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Abstract 
 

 The use of drugs in modern medicine is widespread and no doubt has played 

a significant role in improving outcomes in the treatment of many medical 

conditions.  Hence, the discovery of drugs for new therapeutic indications as well 

drugs of enhanced efficacy for existing indications are of paramount importance.  

Information on drug-target interactions plays an important role in this task—its 

importance is reflected by the fact that searching the Internet based on ‘drug-

target interaction’ yields 280,000,000 hits.  The interaction of a given drug with 

respect to multiple drug targets—also known as polypharmacology—is becoming 

increasingly important in modern drug research as it bears on the role of the 

biological pathways underlying a drug’s mechanism(s) of action, the existence of 

side-effects, and the repurposing of existing drugs for new therapeutic indications.   

The ability of multiple, structurally dissimilar drugs to interact with a given target, 

also known as polyspecificity, is the complement of polypharmacology, and while 

not as well-known has nevertheless played a role in drug discovery research under 

the rubric of multiple lead series.  Both of these concepts are considered in this 

work.  Although sets of n drugs and m targets give rise to  virtual drug-

target pairs, experimental and computational interaction data typically exist for 

only a small subset of these pairs.  Thus, polypharmacology and polyspecificity 

values will, in all likelihood, be underestimated.  As is shown in this work, taking 

account of drug-target pairs of unknown interaction (i.e.  ‘null’ pairs) yields an 

upper bound to these values. However, in order to include such information in 

their analysis it is desirable that a methodology be able to handle null pairs in a 

reasonably straightforward manner.  This is not the case with classical sets where 

the interaction of drug-target pairs is typically represented by set-theoretic 
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relations, where a ‘1’ indicates the presence of an interactive drug-target pair—

with respect to a given interaction threshold—and a ‘0’ indicates the presence of 

a non-interactive pair.  A new set-theoretic formalism based on extreme-value 

intuitionistic fuzzy sets (IFS) is utilized in this work since it explicitly accounts for 

the uncertainty inherent in null drug-target pairs.  As will be demonstrated in 

future work, it can be generalized to include drug-target pairs with real-valued 

interactions. A simple example dataset is provided illustrating the application of 

IFSs to the analysis of drug-target datasets.  

 

1 Introduction 

1.1 Overview of data sources 
 The use of drugs in modern medicine is widespread and no doubt has played a significant 

role in improving outcomes in the treatment of many medical conditions.  Hence, the discovery 

of drugs for new therapeutic indications as well as drugs of enhanced efficacy for existing 

indications are of paramount importance.  In this regard, the field of chemogenomics, which is 

based largely on the study of drug-target interactions, plays a central role.  The growing 

importance of such interactions is clearly of great significance in drug research as shown by a 

recent Internet search of ‘drug-target interaction’ that yielded 280,000,000 hits.  Heretofore, 

most of the data on drug-target interactions resided in the corporate databases of 

pharmaceutical companies, but over the last decade there has been a significant increase in the 

amount of drug-target information that now can be found in a number of publicly available 

databases [1–9].1 

 Even though a wide variety of drugs and their targets have been studied, the interactions 

of only a small percentage of drug-target pairs have been determined experimentally, as 

exemplified by the four databases given in Table 1.  In fact, the known interactions of drug-

target pairs in many databases represent less than five percent of the possible interactions, 

though there are exceptions.  Mestres, et al. have characterized this condition as a lack of data 

completeness [10,11]. Addressing this issue experimentally is an enormous task.  And although 

obtaining large, diverse sets of compounds for screening campaigns is fairly straightforward 

[12-14], the same cannot be said for drug targets, even with the availability of the modern tools 

afforded by molecular biology.  Thus, the lack of experimental drug-target data can largely be 

attributed to a lack of target availability, although the resources needed are also considerable, 

further frustrating efforts within the public domain to create large drug-target datasets (Cf. [9]).  

