	11839	2482 14	0623876	8287758	84 208	15706	1475346	0	0
			4	0	0	105 156	99	390197	3653311	15863562	3420	1095 3	86447695	177435:	23 31	44693	89649	0	0
			Ŋ	0	0	0 13	74	58494	665628	3051792	635:	3974	6041550	23549	70 2	57874		0	0
Ę	, ald	r	9	0	0	0	35	4800	75780	382757	.2.2	7182	653637	1939	59	9395		0	0
			1-	0	0	0	0	164	5210	31344	.9	2800	46150	94	78	0		0	0
\tilde{c}	, 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		x	0	0	0	0	1	198	1649		3306	2089	2:	31	0		0	0
ว์	- (n (n)	()	6	0	0	0	0	0	2	52		108	58		0	0		0	0
	_		10	0	0	0	0	0	0	1		2	1		0	0		0	0
0	Ч	7	•••	~	4		Ŋ	9		7	×		6	10	Н	L.	12	13	14
-	150	8425	23912	4	3868493	379022	272	232022586	898378	195 21934	419840	33145853	82 2985	771265	14940555	99 366	934090	33854828	499908
0	200	17988	62262	4 1.	1013356	1110195	348 4	670815138	3 24796670	056 56027	783156	75769784	88 5854	650932	23679041	36 421	261918	21404754	0
0	75	14200	64786	0 1:	2993730	1374804	143	829115485	5 2940756	853 61476	525801	73938756	551 483C	038995	15261611	35 18(1496959	3441045	0
0	9	5200	35151	~ x	8381778	953486	370 8	581153418	3 1987787.	446 38395	361696	40709160	80 2202	052850	5174210	48 34	172252	0	0
0	0	885	10860	7	3284990	413776	380	258489770	856666.	286 15240	188610	14072613	558 612	156479	988204	57 2	2596492	0	0
0	0	60	1951	2	820852	118876	530	77372215	249489	092 4065	531396	3212611	60 107	621012	103156	54	0	0	0
0	0	1	199	80	133461	23346	349	16147135	50790	698 750	051270	495075	645 11	918995	4753	37	0	0	0
0	0	0	11	0	14168	3192	256	2406882	2 7373.	148 97	715430	51551	58	786548		0	0	0	0
0	0	0		2	965	305	540	261107	769:	923 8	880739	3551	.60	25076		0	0	0	0
0	0	0		0	40	20	304	20904	1 57.	508	54844	153	868	0		0	0	0	0
0	0	0		0	1		86	1234	1 2	266	2232	с э	861	0		0	0	0	0
0	0	0		0	0		2	50		104	56		0	0		0	0	0	0
0	0	0		0	0		0	-		2	1		0	0		0	0	0	0

â
5
۳
0
Ч
an
â
3,1
9
0
÷
Ľ
4
Ъ.
0
č),
ц,
-1
4
0
e
æ
Ĥ
le
e
-q.
3
50
al
ä
80
Кa
ē
Р.
of
l_{j}
0
lts
ar
\mathbf{st}
uc
ŏ
al
Ш
G
Ē
Str
01
ч.
1
ġ
<u>~</u>
ē
q
Га

