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Abstract

The characteristics of models representing biochemical phenomena exhibit com-
plicated steady states and numerous state transitions that remain interesting in
applications. Examining these states by combining the effective methods of bifurca-
tion theory and computational algebra is profoundly appreciable to obtain bifurca-
tion points near which the qualitative behavior of the model varies and parameter
ranges that promote particular behavior. This study reveals several essential char-
acteristics of two biochemical reaction models that have not been detected before.
Utilizing the Lyapunov function, we compute the general form of the first Lyapunov
coefficient to determine Hopf bifurcation for the Brusselator model. Then, for the
smallest 3D biochemical reaction model, we obtain a center manifold up to third-
degree to study Hopf bifurcation in this system. We demonstrate all results by
numerical simulation.
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1 Introduction

Biochemical processes are the life-long operations of the chemical substances that ap-

pear in the habits of plants, animals, the human body, and microorganisms involving

biomolecules. Biomolecules are organic compounds containing carbon, hydrogen, nitro-

gen, and oxygen, or macromolecules such as crude protein, polysaccharide, and nucleic

acids. Biomolecules include polymers (proteins, peptides, cellulose, hemoglobin, nucleic

acids, and polysaccharides) or monomers, which are the basic building blocks of polymers

(alcohol, amino acids, nucleotides, carbohydrates, hormones, vitamins, acrylics, epoxides,

and monosaccharides). The biochemical research results based on empirical evidence have

significant applications in medicine, such as finding the causes of diseases and developing

novel treatments, nutrition, such as determining the effects of nutrition on health, and

agriculture, such as increasing crop quality and pest control. Through dynamical model-

ing of these processes by systems of ordinary differential equations employing the relative

proportional changes in the state variables and dynamical analysis, it is possible to un-

ravel the effects of exterior forces on living organisms [1]. In this way, biochemical models

can describe chemical processes involving organic building compounds such as protein,

carbohydrate, lipid, and nucleic acids, vitamins, and hormones, which are of great impor-

tance in vital biochemical reactions [2, 3]. We can classify biochemical models into three

categories as structural biological models, enzyme models, and metabolic models. More-

over, we can perform the structural and qualitative analysis of the biochemical models by

using the theory of dynamical systems and the novel methods of computational algebra

to explain the life processes in living organisms such as protein synthesis, the conversion

of nutrients into energy, and the transmission of hereditary characteristics by chemical

mechanisms.

In 1960 Michael Savageau and Eberhard Voit introduced the idea of biochemical sys-

tems motivated by employing dynamical systems to investigate chemical processes involv-

ing biomolecules [4–7]. Thenceforth, studies on biochemical processes have elucidated the

complications in the models, caused by the complex mechanisms underlying biochemi-

cal processes, by submitting some simplifications [8, 9]. Due to the complex nonlinear

structure of biochemical reaction models, Hopf bifurcations have been studied mostly

numerically for randomly chosen parameter values, and the investigation of limit cycles

are limited to these numerical Hopf bifurcation studies except for some recently proposed
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computational algebra approaches [10–15].

This paper utilizes an approach depending on Lyapunov functions and center manifold

theory to study Hopf bifurcation in two biochemical systems. We obtain general param-

eter conditions for which the systems change qualitative behavior. In Sec. 2, we analyze

the limit cycles of the Brusselator model, a prototype of the autocatalytic oscillatory

reaction model with an approach by using the Lyapunov functions for two-dimensional

systems to determine Hopf bifurcation. We show that under given parameter conditions,

the Brusselator model undergoes a supercritical Hopf bifurcation, and there is no possi-

bility for a subcritical Hopf bifurcation. In Sec. 3, we investigate the dynamics of the

three-dimensional smallest biochemical model with Hopf bifurcation with the help of the

approach for finding limit cycles using Lyapunov functions similar to Sec. 2. We obtain

a center manifold of the three-dimensional system up to degree three and investigate the

limit cycle bifurcations on the center manifold with an approach for analytic or smooth

systems depending on parameters.

First, we give some general introduction about stability analysis and Hopf bifurcation

and the theory related to the methods used in the paper.