 
1 The terminology ‘drug’ rather than the more general ‘ligand’ is employed in this work because of its 

extensive usage in drug research.  It should, however, be noted that the interaction of a wide variety 

of ligands, of which drugs form a subset, are typically contained in such databases.  In addition, the 

term ‘interaction’ rather than the more restrictive ‘activity’ is used here as many of the values that 

describe the state of drug-target pairs, such as IC50’s and scoring function values, are not directly 

associated with activities or binding free energies. 
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 Table 1 also provides an indication of how sensitive the number of interactive pairs is to 

the value of the interaction threshold.  Since interaction values that fall below  are 

rarely of interest in the search for bioactive compounds, such weakly interactive pairs are rarely 

if ever included in drug-target databases.  This results in a severe undercounting of these pairs, 

further exacerbating the already significant lack of data completeness present in all public drug-

target databases (vide supra).  As discussed in Section 5, neglecting weakly-interactive pairs 

can significantly influence the magnitude of computed upper bounds for a number of drug-

target parameters. 

 Not surprisingly, data completeness is significantly biased by therapeutic areas of 

interest, such as kinases, ion channels, G-protein coupled receptors, and proteases, that drive 

much of drug research.  In addition to the lack of completeness, data in these databases tend to 

be sporadic and of uneven quality due to the fact they are obtained from multiple datasets 

acquired from many sources, using a number of experimental protocols, under a variety of 

experimental conditions.    Although a number of rela-tively small, effectively complete 

datasets have been assembled, they are generally confined to industrial pharmaceutical 

laboratories. In any case, publicly available drug-target databases fall far short of attaining the 

professed, but highly unrealistic, goal of chemogenomics, namely, the description of all 

possible drugs with respect to all possible druggable targets [15-18]. 

 

1.2 Computational approaches to drug-target interactions 

 Numerous attempts have been made to overcome the lack of data completeness by 

applying computational methods.  Because of the sheer size of the problem, an early trend 

appeared to favor a more qualitative approach aimed at assessing whether a given drug does or 

does not interact in some fashion with a specific target.  This is consistent with Rognan’s view 

that “changing paradigms in rational drug design⎯making a binary yes-or-no answer instead 

[of] quantitative predictions⎯are pushing again structure-based algorithms under the 

spotlight” [19].  Koeppen and Bieler have provided an excellent overview of many of the 

computational aspects of chemogenomics [20], as has the book edited by Jacoby [21]. Other 

relevant reviews include [22-25].  Table 1 of the publication by Nogueira and Koch [26] 

provides a reasonably up to date summary of the available web-based servers for target 

prediction. 

 Recently, a host of powerful computational algorithms have been developed, some of 

which are exemplified by the following references [26-37].  As is the case for mathematical 

models in general, these methods rely on existing experimental drug-target interaction data, 

and hence are plagued by its general sparsity and inhomogeneity.  Because of this they are 

unable to deal entirely with the problem of data completeness, although they hold some 

promise for limited sets of drugs and targets.   
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 Structure-based ‘docking’ methods offer an alternative to mathematical modeling-based 

approaches since they do not depend on experimental drug-target interaction data, although 

they do depend on detailed three-dimensional target-structure data.  There are two general 

types of approaches that fall under this rubric⎯scoring-function methods [26,38-43] and free-

energy methods [44-47].  The former tends to treat molecular interactions phenomenologically 

while the latter tends to adopt a more fundamental (a priori) approach based on the use of 

molecular potential-energy functions and molecular dynamics or Monte Carlo simulations.  

Both approaches require structural information on the target (usually a protein), which can be 

obtained from the PDB (Protein Data Bank and its affiliates: www.rcsb.org) and from the 

BMRB (Biological Magnetic Resonance Bank:  www.bmrb,wisc.edu).  Although there are 

nearly 150,000 macromolecular structures in these repositories, the three-dimensional 

structures of many biologically relevant targets, especially the membrane-bound receptors that 

provide a significant number of drug targets, are still unavailable.  An added complication of 

both methods is the need to account for the structural flexibility of both drugs and targets. 

Although partial drug and target flexibility can be handled rather efficiently, if fully accounted 

for it adds considerably to the computational burden of these methods. 

 Since the values obtained in many instances from scoring functions are 

phenomenological, thresholds used to separate interactive from non-interactive drug-target 

pairs are by their nature somewhat artificial.  Moreover, since there is no measure common to 

all scoring functions, values determined by different computational methods cannot be easily 

compared to one another.  This is not the case for drug-target interactions estimated by free-

energy methods, which have a fundamental thermodynamic basis.  Thus, computed free 

energies can, in principle, be compared directly, although their accuracy may differ depending 

on a variety of factors associated with their determination.  Hence, all of these approaches must 

be used with caution.   