\nearrow^{j}	0	1	2	3	4	5	6	7	8	9
0	1	210	17045	722330	18076201	285015882	2938557748	20224054068	93752453027	292531274982
1	0	350	46158	2424890	67579452	1119416400	11672185260	78966919980	351362307430	1029040647372
2	0	175	47740	3335890	107065128	1898998264	20257968347	135641596569	581152336272	1597596351492
3	0	21	23800	2459540	94936330	1844710338	20398946742	136171608941	563540516222	1453296510734
4	0		5845	1064550	52387509	1146766565	13345121449	89523915924	358932553176	867172813463
5	0		630	277680	18898076	482735323	6018192938	40930310622	159425569562	359969463019
6	0		21	42962	4551346	141976340	1937323697	13490759263	51171633187	107557978358
7	0			3692	733698	29664436	454914996	3280414879	12137489356	23601984544
8	0			137	77917	4427852	78955993	597543734	2157231314	3843369719
9	0			1	5222	469498	10194948	82373408	289454304	465513505
10	0				198	34672	977706	8650064	29352204	41682975
11	0				2	1698	68502	694530	2232824	2714607
12	0					51	3372	42634	124852	124571
13	0					1	110	1970	4946	3787
14	0						2	63	132	71
15	0							1	2	1
\nearrow^{j}			10		11	12	13	14	15	16
<i>∑</i> ^j 0		608117	10 552346	824530	11 964465	12 703467308379	13 356238139706	14 97031394599	15 11812503473	16 412271170
× 0 1	1	608117 961796	10 7552346 6549598	824530 2375258	11 1964465 1256881 1	12 703467308379 749385464792	13 356238139706 728721105272	14 97031394599 150742710368	15 11812503473 11804801291	16 412271170 148583978
) 0 1 2	1	608117 961796 783833	10 7552346 6549598 6344176	824530 2375258 2986902	11 1964465 1256881 1 1757162 1	12 703467308379 749385464792 872158258963	13 356238139706 728721105272 624532990872	14 97031394599 150742710368 92648414388	15 11812503473 11804801291 3943961256	16 412271170 148583978 0
× 0 1 2 3	1 2 2	608117 961796 783833 304159	10 7552346 6549598 6344176 9869580	824530 2375258 2986902 2169447	11 1964465 1256881 1 1757162 1 1542000 1	12 703467308379 749385464792 872158258963 135940101580	13 356238139706 728721105272 624532990872 292403300304	14 97031394599 150742710368 92648414388 28408270800	15 11812503473 11804801291 3943961256 445429994	16 412271170 148583978 0 0
) 0 1 2 3 4	1 2 2 1	608117 961796 783833 304159 243363	10 552346 5549598 3344176 9869580 3043837	824530 2375258 2986902 2169447 1014313	11 1964465 1256881 1757162 12542000 1 1703827	12 703467308379 749385464792 872158258963 135940101580 432812936091	13 356238139706 728721105272 624532990872 292403300304 81423290041	14 97031394599 150742710368 92648414388 28408270800 4397338695	15 11812503473 11804801291 3943961256 445429994 0	16 412271170 148583978 0 0 0
) 0 1 2 3 4 5	1 2 2 1	608117 961796 783833 304159 243363 462962	10 552346 5549598 3344176 9869580 3043837 2649848	824530 2375258 2986902 2169447 1014313 321818	11 964465 :256881 :757162 :542000 :703827 :319511	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557	14 97031394599 150742710368 92648414388 28408270800 4397338695 279104576	15 11812503473 11804801291 3943961256 445429994 0 0	16 412271170 148583978 0 0 0 0
2 3 4 5 6	1 2 2 1	608117 961796 783833 304159 243363 462962 122727	10 7552346 3549598 3344176 9869580 3043837 2649848 7195702	824530 2375258 2986902 2169447 1014313 321818 71086	11 1964465 1256881 1757162 1542000 1 1703827 1319511 1372435	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725	14 97031394599 150742710368 92648414388 28408270800 4397338695 279104576 0	15 11812503473 11804801291 3943961256 445429994 0 0 0	16 412271170 148583978 0 0 0 0 0 0
$\begin{array}{c} \swarrow^{j} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	1 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539	10 7552346 8549598 8344176 8869580 8043837 8649848 7195702 9545686	824530 2375258 2986902 2169447 1014313 321818 71086 11015	11 9964465 256881 17 757162 18 5542000 17 703827 319511 3372435 769269	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709	14 97031394599 150742710368 92648414388 28408270800 4397338695 279104576 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0
) 0 1 2 3 4 5 6 7 8	1 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539 3283	10 552346 5549598 3344176 9869580 3043837 2649848 '195702 9545686 3065683	824530 2375258 2986902 2169447 1014313 321818 71086 11015 1187	11 9964465 1256881 1757162 1542000 1 1703827 319511 1372435 769269 053783	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0	14 97031394599 150742710368 92648414388 28408270800 4397338695 279104576 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} $	1 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539 3283 331	10 552346 5549598 3344176 9869580 3043837 2649848 '195702 9545686 3065683 3156480	824530 2375258 2986902 2169447 1014313 321818 71086 11015 1187 86	11 964465 12 2256881 12 7757162 12 542000 1 703827 - 3319511 - 372435 - 769269 - 053783 - 302783 -	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993 3774288	13 355238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0 0	14 97031394599 150742710368 92648414388 28408270800 4397338695 279104576 0 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} $	1 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539 3283 331 23	10 7552346 3549598 3344176 8869580 3043837 2649848 7195702 9545686 3065683 .156480 3736499	824530 2375258 2986902 2169447 1014313 321818 71086 11015 1187 86 3	11 9964465 1 256881 1 1757162 1 542000 1 703827 3 319511 372435 769269 053783 302783 940951	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993 3774288 0	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0 0	14 97031394599 150742710368 92648114388 28408270800 4397338695 279104576 0 0 0 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× 0 1 2 3 4 5 6 7 8 9 10 11	1 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539 3283 3283 3283 3283 3283 3283 3283 32	10 552346 5549598 3344176 3869580 3043837 2649848 7195702 3545686 3065683 1156480 3736499 1168218	\$24530 2375258 2986902 2169447 1014313 321818 71086 11015 1187 86 3	11 9964465 256881 1 757162 1 542000 1 703827 319511 372435 769269 053783 302783 940951 90985	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993 3774288 0 0	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0 0 0	14 97031394599 150742710368 92648114388 28408270800 4397338695 279104576 0 0 0 0 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x ^j 0 1 2 3 4 5 6 7 8 9 10 11 12	1 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539 3283 3283 331 23 331 23 331	10 5552346 5549598 3344176 9869580 6043837 2649848 '195702 9545686 8065683 1156480 8736499 168218 37284	\$24530 2375258 2986902 2169447 1014313 321818 71086 11015 1187 86 3	11 9964465 1 256881 1 1757162 1 542000 1 703827 1 319511 372435 769269 053783 302783 302783 9940951 90985 0 0	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993 3774288 0 0 0	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0 0 0 0 0	14 97031394599 150742710368 92648114388 28408270800 4397338695 279104576 0 0 0 0 0 0 0 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x ^j 0 1 2 3 4 5 6 7 8 9 10 11 12 13	1 2 2 2 1	608117 961796 783833 304159 243363 462962 122727 23539 3283 331 23 3283 331 23 3283 331 23 3	10 5552346 5549598 3344176 9869580 6043837 2649848 7195702 9545686 8065683 1156480 4736499 1168218 37284 668	\$24530 2375258 2986902 2169447 1014313 321818 71086 11015 1187 86 3	11 9964465 1 256881 1 1757162 1 542000 1 703827 1 319511 372435 769269 0 053783 302783 9940951 90985 0 0	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993 3774288 0 0 0 0	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0 0 0 0 0 0 0	14 97031394599 150742710368 92648114388 28408270800 4397338695 279104576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x ^j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1122221	608117 961796 243363 462962 122727 23539 3283 331 23 1	10 5552346 5549598 3344176 9869580 0043837 2649848 4195702 9545686 8065683 1156480 9736499 1168218 37284 668 37284 668	\$24530 2375258 2986902 2169447 1014313 321818 71086 11015 1187 86 3	11 9964465 1 256881 1 1757162 1 542000 1 703827 1 319511 372435 769269 0 053783 302783 9940951 90985 0 0 0 0	12 703467308379 749385464792 872158258963 135940101580 432812936091 108132859166 17888421428 1917171112 123549993 3774288 0 0 0 0 0	13 356238139706 728721105272 624532990872 292403300304 81423290041 13637408557 1292574725 54667709 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 97031394599 150742710368 92648114388 28408270800 4397338695 279104576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 11812503473 11804801291 3943961256 445429994 0 0 0 0 0 0 0 0 0 0 0 0 0	16 412271170 148583978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8. Structural constants c_{lj} of hexagonal graphene flakes O(5,7,n) and O(7,5,n).

λ^{j}	0	1	2	3	4	5	6	7	8	9
0	1	225	19775	916223	25301701	444342631	5151950473	40290605845	214711769549	780585516377
1		400	57428	3315700	102492388	1900685508	22407714064	173268558356	892081378672	3067336666628
2		225	65247	4998960	178236618	3550482707	43003466765	330794187292	1650189102054	5366956149129
3		36	36950	4120050	176037868	3843833760	48391994142	372723845630	1806618440688	5555342174336
4		1	10925	2044661	110057847	2699070472	35789764732	277947056664	1312450971092	3811442182539
5			1600	633824	45937260	1303280408	18480518612	145808734404	672322335232	1840166999100
6			101	123330	13156625	447719184	6909866830	55842390272	251934557620	647722324530
7			2	14814	2617652	111716812	1915574920	15998758660	70712852724	169877083036
8				1046	361954	20508106	400095065	3487266139	15101521897	33622067327
9				42	34378	2792900	63661220	585497920	2478718612	5049357408
10				1	2185	284321	7777827	76461594	314280122	574389951
11					88	21798	733448	7828776	30737720	48990150
12					2	1252	53294	631231	2291019	3068439
13						50	2908	39854	126476	136024
14						1	108	1906	4943	3977
15							2	62	130	70
16	0	0	0	0	0	0	0	1	2	1
\mathcal{K}^{j}			10		11	12	13	14	15	16
0	1	921494	1348645	3148551	612905 33	335550606803	2180193810463	814834545229	152422345585	10844827896
1	6	988936	5769912	10348980	994736 90	621475143560	5304482438536	1573691730016	209115511048	8000025160
2	11:	287524	1974811	15009166	986900 12	106786912724	5517087418959	1249374951631	107424113482	1492504600
3	10	743639	663274	12725720	417294 87	777254118240	3218423735264	525500520358	24727069342	0
4	6	743483	3064467	7042208	799621 40	075591021979	1158725917640	124657502886	2177618656	0
5	2	958341	271012	2687699	574100 1	272861982108	265844878980	16014545752		0
6	1	937586	5575243	728250	366046	272664450229	38407783534	884915810		0
7	:	218693	3148206	141891	928526	39953554160	3250265412			0
8		37855	5680891	19875	858691	3891049807	126349943			0
9		4860	0402604	1973	880618	233062534				0
10		458	3344467	134	426857	6773139				0
11		31	067384	5	847300					0
12		1	457419		131730					0
13			44764							0
14			799							0
15										0
16			0		0	0	0	0	0	0
ĸ			17							
0		124	1219818							
1										