Remark 1 . It is well-known that for any system

ẋ = −y + P (x, y) = P1(x, y)

ẏ = x+Q(x, y) = Q1(x, y),
(1)

it is always possible to find a function Φ(x, y) of the form [16]

Φ(x, y) = x2 + y2 +
∑

j+k=3

φjkx
jyk, (2)

such that

∂Φ

∂x
· P1(x, y) +

∂Φ

∂y
·Q1(x, y) = g1

(
x2 + y2

)2
+ g2

(
x2 + y2

)3
+ . . . . (3)

Notice that Φ is a Lyapunov function for (1), hence by the Lyapunov Theorem on asymp-

totic stability [17], the origin is a stable (unstable) focus if the first nonzero Lyapunov

coefficient gi on the right-hand side of (3) is negative (positive).

When we transform system

ẋ = ax+ by + P ′(x, y) = P2(x, y)

ẏ = cx− ay +Q′(x, y) = Q2(x, y),
(4)
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which is a system where the trace of the linear approximation matrix is zero, to the form

(1), we obtain expressions involving radicals. To avoid working with radicals, we look for

a positive-definite Lyapunov function Ψ of the form

Ψ(x, y) = αx2 + βxy + γy2 +
∑

j+k=3

ψjkx
jyk, (5)

satisfying (3) for system (4). Computations explicate that the equality (3) can take place

if we set

α = −cβ
2a
, γ =

bβ

2a
(6)

for system (4). As it is known the quadratic form

αx2 + βxy + γy2 (7)

is positive-definite, if α > 0 and 4αγ − β2 > 0. In view of (6), 4αγ − β2 = −β2
(
1 + bc

a2

)
.

Hence, when the origin of system (4) is a center or a focus, quadratic form (7) is positive-

definite [11].

We now present the Local Center Manifold Theorem, which shows that in some cases,

the qualitative behavior in a neighborhood of a singular point x0 of the system

ẋ = f(x), (8)

with x ∈ Rn is determined by its behavior on the center manifold near x0 [18]. Since

the center manifold is generally of smaller dimension than system (8), this simplifies

the problem of determining the stability and qualitative behavior of the flow near the

singular points of system (8). We only present the theory for our purpose when there are

no eigenvalues with positive real parts.

Theorem 1 (The Local Center Manifold Theorem) [18]. Let f ∈ Cr(E), where

E is an open subset of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and

the matrix of the linear part of f has c eigenvalues with zero real parts and s eigenvalues

with negative real parts, where c+ s = n. Then, system (8) can be written in the form

ẋ = Cx + F(x,y)

ẏ = Py + G(x,y),
(9)

where (x,y) ∈ Rc ×Rs, C is a square matrix with c eigenvalues having zero real parts,

P is a square matrix with s eigenvalues with negative real parts, and F(0) = G(0) = 0,
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DF(0) = DG(0) = 0; furthermore, there exists a δ > 0 and a function h that defines the

local center manifold

W c(0) = {(x,y) ∈ Rc ×Rs|y = h(x)for|x| < δ}, (10)

and satisfies

Dh(x)[Cx + F(x,h(x))]− Ph(x)−G(x,h(x)) = 0 (11)

for |x| < δ; and the flow on the center manifold W c(0) is defined by the system of

differential equations

ẋ = Cx + F(x,y) (12)

for all x ∈ Rc with |x| < δ.

Although equation (11) is a quasilinear partial differential equation for the components

of h(x), which can be challenging to solve for h(x), it still gives us a method to compute

h(x) to any degree that we wish, provided that the integer r in Theorem 1 is sufficiently

large. This is accomplished by substituting the series expansion for the components of

h(x) into equation (11).

Note that one of the important applications of center manifolds (called the Pliss re-

duction principle [19]) is that the reduction of the study of the stability of the original

high-dimensional system to studying the stability of a lower dimensional system.

Now, we consider a three-dimensional system of the form

ẋ = Ax + F(x) = F̃(x), (13)

where x = (x, y, z), the matrix A has a pair of pure imaginary eigenvalues λ1,2 and

a real eigenvalue λ3 < 0. F is an analytic vector-function in a neighborhood of the

origin such that its series expansion starts from quadratic or higher terms, and F̃(x) =

(F̃1(x), F̃2(x), F̃3(x))T .