 Scoring function-based methods have recently been refined to an amazing degree and 

now can deal with computational screening experiments that involve the docking of millions 

to even billions of compounds to a given target [48].  Moreover, these methods have identified 

active molecules with novel chemotypes [49,50].  Such methods are, however, extremely 

computationally intensive, and while they have identified a number of interesting chemotypes 

they have no doubt also missed some.  In any case, they represent a significant advance in 

computational docking methodology, and as such hold considerable promise as a means for 

identifying interesting, new structural classes of drugs.  The difficulty with applying these 

methods to the current work is the need to carry out docking experiments not only on a large 

number of compounds but also on large a number of targets as well, a significant computational 

burden to say the least. Although free-energy methods afford a more fundamental approach to 

the determination of drug-target interactions, they are considerably more computationally 

intensive.  Hence, they do not at present provide a practical alternative to scoring-function 
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methods.  In any case, it does not appear that the issue of data completeness for large drug-

target databases can be fully addressed experimentally or computationally any time soon. 

 As is the case with experimental methods, a number of issues also arise with respect to 

the results obtained by computational methods, as a given method can usually be implemented 

in a variety of ways, e.g. through the use of more accurate and complete datasets in 

mathematical modeling and improved scoring and potential-energy functions in structure-

based methods.  Hence, use of the same method by two different laboratories does not 

guarantee identical results—some implementations of a given method will produce better 

results than others.  Although these are important issues, dealing with them in more detail in 

this work would take us too far afield. 

 

1.3 A set-theoretical view of drug-target interactions  

 Drug-target pairs are taken to be the elements of sets or relations, the latter also being 

sets.  Pairs with interaction values obtained experimentally or computationally that are equal 

to or greater than a given threshold value are typically designated as interactive pairs.  Pairs 

whose interaction fall below the threshold are designated as non-interactive—use of such 

thresholds is common practice in the analysis of drug-target databases.  A major, often 

neglected, problem involves drug-target pairs whose activities or interactions have neither been 

experimentally determined nor computationally estimated.  Such pairs are typically treated de 

facto as non-interactive pairs or are neglected entirely.  This is routinely done in drug-target 

networks [51-53], which have become a popular way to represent the drug-target information.  

Although rarely done, it is possible to include information on non-interactive and null pairs 

using ‘edge-colored’ networks or the matrix representations [54].     

 Because of the differences posed by experimental and computational assessments of 

drug-target activities or interactions, it is desirable to adopt a consistent language for the 

remainder of this paper.  Thus, the following terminology is used to describe the three types of 

drug-target pairs.  Active or interacting pairs will be designated as interactive pairs, inactive 

or non-interacting pairs will be designated as non-interactive pairs, and pairs of unknown 

activity or interaction will be designated as null pairs. As shown in Table 1, null drug-target 

pairs constitute a substantial fraction of the total number of possible pairs in most databases.  

Hence, assuming that such pairs are non-interactive or neglecting them entirely can 

significantly bias any data analysis.  Thus, a way is needed to take some account of null drug-

target pairs. 

 As will be clear in the following, intuitionistic fuzzy sets (IFSs) provide a suitable 

mathematical framework [55-61] for doing so.  Nevertheless, the question arises as to whether 

the issues treated in this work could not be handled by more traditional methods. This is, in 

fact, the case in the current work, which can also be handled using classical set-theoretic ternary 

relations. However, they cannot be easily extended to treat drug-target pairs with explicit, 
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continuous interaction values, a subject of on-going research in our laboratories. Moreover, 

working within a single, consistent mathematical framework such as IFSs ensures that the 

parameters and inferences derived therefrom provide an internally consistent framework for 

treating a range of related problems. 

 

1.4 Polypharmacology and polyspecificity 

 Polypharmacology is the ability of drugs to interact with multiple targets that generally 

belong to different activity classes [62-64].  Paolini et al. [65] have provided an interesting 

view of pharmacological space from an integrated structure-activity and polypharmacolgy 

point of view.  Although until relatively recently the term was unknown, its influence has long 

been recognized in the form of the side effects and toxicities observed for virtually all drugs.  

Recently, it has also been the basis for the repurposing of a number of drugs for new therapeutic 

indications [66].  