Table 9. Structural constants c_{lj} of hexagonal graphene flakes O(6, 6, n).

-181-

\nearrow^{j}	0	1	2	3	4	5	6	7	8
0	1	315	39900	2741312	115619085	3200545485	60547174862	802958088186	7582941537662
1	0	700	146748	12742260	610784900	18152004834	355619053850	4760516794778	44482637606502
2	0	525	218029	25271985	1413768423	45810239049	938529310832	12761899828692	118446588956866
3	0	126	167580	28120400	1898944000	68323253908	1479975815726	20581890045694	190508445131382
4	0	7	70875	19404636	1651828743	67443080003	1564036321310	22411986925648	207760863373860
5	0		16100	8659650	983129862	46756826664	1177553409530	17530042490992	163473895939488
6	0		1806	2529004	412332947	23575046875	655469952118	10229939125732	96417125433884
7	0		84	478970	123665442	8832634744	276320659280	4567160349196	43720902444914
8	0		1	57088	26633471	2491398393	89658553306	1587247724515	15513423262724
9	0			4080	4100288	532979100	22641007566	434753814854	4362003810852
10	0			160	445429	86747948	4484041470	94699189202	980855401177
11	0			2	33382	10732808	700399502	16512283314	177569589112
12	0				1667	1002134	86661070	2315553100	26005011410
13	0				52	69182	8520674	261898966	3090551422
14	0				1	3384	665757	23903097	298459222
15	0					110	40988	1753178	23392302
16	0					2	1924	101784	1479922
17	0						62	4482	74512
18	0						1	134	2873
19	0							2	76
20	0								1
\mathcal{N}^{j}			9		10	11	12	13	14
0	51	43157	7028397	251192160	398133 88	80930702343267	2199803333462914	3853933803675767	4629921474321523
1	293	50501	4794562	1373056462	262628 454	2499997618460	10530090335370208	16819210122229138	18026578499381300
2	761	79199	5302759	3414574532	836667 1064	2084518884548	22828299911634660	33061425759524632	31340480550125909
3	1196	56857	7598148	5138934064	281532 1506	60710116138884	29777270758668844	38843382831000674	32224393093584590
4	1276	65713	5028943	5251781003	656878 1443	37870843425034	26182689799160757	30514305632338964	21866887078332722
5	984	396120	0342872	3875983728	633532 996	3901113135848	16473690889319768	16982564346318076	10342008335782660
6	569	819470	0795733	2144796361	775145 513	34705296907224	7682008667738465	6918843029088176	3506618448607463
7	253	91013	6776956	911859845	213542 202	2376813993720	2712418180161016	2101391716321996	862425610009426
8	88	61335:	2763881	302770288	474317 61	7883914408759	734211473621015	479664214028454	153567521115802
9	24	51555	7098560	79367046	034342 14	7726440803158	153211910497118	82244539112608	19465060910518
10	5	42175	1286253	16533259	301773	27744015958759	24636935482589	10492621581275	1687256088043
11		00070	3147422	2744651	000050	4080457604486	3032807128154	974987559186	91464118114
		96372.			830258	1003107031100			
12		96372. 13806-	4567908	362708	836258 016509	470344173015	281852616345	63341196004	2408559608
12 13		13806 1593	4567908 7879366	362708 37938	836258 016509 386052	470344173015 41722828664	281852616345 19305360346	63341196004 2644559386	2408559608 0
12 13 14		13806 1593 147	4567908 7879366 5934244	362708 37938 3104	836258 016509 386052 326412	470344173015 41722828664 2800983356	281852616345 19305360346 936279591	63341196004 2644559386 55942219	2408559608 0
12 13 14 15		13806 1593 147 147	4567908 7879366 5934244 8414286	362708 37938 3104 194	836258 016509 386052 326412 926116	470344173015 41722828664 2800983356 138184224	281852616345 19305360346 936279591 29912436	63341196004 2644559386 55942219 0	2408559608 0 0
12 13 14 15 16		13806- 1593' 1473 107	4567908 7879366 5934244 8414286 5175173	362708 37938 3104 194 9	830258 016509 386052 326412 926116 130827	470344173015 41722828664 2800983356 138184224 4791039	281852616345 19305360346 936279591 29912436 515853	63341196004 2644559386 55942219 0 0	2408559608 0 0 0
12 13 14 15 16 17		13806- 1593' 1473 107	4567908 7879366 5934244 8414286 6175173 262252	362708 37938 3104 194 9	830258 016509 386052 326412 926116 130827 305780	470344173015 41722828664 2800983356 138184224 4791039 110488	281852616345 19305360346 936279591 29912436 515853 0	63341196004 2644559386 55942219 0 0 0	2408559608 0 0 0 0
12 13 14 15 16 17 18		138064 1593 1473 108	4567908 7879366 5934244 8414286 6175173 262252 7871	362708 37938 3104 194 9	8362288 016509 386052 326412 926116 130827 305780 6743	470344173015 41722828664 2800983356 138184224 4791039 110488 1565	281852616345 19305360346 936279591 29912436 515853 0 0	63341196004 2644559386 55942219 0 0 0 0	2408559608 0 0 0 0 0 0
12 13 14 15 16 17 18 19		13806- 1593' 147! 10!	4567908 7879366 5934244 8414286 6175173 262252 7871 160	362708 37938 3104 194 9	830238 016509 386052 326412 926116 130827 305780 6743 86	470344173015 41722828664 2800983356 138184224 4791039 110488 1565	281852616345 19305360346 936279591 29912436 515853 0 0	63341196004 2644559386 55942219 0 0 0 0 0 0	2408559608 0 0 0 0 0 0 0

Table 10. Structural constants c_{lj} of hexagonal graphene flakes $O\left(6,7,n\right)$ and $O\left(7,6,n\right)$.