After a linear transformation and rescaling of time, system (13) can be written in the

form
u̇ = −v + P (u, v, w) = P̃ (u, v, w)

v̇ = u+Q(u, v, w) = Q̃(u, v, s)

ẇ = −λw +R(u, v, w) = R̃(u, v, w),

(14)

where λ is a positive real number and P,Q,R are polynomials without constant or linear

terms. By Theorem 1, system (14) has a center manifold w = f(u, v) [20]. Hence, the
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trajectories in a small neighborhood of the origin tend to the trajectories of the center

manifold as time increases. The phase portrait of system (14) in a neighborhood of the

origin on W c can be either a center or a focus depending on the added nonlinear terms P ,

Q, and R. Since system (14) is analytic, for every r ∈ N there exists in a sufficiently small

neighborhood of the origin a Cr invariant manifold W c, the local center manifold, that

is tangent to the (u, v)-plane at the origin and which contains all the recurrent behavior

of system (14) in a neighborhood of the origin in R3. To investigate the behavior of

trajectories on the center manifold of system (14), we can find an initial string of the

Taylor expansion of the manifold looking for it in the form w = a1u+ a2v+ . . . , plug the

expansion into the first two equations of system (14), and then study the dynamics of the

resulting two-dimensional system.

For the proof of the following theorem, see [21].

Theorem 2 (Lyapunov Center Theorem) [21]. For system (14) with the corre-

sponding vector field

X := P̃ ∂
∂u

+ Q̃ ∂
∂v

+ R̃ ∂
∂w
,

the origin is a center for X|W c if and only if X admits a real analytic local first integral

of the form

Φ(u, v, w) = u2 + v2 +
∑

j+k+l≥3

φjklu
jvkwl (15)

in a neighborhood of the origin in R3. Moreover, when there exists a center, the local

center manifold W c is unique and is analytic.

For system (14), we can find a function Φ(u, v, w) of the form (15) such that

XΦ(u, v, w) =
∞∑
k=1

gk
(
u2 + v2

)k+1
. (16)

Functions gk and φjkl depend on the parameters of the system, if on the right-hand

sides of (14) are functions depending on parameters. If all gk vanish for some parameter

values, system (14) has a center at the origin. If all gk do not vanish for some parameter

values, by the Lyapunov stability theorem [16], the singular point at the origin is a

stable focus (unstable focus), if the first nonzero gk is negative (positive). If the first

nonzero coefficient in (16) is gK , by perturbing the system such that |gi−1| � |gi| and

the signs of gk alternate, we obtain K − 1 limit cycles bifurcated from the origin of the

system [11, 22]. The following theorem shows that a similar approach can be applied to
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study bifurcations of limit cycles on the center manifold of system (13). Although it is

possible to transform system (13) to system (14), such transformation usually involves

expressions containing radicals which will also appear in the coefficients of system (14).

By this approach, we study system (13) for which we assume that function F̃ depends on

parameters a = (a1, a2, . . . , as) to bypass radical expressions. For the proof of the next

theorem, see [11].

Theorem 3 [11]. Assume that for system (13), there exists a polynomial

Ψ(x, y, z) =
∞∑

i+j+k=2

ψijkx
iyjzk, (17)

such that

XΨ =
∂Ψ

∂x
· F̃1 +

∂Ψ

∂y
· F̃2 +

∂Ψ

∂z
· F̃3

= g1
(
x2 + y2

)2
+ g2

(
x2 + y2

)3
+ . . .+ gn−1

(
x2 + y2

)n
+O

(
‖(x, y, z)‖2n+1

)
.

(18)

Let

z = f(x, y,a∗) (19)

be the center manifold of system (13) corresponding to the value a∗ of parameters of the

system, and

p2(x, y, z,a
∗) =

∑
i+j+k=2

ψijkx
iyjzk (20)

be the quadratic part of (17). Let p̃2(x, y,a
∗) be p2(x, y, z,a

∗) evaluated on (19). Assume

that p̃2(x, y,a
∗) is a positive-definite quadratic form and

g1(a
∗) = g2(a

∗) = . . . = g`(a
∗) = 0, g`+1(a

∗) 6= 0, (21)

where ` < n− 1. Then,

i) if g`+1(a
∗) < 0 (g`+1(a

∗) > 0), system (13) has a stable (unstable) focus at the origin

on the center manifold,

ii) if it is possible to choose perturbations of the parameters a in system (13) such that

|g1(a(`,∗))| � |g2(a(`−1,∗))| � . . .� |g`(a(1,∗))| � |g`+1(a
∗)|, (22)

a(i+1,∗) is arbitrarily close to a(i,∗), and the signs of gs(a
(m,∗)) in (22) alternate, then

system (13) corresponding to the parameter a(`,∗) has at least ` limit cycles on the

center manifold.
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By using the Lyapunov functions and Theorem 3, we look for function (17) satisfying

(18) and use Theorem 4 to eliminate x, y, z from the system. We describe the following

computational procedure to find the first m polynomials gi below.