 By combining experimental data and computational estimates, Mestres et al. [10] have 

suggested that on average nearly seven protein targets interact with each drug.  Hu and Bajorath 

[67] have presented an excellent overall summary of polypharmacology data.  Their work, 

which is based on the stringent requirement that drug-target interactions be determined from 

equilibrium measurements (e.g. Keq’s) and not assay-dependent measurements (e.g. IC50’s), 

states that polypharmacology values of two to three are most probable, although greater values 

are possible but less probable.  Their data is roughly consistent with that reported by Jalencas 

and Mestres [68]. 

   By contrast, polyspecificity, which has been shown to be the complement of 

polypharmacology [69], arises from the fact that multiple, structurally dissimilar drugs can 

interact with the same target.   Although one might assume that such behavior would be 

unlikely due to the widely held belief that drug-target interactions are fairly specific, 

polyspecificity is nevertheless quite prevalent [70].  It is, in fact, the basis for the well-known 

practice of using ‘multiple lead series’ in lead optimization within the pharmaceutical industry 

[69,71].    While we are unaware of any published general, systematic study of polyspecificities, 

such studies could be of interest in drug discovery research.  Because of the large amount of 

missing data due to the presence of drug-target pairs of unknown interaction, both 

polypharmacologies and polyspecificities are likely to be significantly underestimated. 

 Joint analogs of polypharmacologies and polyspecificities also exist, although they have 

been less well characterized than their singular counterparts.  Joint polypharmacologies arise 

due to the number of targets that are interactive with respect to a pair of drugs, while joint 

polyspecificities arise due to the number of drugs that are interactive with respect to a given 

pair of targets.  As shown in Section 6, the values of both of these entities, not surprisingly, 

cannot exceed that of their corresponding singular values.    
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 Sections 5 and 6 show that missing data can to some extent be compensated for by 

determining error bounds on the polypharmacology and polyspecificity values. However, the 

error bounds are only useful when the number of null drug-target pairs is much less than the 

corresponding number of interactive pairs, otherwise the bounds become too large to be of 

practical value—this is not usually the case as seen by the data in Table 1.  Vogt, et al. [72] 

have developed an automated approach for removing null pairs that holds considerable promise 

as a means for addressing this issue, although a side-effect of their method is the concurrent 

loss of some interactive pairs that may also be of interest in a given study.   

 A largely unappreciated issue that can also significantly influence the magnitude of the 

bounds on polypharmacologies and polyspecificities is the reluctance of many scientists, for a 

variety of reasons, to publish data on non-interactive drug-target pairs.  Because of this, such 

pairs are counted in the class of null drug-target pairs, artificially increasing its size as well as 

the size of its corresponding error bound. Thus, it is important to include drug-target pairs with 

known, but small interaction values in drug-target databases and datasets.  All of the above 

factors can influence the determination of bounds to polypharmacologies and polyspecificities.  

Nevertheless, such bounds may serve in some cases as suitable measures for these values.  Such 

methods are described in Sections 5 and 6. 

 

1.5 Overview  

 The material in the remainder of the paper is as follows: Section 2 provides a brief 

introduction to intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy relations (IFRs); Section 

3 discusses classical set-theoretic drug-target relations that are the basis of many analyses 

including those based on bipartite drug-target networks; Section 4 describes the development 

of the extreme-value intuitionistic fuzzy sets (IFSEV’s) and relations (IFREV’s) needed to 

handle typical threshold-based drug-target datasets; Section 5 presents an intuitionistic fuzzy 

set analysis of polypharmacologies and polyspecificities; Section 6 extends the analysis to joint 

polypharmacologies and polyspecificities and provides several examples of all four of these 

drug-target parameters; Section 7 presents a summary of the work and several conclusions 

derived from it. 