\nearrow^{j}	15	16	17	18	19	20
0	3686454978107086	1848482761458848	538713170609607	79523271157898	4497148465196	41067694904
1	12452473455697436	5209247569658264	1191416942928128	123323715383098	3691738921634	0
2	18527690659925310	6321248539795586	1087796818948664	71636225780052	763364349513	0
3	16026896573520322	4328413468915142	527323327050874	18589012621784		0
4	8951855531531266	1837116519450524	144022564250079	1831746511722		0
5	3386224483533170	497715712557694	21178401473078			0
6	882906905723331	84691389320826	1322636077996			0
7	157747254252450	8359247357508				0
8	18659078297839	371169332401				0
9	1337128041426					0
10	44882012644					0
11						0

Table 10 (continued). Structural constants c_{lj} of hexagonal graphene flakes O(6,7,n) and O(7,6,n).

and such results cannot be announced here. The future plan involves extending the presented here tabulations to hexagonal graphene flakes with $k + m \leq 20$ and announcing these results in some other media in the form of accompanying electronic text files, which should facilitate using these results in practice.

j2	0	п	7	3	4	5	9	7	œ	6	10	11
0		441	80360	8150464	520808637	22437241151	679656432876	14881651014624	239965363556414	2885013842370396	26058155106531840	177468914708263294
Н	0	1225	373968	48547984	3572763520	167584767539	5336698988308	119893492761912	1947644661551236	23244477621238072	205793234434476988	1358105698387760194
61	0	1225	725788	126286464	10949209234	566730866907	19138287487654	443740526285678	7290821428209344	86596956573629380	752559218860053710	4814413307639683052
3	0	441	755968	188993290	19873201716	1153233204177	41705090058292	1004373113724334	16760910472623340	198643550400106376	1696789549215747844	10525504682797558140
4	0	49	455637	180497321	23876405663	1582747248456	61979173081760	1561255902694988	26581041242006710	315186168071337346	2649718662276938660	15939191447012524592
Ŋ	0	1	159110	115323885	20101128412	1556286549800	66826521199836	1774366661284632	30967794585803876	368407333821713550	3051930105264218048	17801150028875397528
9	0		30961	50265085	12244539248	1136740559008	54294337197416	1532502794501292	27558806457153080	329872132188694396	2695906171770534162	15241983044101694724
2	0		3108	14975095	5494946992	631106568398	34080215323244	103227232004410	19231629687266828	232302572446135254	1874907135308226412	10268721034752605110
80	0		139	3015409	1832776102	270298580180	16812407161898	552130652113492	10721016199663830	131084540140411416	1045773353367718204	5543237668207083028
6	0		5	401743	455233666	90139947980	6597002500100	237629374273856	4839655537134586	60084924318361900	474159480450250792	2429095400398641944
10	0			34320	83894425	23530686562	2076474746315	83092121061548	1787156874442529	22600934557267322	176505770113936401	872253653132026878
11	0			1784	11369156	4819758796	527414877626	23778369830936	544046125691768	7030441213437840	54341922597705450	258373098724163130
12	0			55	1116519	774706811	108544060615	5600049781570	137346705415634	1819150748983754	13911494841263800	63412896520968831
13	0			1	77676	97555805	18148681464	1090267727298	28883833241678	393260566589146	2972189785676140	12926977326521745
14	0				3703	9598240	2468751787	176161336625	5080746000259	71249561085992	531131869122746	2189937301225826
15	0				114	735928	273232702	23714955985	749276872872	10840639822676	79446379336036	307815810438614
16	0				7	43816	24558040	2670988460	92830729232	1386352895048	9938003028327	35749130585369
17	0					1988	1781656	252594370	9668128510	148934647412	1036514039010	3404617662879
18	0					63	102619	20055191	845097197	13407414288	89602634689	262657603771
19	0					1	4494	1322839	61658882	1006351396	6353131530	16114853731
20	0						134	70260	3707684	62486564	362873859	766258553
21	0						61	2814	178910	3175264	16189310	27322377
22	0							75	6554	129942	536493	699463
23	0							1	162	4126	12358	11707
24	0								2	16	192	103
25	0	0	0	0	0	0	0	0	0	1	2	1
					Tabl	e 11. Struc	tural constar	nts c_{lj} of hexa	gonal graphene	flakes $O(7,7,n)$.(1)	
								3				

<i>v</i>).
7,1
.,
0
flakes
graphene
hexagonal
of
c_{lj}
constants
Structural
Ξ.
e 1
[ab]

-183-

·//	12	13	14	15	16	17	18
0	911470508686101510	3518698753460601390	10140590421889372336	21579866258058851370	33378189408954187379	36698505658882611953	27802031686120975632
1	6684876574594220052	24459565779274980334	66030328257321967708	129924110611295515006	183023508561667423460	179933735420151003389	119043145539032009116
73	22698800752831606638	78596256414520969524	198221594314975628056	359175895084465790318	458143366678479988556	399395867474450102013	227949905747899938718
e	47496034860451524524	155337272092974688312	364843562529362132364	605926338114738578566	695060158791591108208	531997537114570107433	258051074564456863164
4	68765504809917757560	211937737624428210662	461847401959122689734	699125174645244597706	715410820786466298808	475054787413989639265	192245144810438020253
ъ	73322590558324889888	212367736719420883326	427482179972162121632	585960210306393325006	529764975853714292068	300784014746757665497	99190355776225921198
9	59833883563660846084	162315303666342689604	300227745653887373240	369752300645079121378	291947832043821636558	139196256146405068880	36272990045501098529
7	38332809639894609128	97005685485614900078	163846743089540806968	179622411048867234824	122122932674468010524	47790311588830413242	9436934188366282036
x	19622639809399170258	46098795258132983326	70571688036821668590	68097518066820483036	39175083946883295754	12212425240939160320	1720229531807243299
6	8125869479719105182	17617798968307540450	24225637248120092772	2029521920007826452	9662756798849662570	2304080236028996140	210626121214089694
10	2745454757143109941	5454182287947398804	6663079565074199475	4764714794989687822	1824152014374156955	313797585757566012	15725986236778869
11	761024033464160400	1373165400816215134	1470462139838937614	878550829313892738	260111977139741688	29453049697938498	548397072463682
12	173587260824166855	281401195979295623	259786261159730147	126144599308367172	27309876424785040	1726978182295326	
13	32600160391532320	46842312345365173	36511172648243620	13883540749419448	2013692329288290	48493259225882	
14	5031045541204183	6300262824894348	4037062052925481	1140486687013223	94666599026841		
15	634959718294026	678519896357356	345093588642326	66758946395647	2185176586504		
16	64998533041466	57719976135906	22194139147705	2539889709911			
17	5329897109338	3802460975470	1027515464062	48873714759			
18	343981927437	188489091665	31524420976				
19	17053766738	6735743295	510248644				
20	627466675	162260859					
21	16270036	2219363					
22	281359						
23	3252						
24	0						
25	0	0	0	0	0	0	0

Table 11 (continued). Structural constants c_{lj} of hexagonal graphene flakes O(7,7,n).