1. Write down the initial string of (17) up to order 2m,

Ψ2m(x, y, z) =
2m∑

i+j+k=2

ψijkx
iyjzk.

2. Equalize the coefficients of the terms of order ` in the expression

∂Ψ2m

∂x
· F̃1 +

∂Ψ2m

∂y
· F̃2 +

∂Ψ2m

∂z
· F̃3 − g1(x2 + y2)2 − · · · − gm−1(x2 + y2)m = 0 (23)

to zero for each ` = 2, . . . , 2m to obtain 2m − 1 linear systems with unknown variables

ψijk and g1, . . . , gm.

3. Look for solutions of all linear systems beginning from ` = 2. Note that, the linear

systems that correspond to odd ` = 2`0−1 always have unique solutions. Then substitute

the resulting ψijk values in the linear systems that correspond to ` > 2`0−1. For systems

that correspond to even ` = 2i0, consider the linear system with unknowns ψijk and g`0 .

In this case, one of the ψijk values can be chosen arbitrarily. After solving the system,

if `0 = 2, assign 1 to the undefined ψijk, and if `0 > 2 assign 0 to undefined ψijk. Then,

substitute the resulting φijk to the linear systems that correspond to ` > 2`0.

4. Evaluate (23) with the resulting φijk (i + j + k ≤ 2i0) to find the coefficient of

xi0yj0zk0 which is denoted by g`0−1.

By the Pliss reduction principle, the stability of the origin of system (14) is the same

as the stability of the singular point at the origin on the center manifold. Therefore, if

condition (21) holds, the origin of system (14) is asymptotically stable if gk+1(a
∗) < 0,

and it is unstable if gk+1(a
∗) > 0 [19].

Now, we recall some theory about elimination ideals, which we will use later.

Consider a system of polynomials with coefficients in some field k,

f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0, (24)

and the corresponding ideal I = 〈f1, . . . , fk〉 ⊂ k[x1, . . . , xn].

Definition 1 [16]. Let I be an ideal in k[x1, . . . , xn] with the implicit ordering of the

variables x1 > x2 > · · · > xn, and fix ` ∈ {0, 1, . . . , n − 1}. The `th elimination ideal of

I is the ideal I` = I ∩ k[x`+1, . . . , xn].
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Theorem 4 (Elimination Theorem) [16]. Let us fix the lexicographic term order on

the ring k[x1, . . . , xn] with x1 > x2 > · · · > xn and let G be a Gröbner basis for an ideal

I of k[x1, . . . , xn] with respect to this order. Then for every `, 0 ≤ ` ≤ n− 1, the set

G` := G ∩ k[x`+1, . . . , xn]

is a Gröbner basis for the `th elimination ideal I`.

We apply this theory by examining the first Lyapunov coefficients to study the Brus-

selator model in Sec. 2 and the smallest biochemical model with Hopf bifurcation in Sec.

3.

2 The Brusselator model

In 1971, Ilya Prigogine introduced a prototype of the autocatalytic oscillatory reaction

model, called the Brusselator model, concerning the reaction schemes [23]

A
k̃1−→ X

B +X
k̃2−→ Y +D

2X + Y
k̃3−→ 3X

X
k̃4−→ E,

where A and B are initial reactants, D and E are reaction products and X and Y are

the autocatalytic reactants, k̃1, k̃2, k̃3, and k̃4 are values of the reaction rate coefficients

for each component reaction. Acknowledging the law of mass action in these schemes, we

obtain the system
ẋ = k1 − (k2 + k4)x+ k3x

2y

ẏ = k2x− k3x2y,
(25)

under the transformation k1 = A0k̃1 and k2 = B0k̃2, where A and B are assumed to be

constant, and A0 and B0 are their initial values. Here, ẋ and ẏ denote the change in the

concentrations of the two variables with respect to time.