 

2 Intuitionistic fuzzy sets (IFSs) and relations (IFRs) 

 

2.1 General description 

 Intuitionistic fuzzy sets [55-61] are generalizations of the fuzzy sets developed by Lofti 

Zadeh [73].  As is the case for all types of finite sets, the reference or universal set (a.k.a. the 

Universe of Discourse), X, is given by 

 

  , (2.1) 
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which is a classical, crisp set.  In contrast to both classical, crisp sets and fuzzy sets, IFSs are 

represented by the set of ordered triples 

 

   , (2.2) 

 

where  is a function that indicates membership of the x-th element of X in  

 is a new function that explicitly indicates non-membership of x in ; and 

 is also a new function that provides a measure of the uncertainty due to a lack of 

knowledge of whether x does or does not belong to .  Although it has been suggested that 

IFSs are equivalent to interval-value fuzzy sets, it was shown that they are in fact unique and, 

moreover, are of practical value in many, varied applications [59].   

 The , which is generally called an intuitionistic fuzzy index or hesitation 

margin, is treated here as a measure of ‘knowledge-based uncertainty’ such that  if 

there is complete uncertainly regarding our knowledge of whether x does or does not belong to 

 and  if there is no uncertainty in our knowledge of whether x does or does not 

belong to .  The importance of considering the information contained in all three parameters 

in order to fully characterize IFSs has been addressed in two relatively recent publications 

[60,61].  Note that knowledge-based uncertainty is not the same as measurement-based 

uncertainty, which pervades many areas of science and engineering.  The tilde (‘~’) over the 

set symbol indicates that it is an IFS and not a classical, crisp set. This notation will be used 

throughout the paper. 

 The values of the three characteristic functions satisfy 

 

   (2.3) 

 

for all .  Thus, only two of the entities in Eq. (2.3) are independent. As will be seen in 

the sequel, the uncertainty function plays a key role in the analysis of drug-target databases 

since it deals with null drug-target pairs.  If  is set equal to , as is the case for 

fuzzy sets,  and  becomes equivalent to a fuzzy set.  The 

complement of an IFS is defined as 

 

   , (2.4) 

 

where the first two terms in the ordered triple have been transposed.  
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2.2 Intuitionistic fuzzy set operations 

 The intersection of a pair of IFSs is given by 

 

   (2.5) 

 

where 

 

   (2.6) 

 

and the expression for  in Eq. (2.6) follows from Eq. (2.3) since  is also a set.  

The union of a pair of IFSs is given by 

 

    , (2.7) 

 

where 

   

      , (2.8) 

 

and the expression for  in Eq. (2.8) again follows from Eq. (2.3).  Note the reversal in 

the order of the max and min functions with respect to intersections and unions. 

 

2.3 Cardinalities of intuitionistic fuzzy sets   

 Cardinalities of IFSs are based on the notion of ‘sigma-counts’ given by the function

, which was initially described by Lofti Zadeh for fuzzy sets [73]; sigma-counts play 

an important role in this work.  Because IFSs are more complex than fuzzy sets determining 

their cardinalities is more complex as well [55,56].  In contrast to the case of fuzzy sets, the 

overall cardinality of an IFS is made up of several terms.  The minimum value of the cardinality 

of  is equal to its sigma-count, which is given by 

 

    , (2.9) 

 

while the largest value of the sigma-count is given by 
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    , (2.10) 

 

and is due to the fact that if the unknown data associated with the elements of  were 

actually available they would, in the most optimistic case, positively affect the values of 

individual membership functions, , and thus increase the sigma-count.  Hence, the value 

of the cardinality of  lies in an interval rather than at a single point, i.e. 

  

  . (2.11) 

 

Now consider the sigma-count of the complement .  Because, as shown in Eq. (2.4), the 

first two terms in the ordered triple associated with  are transposed from that of  given in 

Eq. (2.2), the minimum sigma-count of the complement is defined by 

  

  , (2.12) 

 

and the corresponding maximum sigma-count becomes  

 

   . (2.13) 

 

Thus, the sigma-count of  also lies in an interval similar to that given in Eq. (2.11) for , 

i.e.  

 

 . (2.14) 

 

Lastly, it can be shown that 

 

   . (2.15) 

  

Hence, the difference between the max and min counts of  are identical and are equal 

to the total knowledge-based uncertainty. 
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2.4 Intuitionistic fuzzy relations (IFRs) 

 Relations can be defined for IFSs in an analogous manner to that for classical, crisp sets 

given in Section 3.  In the case of IFRs the reference or universal sets are X, given in Eq. 