\nearrow^{j}	19	20	21	22	23
0	13880775404349086642	4273960604525412735	729601219978707461	56900039937466224	1289252390888310
1	50250484386833471802	12463707878932390612	1579418503155938033	77152179492049624	611127372372622
2	79826013746631666354	15445030308636725698	1362992141581876377	34956741961396772	0
3	73185665015864931548	10572976639801015196	588325587660613823	5315574136983444	0
4	42786331366207114817	4333561663344472403	127600108827417774		0
5	16595699143936303485	1068251482039364696	11183843627712094		0
6	4288585003767876393	147457700969953378			0
7	715817996324929761	8850979884217732			0
8	70508785212273313				0
9	3149065545571691				0
10	0				0

Table 11 (continued). Structural constants c_{lj} of hexagonal graphene flakes O(7,7,n).

4 Discussion

The structural constants c_{lj} of hexagonal graphene flakes O(k, m, n) tabulated in Eqs. (19–23) and in Tables 2–11 have a rather complicated k– and m–dependent form, which might prove difficult to recognize and understand. Nevertheless, some of the regularities appearing in the constants c_{lj} are obvious and easy to notice. The values of structural constants c_{lj} in the following columns and rows could be identified:

- In the column j = 0 the only non-vanishing structural constant is $c_{00} = 1$.
- The entries c_{lj} in the column j = 1 could be identified as

$$c_{l1} = \binom{k}{l+2} \binom{m}{l+2}.$$
(27)

Only the entries with $l = 0, ..., \min(k, m) - 2$ have non-zero values. These entries seem to appear in various combinatorial problems (see the sequences A008459, A062145, A124428, A132813, A062196, and A062264 in OEIS [79]).

• In the row $l = l_{\text{max}} = (k-2)(m-2)$ the only three non-zero structural constants c_{lj} are $c_{(k-2)(m-2),k+m-5} = 1$, $c_{(k-2)(m-2),k+m-4} = 2$, and $c_{(k-2)(m-2),k+m-3} = 1$.

-186-

In addition, we have been able to characterize the position l_{last} of the last non-vanishing element $c_{l_{\text{last}},j}$ in every column $j = 0, \ldots, j_{\text{max}} = \lfloor \frac{k \cdot m}{2} \rfloor - 1$

$$l_{\text{last}} = \begin{cases} j \cdot \min(k, m) - 2j & \text{for } j \le |m - k| + 1\\ k \cdot m - 2j - 2 & \text{for } j \ge m + k - 3\\ k \cdot m - 2j - \left\lfloor \left(\frac{k + m - j}{2}\right)^2 \right\rfloor & \text{otherwise} \end{cases}$$
(28)

and in some cases to identify the value of $c_{l_{\text{last}},j}$

$$c_{l_{\text{last}},j} = \begin{cases} \det\left(\mathbb{M}\left(k,m,j\right)\right) & \text{for } j \leq |m-k|+1\\ \text{not identified} & \text{for } j \geq m+k-3\\ 1 & \text{otherwise for } m+k+j \text{ odd}\\ 2 & \text{otherwise for } m+k+j \text{ even} \end{cases}$$
(29)

where the matrix $\mathbb{M}(k, m, j)$ with the entries $\mathbb{M}_{\alpha\beta} = \binom{m-k+1}{j-\alpha+\beta}$ has the size of $\min(k, m) \times \min(k, m)$. The last identifications have been possible owing to (i) an observation that the convex hull of the non-vanishing portion of the table of the structural constants c_{lj} for O(k, m, n) is delimited in a large part by a superposition of triples (1, 2, 1) and (ii) the following series of discoveries:

The values c_{linst,j} in the columns j = 0,..., m − 2 for hexagonal graphene flakes O(3, m, n) could be identified as members of the sequence A056939 in OEIS [79] corresponding to the number of antichains (or order ideals) in the poset 3 × (m − 2 − j) × j. (For all the basic terminology and concepts in poset theory, one might want to consult Stanley's classical text [81]. For example, a × b × c denotes a poset obtained as a Cartesian product of three linear chains a, b, and c (pages 246 and 244 of [81]).) It is well-known (sequence A056939 in OEIS [79]) that these numbers can be computed as

$$c_{l_{\text{last}},j} = \begin{vmatrix} \binom{m-2}{j} & \binom{m-2}{j+1} & \binom{m-2}{j+2} \\ \binom{m-2}{j-1} & \binom{m-2}{j} & \binom{m-2}{j+1} \\ \binom{m-2}{j-2} & \binom{m-2}{j-1} & \binom{m-2}{j} \end{vmatrix}$$
(30)

• The values $c_{l_{\text{last},j}}$ in the columns $j = 0, \ldots, m-3$ for hexagonal graphene flakes O(4, m, n) could be identified as members of the sequence A056940 in OEIS [79] corresponding to the number of antichains (or order ideals) in the poset $\mathbf{4} \times (\mathbf{m} - \mathbf{3} - \mathbf{j}) \times \mathbf{j}$. (When j = 0 or m - j = 2, the poset is empty with

one (empty) ideal.) Again, it is well-known that these numbers can be computed as

$$c_{l_{\text{last}},j} = \begin{pmatrix} m^{-3} & m^{-3} & m^{-3} & m^{-3} \\ j & j+1 & j+2 & j+3 \\ m^{-3} & m^{-3} & m^{-3} & m^{-3} \\ j-1 & j & m^{-3} & m^{-3} & j+2 \\ m^{-3} & m^{-3} & m^{-3} & m^{-3} \\ j-2 & j-1 & j & m^{-3} & m^{-3} \\ m^{-3} & m^{-3} & m^{-3} & m^{-3} \\ j-3 & m^{-3} & m^{-3} & m^{-3} \\ j-1 & m^{-3} & m^{-3} & m^{-3} \\ m^{-3} & j & m^{-3} & m^{-3} \\ m^{-3} & m^{-3} & m^{-3} & j \\ \end{pmatrix}$$
(31)