Similar to various autocatalytic models, the Brusselator model possesses numerous

steady-states and periodic orbits [24]. Llibre et al. examined the first integrals of the

Brusselator model in function of its parameters in 2012 [13], and its dynamics by analyzing

the flow of it in the Poincaré disc in 2020 [14]. The existence of Hopf bifurcation for
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the generic models of Brusselator type subject to the homogeneous Neumann boundary

condition is presented by Li, by adapting useful notations of diffusion-driven instability

[25]. Nevertheless, there is no comprehensive study on the general case of Hopf bifurcation

analysis in the original Brusselator model. In this section, we determine the existence

and the stability of Hopf bifurcation for the diffusion-free Brusselator model by utilizing

Lyapunov functions.

System (25) has a unique singular point at E = (k1
k4
, k2k4
k1k3

) which is positive for chemi-

cally relevant parameters k1 > 0, k2 > 0, k3 > 0 and k4 > 0. Replacing (x, y) with E, the

characteristic equation of system (25) is

λ2 +

(
k21k3
k24
− k2 + k4

)
λ+

k21k3
k4

= 0 . (26)

To have a pair of pure imaginary roots

λ2 + w2 = 0, (27)

the characteristic polynomial must satisfy

k2 > k4, k3 =
k24
k21

(k2 − k4). (28)

To verify the transversality conditions at E [11]

d

dk3
Re(λ+1,2) > 0,

d

dk3
Re(λ−1,2) < 0, (29)

we differentiate characteristic equation (26) with respect to k3 and we get

dλ

dk3

(
2λ+

k21k3
k24
− k2 + k4

)
+
k21
k24
λ+

k21
k4

= 0, (k4 6= 0) (30)

from which follows (
dλ

dk3

)−1
=

2λ+
k21k3
k24
− k2 + k4

−k21
k24
λ− k21

k4

. (31)

Thus,

sign

{
d

dk3
(Reλ1,2)

}
k+3

= sign

{
Re(

dλ1,2
dk3

)−1
k+3

}

= sign

Re
2λ+

k21k
+
3

k24
− k2 + k4

−k21
k24
λ− k21

k4


= sign


k21k

+
3

k24
− k2 + k4

−k21
k24

 = 1(k2 > k4)

(32)
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Similarly,

sign

{
d

dk3
(Reλ1,2)

}
k−3

= sign

{
Re

(
dλ1,2
dk3

)−1
k−3

}

= sign


k21k

−
3

k24
− k2 + k4

−k21
k24

 = −1(k2 < k4) .

(33)

Thus, (29) holds. The eigenvalues of the Jacobian of system (25) at E are

λ1,2 =
(k2 − k4)k24 − k21k3 ±

√
((k2 − k4)k24 − k21k3)2 − 4k21k3k

3
4

2k24
. (34)

If (k21k3 + k24(k4 − k2))2 − 4k21k3k
3
4 < 0, the eigenvalues of the Jacobian matrix of system

(25) are complex conjugates. Additionally, when (k2 − k4)k24 − k21k3 6= 0, all trajectories

are spirals in the neighborhood of the singular point E and the singular point is a focus.

Moreover, when (k2 − k4)k24 − k21k3 < 0, all near trajectories move towards E, and when

(k2 − k4)k24 − k21k3 > 0, all near trajectories move away from E [26]. When (k2 − k4)k24 −

k21k3 = 0, the singular point E is either a center where all trajectories are elliptical, or a

focus, known as the center-focus problem which is a challenging task to study [16].

To determine the Hopf bifurcation of system (25), we first move the singular point

E(k1
k4
, k2k4
k1k3

) to the origin by performing the linear transformation

x→ X +
k1
k4
, y → Y +

k2k4
k1k3

,

which after rewriting X as x and Y as y, yields the following system.

ẋ =
k24x(k1(k2 − k4) + k2k4x) + k1k3(k1 + k4x)2y

k1k24
= F (x, y)

ẏ = −(k1 + k4x)(k2k
2
4x+ k1k3(k1 + k4x)y)

k1k24
= G(x, y) .

(35)

A common approach to determine Hopf bifurcations is the computation of normal

forms [27]. Considering that the computation of the normal form is a highly laborious

procedure, we propose a diverse approach based on Lyapunov functions, for which the

computations are comparatively more manageable for chemical systems.

Theorem 5 . If in system (35) (or (25)) parameters satisfy conditions (28), then the

singular point is a stable focus.