(2.1), and Y, given in Eq. (2.16) below, 

 

   . (2.16) 

 

and the binary Cartesian product  represents the universal set of the relation⎯  

technically these are binary relations as  is a binary Cartesian product.  Higher-order 

relations can be defined but are not addressed here. Thus, for simplicity the modifier ‘binary’ 

is omitted, as all relations employed in this work are binary relations.  As illustrated by Eq. 

(2.17),  

 

   . (2.17) 

 

Hence, IFRs involve two sets of ordered entities: (1) the usual ordered-pairs that are made up 

from the elements of , such that  for all and (2) the 

ordered-triples associated with the respective membership, non-membership, and knowledge-

based uncertainty functions, , , and , all of whose values lie on 

the unit interval of the real line.  As was the case for the IFSs shown in Eq. (2.3), 

 

 . (2.18) 

 

The relation  can also be represented as an  matrix of ordered triples, 
 

   .

  

   (2.19) 

 

3 Classical, crisp relations describing drug-target interactions 

 The set of drug-target pairs is composed of the set of n drugs, 

  

   (3.1) 

 and m targets 
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   , (3.2) 

 

which are typically represented by classical, set-theoretic relations,  where 

,   are ordered-pairs of the elements of D and T,  and  is 

their Cartesian product.  Set-theoretic relations are typically represented as  

relational matrices (Cf. Eq. (2.19))  

 

   , (3.3) 

 

each of whose elements are given by the characteristic function , which satisfies 

 

  (3.4) 

 

for .  Thus,  is a binary-valued matrix. Summing the 

elements of the i-th row will yield the polypharmacology of the i-th drug, , while summing 

the elements of the j-th column will yield the polyspecificity of the j-th target,  [40,41,46].  

Joint analogs of polypharmacologies and polyspecificities, which involve pairs of drugs and 

targets also exist and are treated in Section 6.    

 If  provides an accurate representation of drug-target interactions, each row 

represents the interaction of the drug associated with that row with respect to each target in the 

set of targets—what can nominally be called a ‘target-based drug interaction profile’ or ‘drug 

profile’ for short.  A given column represents the activity of the target associated with that 

column with respect to each drug in the set of drugs—what can nominally be called a ‘drug-

based target interaction profile’ or ‘target profile’ for short. 

 While this is fairly straightforward, it neglects an important aspect of the problem, 

namely, that many elements of  correspond to null drug-target pairs whose activities have 

neither been experimentally determined nor computationally estimated.  Although it is 

inappropriate to assume that a given null pair is inactive, it is implicitly done in many instances.  

Assuming that to be the case can significantly bias any analysis based on drug-target activities 

(vide supra).  Since, as shown in Eq. (3.4), classical, crisp relations only allow the possibility 

that an element is either a member or not a member of a given relation, they do not have the 

capability to faithfully represent drug-target interactions as they are unable to represent null 

pairs (Note, as discussed in Section 1.3, that ternary and higher-order classical, set-theoretic 
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relations can extend this concept).  Table 1 shows that such pairs generally constitute by far 

the largest number of elements in drug-target relations.  Hence, drug-target relations are 

typically sparsely populated by interactive and non-interactive pairs, which constitute only 

about one to three percent of the number of possible pairs.  Although for some databases the 

percent of interactive and non-interactive pairs may reach 20 percent, this represents an upper 

bound in essentially all cases.  Thus, a new, more general formalism is needed that can address 

the crucial issue of null pairs.  As we shall see, the IFSs described in the previous section 

provide a suitable mathematical framework for accomplishing this task, but an adaptation is 

needed to handle drug-target datasets, as explained in the following section. 

 

4 Extreme-value intuitionistic fuzzy sets and relations 

 Because drug-target pairs are either ‘in’, ‘not in’, or of ‘indeterminant’ membership their 

corresponding membership, non-membership, and knowledge-based uncertainty functions are 

restricted to the set of binary values, .   The fact that these values represent extremes is 

indicated by the subscript ‘EV’ so that IFSs and IFRs are now designated by IFSEV and IFREV, 

respectively.  In order to clearly distinguish normal intuitionistic fuzzy sets and relations from 

their extreme-value counterparts, the latter are labeled with a bar ‘–’ so that and  become   

and  and .  As we are explicitly dealing with drug-target datasets in 

this work, and  will be replaced by  and , respectively, and  by .  