- These two discoveries seem to be extendable to a general hexagonal flake O(k, m, n). In this case, the position l_{last} of the last non-zero structural constants $c_{l_{\text{last},j}}$ in the columns $j = 0, \ldots, |m - k| + 1$ for hexagonal graphene flakes O(k, m, n) is equal to $l_{\text{last}} = j \cdot \min(k, m) - 2j$. Moreover, numerical experiments show that the values of $c_{(\min(k,m)-2)\cdot j,j}$ are given by the determinant of a min $(k,m) \times \min(k,m)$ matrix $\mathbb{M}(k,m,j)$ with the entries $\mathbb{M}_{\alpha\beta} = \binom{|m-k|+1}{j-\alpha+\beta}$.
- It is possible to confirm that the structural constants $c_{(\min(k,m)-2)\cdot j,j}$ with $j = 0, \ldots, |m-k| + 1$ for hexagonal graphene flakes O(k, m, n) enumerate the number of antichains in the poset $\min(k, m) \times (|m-k| + 1 j) \times j$. The resulting sequences of values for k = 3, 4, and 5 are given by the sequences A056939, A056940, and A056941 in OEIS [79], respectively. For larger values of k, the sequences can be computed with MAPLE by, for example, the Stembridge's Maple Package for Posets [82] using the following short code

```
read "posets2.4v.txt":
withposets():
for k from 3 to 7 do
  for m from k to 7 do
    [seq(chain(k) &* chain(j) &* chain(m-k-j+1),j=1..m-k)]:
    map(nops@antichains,%):
    print(1,op(%),1):
    end do:
end do:
```

The remaining structural constants c_{lj} have a rather involved structure that escapes our attempts of identification at the moment. Factorization of c_{lj} often involves large primes, which might suggest that those coefficients are obtained from (multiple) summations.

An important direction aiming at further characterization of the structural constants c_{lj} comes from the poset theory, which appeared in this article already in two different

contexts. We have been in the past few months working on finding a new method to compute ZZ polynomials of benzenoid strips and we have noticed that the recently developed interface theory of benzenoids offers the possibility of computing the values of c_{lj} by drawing an analogy between the Clar theory of benzenoids and the theory of strict order polynomials used in the poset theory to enumerate certain order-preserving maps from a poset P to an interval $[n] = \{1, \ldots, n\}$. To be more precise, the structural parameters kand m corresponding to a hexagonal graphene flake O(k, m, n) uniquely define a poset $P = \mathbf{k} \times \mathbf{m}$, for which one can define the generalized strict order polynomial $E_P^{\circ}(n, 1+x)$ [80], which coincides with the ZZ polynomial of O(k, m, n). This correspondence allows to reinterpret the structural constants c_{lj} in the language of poset theory as the number of certain classes of linear extensions of the poset $P = \mathbf{k} \times \mathbf{m}$. Work on this topic is in progress and we hope to shed some more light on the transcendental meaning of the structural constants c_{lj} in the near future.

5 Conclusion

We have presented a compilation of structural constants c_{lj} that, used together with Eq. (26), allow to compute in a fast manner the ZZ polynomials of hexagonal graphene flakes O(k, m, n) with k, m = 3, ..., 7 and n = 1, ..., 1000. We conjecture that the presented results are valid for an arbitrary value of n. This conclusion is strongly supported by the methodology of determination of c_{lj} , which were extracted from the ZZ polynomials of hexagonal graphene flakes O(k, m, n) with n = 1, ..., 100 and then subsequently tested for n = 101, ..., 1000. We hope that the presented collection of numerical results will be helpful in discovering the general closed-form formula for the ZZ polynomials of hexagonal graphene flakes O(k, m, n) valid for arbitrary structural parameters k, m, and n. The closed-form formula for the ZZ polynomial of hexagonal graphene flakes O(k, m, n) with general values of the structural parameters k, m, and n constitutes perhaps the most difficult challenge of the Clar theory of benzenoids.

Acknowledgement: This work was financially supported by Ministry of Science and Technology of Taiwan (MOST108-2113-M-009-010-MY3) and the Center for Emergent Functional Matter Science of National Chiao Tung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan.

References

- H. P. Zhang, F. J. Zhang, The Clar covering polynomial of hexagonal systems I, Discr. Appl. Math. 69 (1996) 147–167.
- [2] F. J. Zhang, H. P. Zhang, Y. T. Liu, The Clar covering polynomial of hexagonal systems II, *Chin. J. Chem.* 14 (1996) 321–325.
- [3] H. P. Zhang, The Clar covering polynomial of hexagonal systems with an application to chromatic polynomials, *Discr. Math.* **172** (1997) 163–173.
- [4] H. P. Zhang, F. J. Zhang, The Clar covering polynomial of hexagonal systems III, Discr. Math. 212 (2000) 261–269.
- [5] H. P. Zhang, The Clar covering polynomial of S,T–isomers, MATCH Commun. Math. Comput. Chem. 29 (1993) 189–197.
- [6] F. J. Zhang, X. F. Guo, H. P. Zhang, Advances of Clar's aromatic sextet theory and Randić's conjugated circuit model, *Open Org. Chem. J.* 5 (2011) 87–111.
- [7] Z. Chen, X. Guo, X. Jin, X. Li, H. Zhang, Fuji Zhang's work in mathematical chemistry, MATCH Commun. Math. Comput. Chem. 76 (2016) 535–566.
- [8] I. Gutman, B. Furtula, A. T. Balaban, Algorithm for simultaneous calculation of Kekulé and Clar structure counts, and Clar number of benzenoid molecules, *Polycyc. Arom. Comp.* 26 (2006) 17–35.
- [9] C. P. Chou, H. A. Witek, An algorithm and FORTRAN program for automatic computation of the Zhang–Zhang polynomial of benzenoids, *MATCH Commun. Math. Comput. Chem.* 68 (2012) 3–30.
- [10] C. P. Chou, Y. T. Li, H. A. Witek, Zhang-Zhang polynomials of various classes of benzenoid systems, MATCH Commun. Math. Comput. Chem. 68 (2012) 31–64.
- [11] C. P. Chou, H. A. Witek, Determination of Zhang–Zhang polynomials for various classes of benzenoid systems: Non–heuristic approach, MATCH Commun. Math. Comput. Chem. 72 (2014) 75–104.
- [12] C. P. Chou, H. A. Witek, ZZDecomposer: A graphical toolkit for analyzing the Zhang–Zhang polynomials of benzenoid structures, MATCH Commun. Math. Comput. Chem. 71 (2014) 741–764.
- [13] A. Vesel, Fast computation of Clar formula for benzenoid graphs without nice coronenes, MATCH Commun. Math. Comput. Chem. 71 (2014) 717–740.
- [14] ZZDecomposer, https://bitbucket.org/solccp (2017), in the repository zzdecomposer_binary/Downloads; latest version ZZDecomposer_0.8.2.0.exe.