Proof 1 . The eigenvalues of the linearized system are

µ1,2 = ±
√
k4(k4 − k2) .
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The expression under the radical is always negative since k2 > k4, therefore the singular

point at the origin of (35) is either a center or a focus (the same conclusion holds for the

point E of system (25)). For system (35) we look for a function of the form

Ψ8(x, y) =
8∑

k+s=2

ψksx
kys (36)

satisfying

∂Ψ8

∂x
· F (x, y) +

∂Ψ8

∂y
·G(x, y) = g1(x

2 + y2)2 + g2(x
2 + y2)3 + g3(x

2 + y2)4. (37)

For k + s = 2, the left-hand side of equation (37) is

∂(αx2 + βxy + γy2)

∂x
· F (x, y) +

∂(αx2 + βxy + γy2)

∂y
·G(x, y)

= (2αx+ βy)
k24x(k1(k2 − k4) + k2k4x) + k1k3(k1 + k4x)2y

k1k24

− (βx+ 2γy)
(k1 + k4x)(k2k

2
4x+ k1k3(k1 + k4x)y)

k1k24

= (2α(k2 − k4)− βk2)x2 +

(
−2γk2 + β(k2 −

k21k3
k24
− k4) +

2αk21k3
k24

)
xy

+ (β − 2γ)
k21k3
k24

y2 + h.o.t. = 0,

(38)

from which we obtain

α =
βk2

2(k2 − k4)
, γ =

β

2
(39)

by equalizing the coefficients in front of each quadratic term to zero. Note that

∂F (x, y)

∂x

∣∣∣
y=0

= k2 − k4,
∂F (x, y)

∂y

∣∣∣
x=0

=
k21k3
k24

,
∂G(x, y)

∂x

∣∣∣
y=0

= −k2,
∂G(x, y)

∂y

∣∣∣
x=0

= −k
2
1k3
k24

, (40)

hence,
∂F (x, y)

∂x

∣∣∣
y=0

+
∂G(x, y)

∂y

∣∣∣
x=0

= k2 − k4 −
k21k3
k24

= 0 (41)

gives (28). Continuing by this manner and equalizing the coefficients in front of the same

monomials xkys on both sides of equation (37), we obtain all coefficients up to degree

8. We choose β = 2 without loss of generality, so that the quadratic form (7) of (36)

is positive-definite, since 4αγ − β2 = 4k4
k2−k4 > 0(k2 > k4). Since the quadratic form

(7) is positive-definite, Ψ8(x, y) given in (36) is a positive-definite Lyapunov function
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in a sufficiently small neighborhood of the origin for system (35). Performing further

computations, we obtain the first Lyapunov coefficient

g1 = − 2k34(k2 − k4)(k2 + k4)

k21(12k22 − 16k2k4 + 7k24)
. (42)

The semi-algebraic system

g1 ≥ 0 ∧ k1 > 0 ∧ k2 > k4 ∧ k4 > 0 ∧ k3 =
k24
k21

(k2 − k4) (43)

has no solution; therefore, g1 is always negative. Since g1 < 0, the derivative with re-

spect to the vector field is negative-definite considering (37). Consequently, system (35)

undergoes supercritical Hopf bifurcation near E.

Example 1 . We have shown that system (25) undergoes Hopf bifurcation under con-

dition (28). In particular, for (k1, k2, k4) = (1, 2.6, 1.8), and k3 =
k24
k21

(k2 − k4) = 2.592,

system (25) becomes

ẋ = 1− 4.4x+ 2.592x2y , ẏ = 2.6x− 2.592x2y . (44)

The eigenvalues of the Jacobian matrix of system (44) at singular point E = (0.55, 1.805)

are ±1.2i. Since g1 = −1.41968 < 0, singular point E is a stable focus of system (44) as

shown in Fig. 1 (a). Near trajectories moving towards E from initial point (0.54, 2.1) is

illustrated. When parameter k3 changes to the slightly smaller value 2.55, the focus at E

becomes unstable leading to a supercritical Hopf bifurcation for system (25) as shown in

Fig. 1 (b). The trajectories emerging from initial point (0.54, 1.79) move away from E

and the trajectories emerging from initial point (0.42, 1.78) move towards E.