 

4.1 Decomposing IFREV’s to IFSEV’s 

 As we are interested in drug-target interactions in this work, Eq. (2.27) becomes 

 

.  

  

  (4.1)

  

Each row of contains the set of interactions of a given drug with respect to each of the 

targets in the reference set , and hence represent drug profiles, which are given by 

 

  (4.2) 

 

for .  This is exemplified by the rows of drug-target data in Table 2.  The terms 

within the parentheses in the right most column of the table correspond to , 

, and , given respectively by Eqs. (2.9), (2.12), and (2.15).  Their sum is 
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equal to .  Correspondingly, each column of  contains the set of activities of a 

given target with respect to each of the drugs in the reference set , and hence represent target 

profiles, which are given by 

 

   
  (4.3) 

 

for .  This is exemplified by the columns of drug-target data in Table 2. The 

elements in parentheses in the bottom row of the table correspond to , 

, and  given respectively by Eqs. (2.9), (2.12), and (2.15). Their sum is 

equal to .   

 Because the values of the membership, non-membership, and knowledge-based 

uncertainty functions for each of the elements of the IFSEV’s and IFREV’s all lie in  and 

because they satisfy Eqs. (2.3) and (2.19), if one of the values for a given ordered-triple is equal 

to unity the other two must perforce each be equal to zero, as is clear from the ordered-triples 

in Table 2.  This relationship can be written in logical form as 

 

  , (4.4) 

 

where  is the symbol for ‘exclusive-or’.  It provides a means for partitioning drug and target 

profiles into three non-intersecting subsets such that for drug profiles 

   

    (4.5) 

 

for all  and for target profiles   

 

   (4.6) 

 

For all . 

 As is clear from Table 2, the elements in each row, which constitute a drug profile, are 

partitioned.  For example, consider the fifth row where  
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   . (4.7) 

 

Clearly the elements of  form a partition since 

 and . 

 The above discussion shows that  can be decomposed into a family of drug profiles 

 

   . (4.7) 

 

Similar arguments show that  can also be decomposed into a family of target profiles 

 

   . (4.8) 

 

Table 2.  Extreme-value intuitionistic fuzzy relations.  The rows correspond to drug profiles and 

the columns to target profiles.  The terms in parentheses in the right most column are described 

in Section 4 and are given by Eqs. (2.9), (2.12), and (2.15), respectively.  The corresponding 

terms in the bottom row are described in Section 4 and are also given by the same equations. 

 

 
        

Counts 

 (0,0,1) (1,0,0) (0,1,0) (1,0,0) (0,0,1) (1,0,0) (0,0,1) (1,0,0) {4,1,3} 

 (1,0,0) (1,0,0) (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0) {4,3,1} 

 (0,1,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (0,0,1) (1,0,0) (0,1,0) {5,2,1} 

 
(0,0,1) (1,0,0) (0,1,0) (1,0,0) (0,0,1) (0,0,1) (0,1,0) (1,0,0) {3,2,3} 

 (0,1,0) (1,0,0) (1,0,0) (0,0,1) (1,0,0) (0,1,0) (0,0,1) (0,1,0) {3,3,2} 

 (1,0,0) (1,0,0) (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,0,1) (0,1,0) {3,3,2} 

 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (1,0,0) (0,1,0) (1,0,0) (0,0,1) {2,2,4} 

 
(0,0,1) (0,0,1) (0,1,0) (1,0,0) (0,0,1) (0,0,1) (0,1,0) (1,0,0) {2,2,4} 

 (1,0,0) (0,0,1) (0,0,1) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0) {3,2,3} 

 (1,0,0) (0,0,1) (0,1,0) (0,0,1) (1,0,0) (1,0,0) (0,1,0) (0,1,0) {3,3,2} 

 (0,0,1) (1,0,0) (0,0,1) (1,0,0) (0,1,0) (0,1,0) (1,0,0) (0,0,1) {3,2,3} 

 
(1,0,0) (1,0,0) (0,1,0) (0,0,1) (0,0,1) (0,1,0) (0,0,1) (1,0,0) {3,2,3} 

Counts {5,3,4} {8,0,4} {2,7,3} {5,0,7} {4,4,4} {6,4,2} {4,5,3} {7,2,3} — 
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5 Polypharmacologies and polyspecificities 

 

5.1 Polypharmacologies 

 As noted in the introduction, polypharmacology [62-64] has taken on an increased 

importance in drug research, due to the fact that it is largely responsible for side effects and 

provides a basis for the repositioning of existing drugs for new therapeutic indications [66].  