- [15] ZZDecomposer, https://bitbucket.org/peggydbc1217 (2019), in the repository zzdecomposer_hsi/Downloads; latest version ZZDecomposer.1.6.zip.
- [16] I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
- [17] O. Bodroža, I. Gutman, S. J. Cyvin, R. Tošić, Number of Kekulé structures of hexagon-shaped benzenoids, J. Math. Chem. 2 (1988) 287–298.
- [18] S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Enumeration of Kekulé structures for multiple zigzag chains and related benzenoid hydrocarbons, Z. Naturforsch 42a (1987) 722–730.
- [19] S. J. Cyvin, B. N. Cyvin, I. Gutman, Number of Kekulé structures of five-tier strips, Z. Naturforsch. A 40 (1985) 1253–1261.
- [20] S. J. Cyvin, The number of Kekulé structures of hexagon-shaped benzenoids and members of other related classes, *Monatsh. Chem.* 117 (1986) 33–45.
- [21] B. N. Cyvin, S. Cyvin, Enumeration of Kekulé structures pentagon-shaped benzenoids – part IV – seven-tier pentagons and related classes, MATCH Commun. Math. Comput. Chem. 22 (1987) 157–173.
- [22] S. J. Cyvin, Enumeration of Kekulé structures Chevrons, J. Mol. Struct. (Theochem) 133 (1985) 211–219.
- [23] I. Gutman, S. J. Cyvin, Topological properties of benzenoid systems. XXXV. Number of Kekulé structures of multiple–chain aromatics, *Monatsh. Chem.* **118** (1987) 541– 552.
- [24] S. J. Cyvin, B. N. Cyvin, Enumeration of Kekulé structures: Prolate pentagons, J. Mol. Struct. (Theochem) 152 (1987) 347–350.
- [25] S. J. Cyvin, B. N. Cyvin, Enumeration of Kekulé structures: *Etagéres* and related benzenoid classes, *Monatsh. Chem.* **118** (1987) 337–347.
- [26] S. J. Cyvin, B. N. Cyvin, J. L. Bergan, Number of Kekulé structures for rectangleshaped benzenoids, MATCH Commun. Math. Comput. Chem. 19 (1986) 189–211.
- [27] S. J. Cyvin, B. N. Cyvin, Enumeration of Kekulé structures: Pentagon-shaped benzenoids - part II, MATCH Commun. Math. Comput. Chem. 21 (1986) 295–300.
- [28] S. J. Cyvin, B. N. Cyvin, J. Brunvoll, R. S. Chen, X. L. Su, The number of Kekulé structures for rectangle-shaped benzenoids - part V, MATCH Commun. Math. Comput. Chem. 22 (1987) 141–150.

- [29] C. P. Chou, H. A. Witek, Comment on "Zhang–Zhang polynomials of cyclopolyphenacenes" by Q. Guo, H. Deng, and D. Chen, J. Math. Chem. 50 (2012) 1031–1033.
- [30] C. P. Chou, H. A. Witek, Closed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Chevrons and generalized chevrons, *MATCH Commun. Math. Comput. Chem.* 72 (2014) 105–124.
- [31] C. P. Chou, H. A. Witek, Two examples for the application of the ZZDecomposer: Zigzag–edge coronoids and fenestrenes, MATCH Commun. Math. Comput. Chem. 73 (2015) 421–426.
- [32] C. P. Chou, J.-S. Kang, H. A. Witek, Closed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations, *Discr. Appl. Math.* **198** (2016) 101–108.
- [33] J. Langner, H. A. Witek, G. Moś, Zhang–Zhang polynomials of multiple zigzag chains, MATCH Commun. Math. Comput. Chem. 80 (2018) 245–265.
- [34] J. Langner, H. A. Witek, Equivalence between Clar covering polynomials of single zigzag chains and tiling polynomials of 2×n rectangles, *Discr. Appl. Math.* 243 (2018) 297–303.
- [35] A. J. Page, C. P. Chou, B. Q. Pham, H. A. Witek, S. Irle, K. Morokuma, Quantum chemical investigation of epoxide and ether groups in graphene oxide and their vibrational spectra, *Phys. Chem. Chem. Phys.* **15** (2013) 3725–3735.
- [36] H. A. Witek, G. Moś, C. P. Chou, Zhang–Zhang polynomials of regular 3– and 4–tier benzenoid strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427–442.
- [37] H. A. Witek, J. Langner, G. Moś, C. P. Chou, Zhang–Zhang polynomials of regular 5-tier benzenoid strips, *MATCH Commun. Math. Comput. Chem.* 78 (2017) 487– 504.
- [38] H. A. Witek, J.-S. Kang, ZZ polynomials for isomers of (5,6)-fullerenes C_n with n = 20-50, Symmetry **12** (2020) 1483 (pp. 1–47).
- [39] H. A. Witek, J. Langner, Clar covers of overlapping benzenoids: Case of two identically-oriented parallelograms, *Symmetry* **12** (2020) 1599 (pp. 1–20).
- [40] H. P. Zhang, The Clar formulas of regular t-tier strip benzenoid systems, System Sci. and Math. Sci. 8 (1995) 327–337.
- [41] H. P. Zhang, N. D. Ji, H. Y. Yao, Transfer-matrix calculation of the Clar covering polynomial of hexagonal systems, *MATCH Commun. Math. Comput. Chem.* 63 (2010) 379–392.