3 The smallest biochemical model

In 1995, Wilhelm et al. presented the smallest biochemical system based on a sufficient

condition for a Hopf bifurcation in three-dimensional systems with the reaction scheme

[28,29]

A+X
k̃−→ 2X

X + Y
k̃2−→ A+ Y

Y
k̃3−→ A

X
k̃4−→ Z
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Figure 1. In (a), × and ? denote the singular point and initial point for system
(44) respectively. In (b), red × denotes singular point, blue ? and black
? denote initial points.

Z
k̃5−→ Y

where A denotes outer reactants representing at least two different substances for thermo-

dynamical reasons, and X, Y and Z are the autocatalytic reactants, k̃, k̃2, k̃3, k̃4, and k̃5

values are the reaction rate coefficients for each component reaction. By considering the

mass action law, the system dynamics are governed by the system of differential equations

ẋ = kx− k2xy

ẏ = −k3y + k5z

ż = k4x− k5z,

(45)

where the parameters k, k2, k3, k4 and k5 are positive real numbers. In 2009, Wilhelm

discussed the roles of the reactions concerning the necessary conditions for the bistability

of system (45) [30]. Smith presented the global behavior of solutions for system (45)

that exhibits a Hopf bifurcation, a competitive system with a monotone cyclic feedback,

with the help of the Poincaré-Bendixson theory by ruling out periodic orbits with a

Bendixson criterion in 2012 [31]. This section describes an approach to studying limit

cycle bifurcations of system (45) using a Lyapunov function on the center manifold.

System (45) has two singularities, E0 = (0, 0, 0) and

E1 =

(
kk3
k2k4

,
k

k2
,
kk3
k2k5

)
. (46)

We consider E1 when all parameters are positive real numbers in order for the system

to have a chemical meaning. The Jacobian of the matrix of the linear approximation of

-538-



system (45) at singular point E1 is

A =

 0 −kk3
k4

0

0 −k3 k5
k4 0 −k5

 .

The eigenvalues of A are roots of a cubic polynomial and have rather complicated expres-

sion. To simplify calculations, we use the following approach [32] based on the elimination

theory [16,33]. The characteristic polynomial of matrix A is

p(λ) = kk3k5 − k3k5λ− k3λ2 − k5λ2 − λ3.

By equalizing the coefficients of the same terms on both sides of the equation

p(λ) = −(λ2 + w2)(λ+ b), (47)

we obtain the system

−kk3k5 + bw2 = 0,−k3k5 + w2 = 0, b− k3 − k5 = 0. (48)

Computation of the second elimination ideal of the ideal I = 〈−kk3k5 + bw2,−k3k5 +

w2, b − k3 − k5〉 with respect to the ordering {w, b} > {k, k2, k3, k4, k5} to eliminate the

variables w and b from system (48), yields the ideal 〈k−k3+k5〉, which gives the condition

k = k3 + k5. (49)

Hence, system (45) has a pair of pure imaginary eigenvalues if (49) is satisfied. In this

case, system (45) becomes
ẋ = (k3 + k5)x− k2xy

ẏ = −k3y + k5z

ż = k4x− k5z,

(50)

which for positive values ki, (i = 2, 3, 4, 5) has a pair of pure imaginary eigenvalues

λ1,2 = ±i
√
k3k5 and a negative eigenvalue λ3 = −k3− k5. Moving E1 to the origin by the

linear transformation under (49)

X = x− k3(k3 + k5)

k2k4
, Y = y − k3 + k5

k2
, Z = z − k3(k3 + k5)

k2k5

and rewriting X as x and Y as y, yields the system

ẋ = −k
2
3 + k3k5
k4

y − k2xy

ẏ = −k3y + k5z

ż = k4x− k5y.

(51)
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Theorem 6 . If in system (51) (or (50)) parameters satisfy conditions (49), then the

singular point is a stable focus.

Proof 2 . For system (51) we look for a function of the form (36) satisfying (??). The

calculations using the procedure described in the Introduction applied similarly to system

(25) leads

g1 = −4k25(k22k
3
3k

2
4 + k22k

2
3k

2
4k5)

k23 + 6k3k5 + k25

(
3k63 + 12k53k5 + 2k33k

2
4k5 + 18k43k

2
5 + 4k23k

2
4k

2
5

+3k44k
2
5 + 12k33k

3
5 + 2k3k

2
4k

3
5 + 3k23k

4
5

)
,

(52)

for system (51), which is negative.

Now, we look for a center manifold of system (51) of the form z = h(x, y). Substituting

the series expansion for the components of h(x, y) into

ż =
∂h

∂x
ẋ+

∂h

∂y
ẏ,

we determine the center manifold h(x, y) up to degree three:

h(x, y) =
k4

k3 + k5
x+

k3
k5
y − k2k

2
4k5

(k3 + k5)2(k23 + 6k3k5 + k25)
x2

+
k2k4

k23 + 6k3k5 + k25
xy +

k2k3
k23 + 6k3k5 + k25

y2

+
6k22k

3
4k

2
5(k43 + 8k33k5 + 19k23k

2
5 + 8k3k

3
5 + k45)

(k3 + k5)3(k23 + 6k3k5 + k25)2(k43 + 14k33k5 + 35k23k
2
5 + 14k3k35 + k45)

x3

+
k22k4(k

6
3 + 4k53k5 + 10k43k

2
5 + 32k33k

3
5 + 10k23k

4
5 + 4k3k

5
5 + k65)

(k3 + k5)(k23 + 6k3k5 + k25)2(k43 + 14k33k5 + 35k23k
2
5 + 14k3k35 + k45)

xy2

+
k22k

2
4k5(5k

4
3 + 34k33k5 + 79k23k

2
5 + 34k3k

3
5 + 5k45)

(k3 + k5)(k23 + 6k3k5 + k25)2(k43 + 14k33k5 + 35k23k
2
5 + 14k3k35 + k45)

x2y

+
k22k3(k3 + k5)(k

4
3 − 19k23k

2
5 + k45)

(k23 + 6k3k5 + k25)2(k43 + 14k33k5 + 35k23k
2
5 + 14k3k35 + k45)

y3 + . . . .

(53)

For system (51), the quadratic part of function (17) is

p2(x, y, z) = k24x
2 − 2k3k4xy + k23y

2 + k3k5y
2 + 2k3k5yz + k3k5z

2 . (54)

We substitute the linear terms of the center manifold, z = h(x, y) = k4
k3+k5

x + k3
k5
y, into

(54), and obtain

p̃2(x, y) =
k24(k23 + 3k3k5 + k25)

(k3 + k5)2
x2 +

k3(k
2
3 + 3k3k5 + k25)

k5
y2

which is a positive-definite quadratic form. Hence, supercritical Hopf bifurcation occurs

for the flow of system (45) restricted to the center manifold.
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Figure 2. In (a) and (b), red × represents the singular point E and red and blue
∗ represent initial points.

Example 2 . When (k, k2, k3, k4, k5) = (3.5, 1, 2.5, 1.3, 1), system (45) has the singular

point E = (6.73077, 3.5, 8.75) with the eigenvalues λ1,2 = ±1.58114i and λ3 = −3.5.

In Fig. 2 (a), we see that the singular point E is a stable focus. When k = 3.85, the

stable limit cycle is observed as given in Fig. 2 (b) with the first Lyapunov coefficient

g1 = −0.000501049. The eigenvalue spectrum of system (45) at the singular point where

supercritical Hopf bifurcation occurs is given in Fig. 3.
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Figure 3. Eigenvalue spectrum of the singular point E for system (45).

4 Conclusion

In this paper, we have studied the existence and the stability of Hopf bifurcation for a

two-dimensional and a three-dimensional biochemical reactor models by using Lyapunov
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functions and center manifold theory. This approach can help study steady-state solutions

and bifurcations of more realistic biochemical models for which analytical solutions can

not be obtained. The biochemical systems which have no analytical solutions, allow the

investigations to be carried on with this computational algebraic method.
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[12] V. G. Romanovski, M. Han, S. Maćešić, Y. Tang, Dynamics of an autocatalator

model, Math. Methods Appl. Sci. 41 (2018) 9092–9102.

[13] J. Llibre, C. Valls, Liouvillian and analytic first integrals for the Brusselator system,

J. Nonlin. Math. Phys. 19 (2012) 247–254.

[14] J. Llibre, C. Valls, Global qualitative dynamics of the Brusselator system, Math.

Comput. Simul. 170 (2020) 107–114.

[15] I. Kusbeyzi Aybar, O. O. Aybar, B. Ferčec, V. G. Romanovski, S. Swarup Samal, A.
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