- [42] I. Gutman, B. Borovićanin, Zhang–Zhang polynomial of multiple linear hexagonal chains, Z. Naturforsch. A 61 (2006) 73–77.
- [43] Q. Z. Guo, H. Y. Deng, D. D. Chen, Zhang–Zhang polynomials of cyclo–polyphenacenes, J. Math. Chem. 46 (2009) 347–362.
- [44] A. R. Ashrafi, K. Amini, Clar structures, Clar covers and Kekulé index of dendrimer nanostars, *Optoelectron. Adv. Mat.* 4 (2010) 877–880.
- [45] A. R. Ashrafi, K. Amini, Relations between Clar structures, Clar covers and sextetrotations of dendrimer nanostars, *Optoelectron. Adv. Mat.* 3 (2009) 1076–1079.
- [46] M. B. Ahmadi, E. Farhadi, V. A. Khorasani, On computing the Clar number of a fullerene using optimization techniques, *MATCH Commun. Math. Comput. Chem.* 75 (2016) 695–701.
- [47] H. Abeledo, G. W. Atkinson, Unimodularity of the Clar number problem, *Lin. Al-gebra Appl.* **420** (2007) 441–448.
- [48] J. Aihara, M. Makino, Constrained Clar formulas of coronoid hydrocarbons, J. Phys. Chem. A 118 (2014) 1258–1266.
- [49] A. T. Balaban, Using Clar sextets for two- and three-dimensional aromatic systems, *Phys. Chem. Chem. Phys.* **13** (2011) 20649–20658.
- [50] N. Bašić, I. Estélyi, R. Škrekovski, N. Tratnik, On the Clar number of benzenoid graphs, MATCH Commun. Math. Comput. Chem. 80 (2018) 173–188.
- [51] E. R. Bérczi-Kovács, A. Bernáth, The complexity of the Clar number problem and an exact algorithm, J. Math. Chem. 56 (2018) 597–605.
- [52] M. Berlič, N. Tratnik, P. Žigert Pleteršek, Equivalence of Zhang–Zhang polynomial and cube polynomial for spherical benzenoid systems, *MATCH Commun. Math. Comput. Chem.* **73** (2015) 443–456.
- [53] J. A. Carr, X. F. Wang, D. Ye, Packing resonant hexagons in fullerenes, *Discr. Optim.* 13 (2014) 49–54.
- [54] D. W. H. Chan, S. J. Xu, G. Nong, A linear-time algorithm for computing the complete forcing number and the Clar number of catacondensed hexagonal systems, *MATCH Commun. Math. Comput. Chem.* **74** (2015) 201–216.
- [55] J. Chapman, J. Foos, E. J. Hartung, A. Nelson, A. Williams, Pairwise disagreements of Kekulé, Clar, and Fries numbers for benzenoids: A mathematical and computational investigation, *MATCH Commun. Math. Comput. Chem.* 80 (2018) 186–206.

- [56] D. D. Chen, H. Y. Deng, Q. Z. Guo, Zhang–Zhang polynomials of a class of pericondensed benzenoid graphs, *MATCH Commun. Math. Comput. Chem.* 63 (2010) 401–410.
- [57] R. Cruz, I. Gutman, J. Rada, Convex hexagonal systems and their topological indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 97–108.
- [58] S. Gojak, I. Gutman, S. Radenković, A. Vodopivec, Relating resonance energy with the Zhang–Zhang polynomial, J. Serb. Chem. Soc. 72 (2007) 665–671.
- [59] E. J. Hartung, Clar chains and a counterexample, J. Math. Chem. 52 (2014) 990– 1006.
- [60] S. Klavžar, P. Žigert, I. Gutman, Clar number of catacondensed benzenoid hydrocarbons, J. Mol. Struct. (Theochem) 586 (2002) 235–240.
- [61] P. Žigert Pleteršek, Equivalence of the generalized Zhang–Zhang polynomial and the generalized cube polynomial, MATCH Commun. Math. Comput. Chem. 80 (2018) 215–226.
- [62] K. Salem, I. Gutman, Clar number of hexagonal chains, Chem. Phys. Lett. 394 (2004) 283–286.
- [63] K. Salem, S. Klavžar, A. Vesel, P. Žigert, The Clar formulas of a benzenoid system and the resonance graph, *Discr. Appl. Math.* 157 (2009) 2565–2569.
- [64] N. Tratnik, P. Žigert Pleteršek, Resonance graphs of fullerenes, ARS Math. Contemp. 11 (2016) 425–435.
- [65] L. Q. Xu, F. J. Zhang, On the quasi-ordering of catacondensed hexagonal systems with respective to their Clar covering polynomials, Z. Naturforsch. A 67 (2012) 550– 558.
- [66] S. Zhou, H. P. Zhang, I. Gutman, Relations between Clar structures, Clar covers, and the sextet-rotation tree of a hexagonal system, *Discr. Appl. Math.* 156 (2008) 1809–1821.
- [67] X. Q. Zhou, H. P. Zhang, Clar sets and maximum forcing numbers of hexagonal systems, MATCH Commun. Math. Comput. Chem. 74 (2015) 161–174.
- [68] B.-H. He, J. Langner, H. A. Witek, Hexagonal flakes as fused parallelograms: A determinantal formula for Zhang-Zhang polynomials of the O(2, m, n) benzenoids, J. Chin. Chem. Soc., submitted.
- [69] H. Sachs, Perfect matchings in hexagonal systems, Combinatorica 4 (1984) 89–99.

- [70] P. John, H. Sachs, Calculating the number of perfect matching and Pauling's bond orders in hexagonal systems whose inner dual is a tree, in *Proc. Internat. Conf. on Graph Theory*, 80–91.
- [71] P. John, H. Sachs, Wegesysteme und Linearfaktoren in hexagonalen und quadratischen Systemen, in K. Wagner, R. Bodendiek, H. Schumacher, G. Walther (Eds.), *Graphen in Forschung und Unterricht*, Bad Salzdetfurth.
- [72] P. John, J. Rempel, Counting perfect matchings in hexagonal systems, in Proc. Internat. Conf. on Graph Theory, Eyba, 1984, Teubner, pp. 72–84.
- [73] I. Gutman, S. J. Cyvin, A new method for the unumeration of Kekulé structures, *Chem. Phys. Lett* **136** (1987) 137–140.
- [74] P. John, H. Sachs, Calculating the numbers of perfect matchings and of spanning trees, Pauling's orders, the characteristic polynomial, and the eigenvectors of a benzenoid system, *Top. Curr. Chem.* **153** (1990) 145–179.
- [75] P. E. John, H. Sachs, M. Zheng, Kekulé patterns and Clar patterns in bipartite plane graphs, J. Chem. Inf. Comput. Sci. 35 (1995) 1019–1021.
- [76] I. Gutman, L. X. Su, S. J. Cyvin, Identity for the number of Kekulé structures of benzenoid hydrocarbons, J. Serb. Chem. Soc. 52 (1987) 263.
- [77] S. J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, Springer, Berlin, 1988.
- [78] B. H. He, J. Langner, R. Podeszwa, H. A. Witek, Can the John-Sachs theory of Kekulé structures be extended to enumerate Clar covers of benzenoids?, *MATCH Commun. Math. Comput. Chem.* 86 (2021) 141–163.
- [79] The On-Line Encyclopedia of Integer Sequences (2020), published electronically at https://oeis.org, sequences A001263, A008459, A056939, A056940, A056941, A062145, A062196, A062264, A124428 and A132813.
- [80] J. Langner, H. A. Witek, In how many distinct ways can flocks be formed? A problem in sheep combinatorics, Australas. J. Combin., submitted (2020) arXiv:2010.03121.
- [81] R. Stanley, Enumerative Combinatorics, volume 1 of The Wadsworth & Brooks/Cole Mathematics Series, Springer US, 2nd edition, 2012.
- [82] J. Stembridge, The posets package, version 2.4 (2009), contains 41 Maple programs that provide an environment for computations involving partially ordered sets and related structures.