Although they are less well known, polyspecificities have appeared in a number of phases of 

discovery research, albeit under different guises, e.g. as ‘multiple lead series’ in lead 

optimization studies [69,71].  Hence, determining the values of both of these parameters may 

be of importance in a number of areas of drug research. 

 As shown by Maggiora and Gokhale [54,69], polypharmacologies and polyspecificities 

are mathematically related by the elements of the drug-target interaction matrix given by Eq. 

(3.3).  And, as we shall see, they are also related through the corresponding elements of the 

extreme-value drug-target matrix, Eq. (4.1).    If, however, drug-target pairs are missing from 

the set of interactive pairs, that is if the set of interactive pairs is incomplete, then both the 

polypharmacology and polyspecificity values will generally, but not in all cases, be less than 

their true values.  The degree that they are in error will, however, not necessarily be the same 

for both entities.  For example, a given polypharmacology value could be 33 percent in error, 

while its corresponding polyspecificity value may only be 17 percent in error, it all depends on 

what drug-target pairs are present in the set of interactive pairs. In addition, the presence of 

substantial numbers of null pairs can impose additional difficulties in the use of classical set-

theoretic methods (vide supra).  IFREV’s can, under certain conditions, provide a means for 

overcoming many of these difficulties. 

 The model data in Table 2 affords a simple example of an IFREV, where each cell of the 

table is represented by a triple of elements.  Because we are dealing with IFREV’s the value of 

each element in a given triple lies in the binary set  with the constraint that all three 

elements must sum to unity as required by Eq. (2.18).  As noted earlier, when one of the terms 

has a value of unity the other two must perforce be of value zero.  The advantage of this 

formalism is that it not only provides a means for dealing with interactive and non-interactive 

pairs, but, more importantly, for also dealing with null pairs.  The latter can present significant 

problems in the analysis of many real drug-target databases as illustrated by the following 

example. 

 The minimum value of the polypharmacology of the i-th drug is given by the min-count 

of the elements of the i-th drug profile, , associated with the IFREV in Table 2. Hence, 

 

   , (5.1) 
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which is given by the first term in curly brackets in the far-right column of Table 2.  Since the 

values of the elements of the extreme-value IFSEV’s and IFREV’s are binary integers it is no 

longer necessary to use sigma-counts.  Thus, they are replaced by the simpler Count function, 

where the  is removed so that becomes  for Eqs. (2.9) through 

(2.14). 

 Consider, for example, the first drug, , in the list of drugs in Table 2.  Its 

polypharmacology is obtained by substituting the values in the leftmost term in each of the 

parentheses in the first row of Table 2 into Eq. (5.1).   This gives a value of ‘4’ as indicated by 

the corresponding term within the curly brackets found in the right most cell in the first row of 

the table. The comparable term in each row of the table gives the polypharmacology value for 

each of the fictitious drugs, , where .  The third term within the curly brackets 

located in the right most column of Table 2 corresponds to the count of null pairs with respect 

to the drug associated with each row of the table.  As an example, again consider the first row 

of Table 2, which gives a value of ‘3’ for the number of drug-target pairs of unknown 

interaction, a value that can be obtained by summing the third term in each of the parentheses 

in the first row of the table. 

 As shown by Szmidt and Baldwin [74] (Cf. [55,56]), an upper bound to can be 

obtained by computing 

 

  , (5.2) 

 

where it is tacitly assumed that null drug-target pairs are considered to be interactive, such that 

. Since, only a fraction of the pairs of unknown interaction 

are apt to actually interact, the upper bound is likely to be a considerable overestimate.  In any 

case, the value of the polypharmacology lies in an interval, which may also include its 

endpoints, rather than at a single value, i.e. 

  

   , (5.3) 

 

where the size of the interval is equal to the knowledge-based uncertainty in the 

polypharmacology value, 
 

    , (5.4) 

 

(Cf. Eq. (2.15)).  
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 A largely unappreciated issue that can also influence the magnitude of the bounds on 

polypharmacology values is the reluctance of many scientists, for a variety of reasons, to 

publish data on non-interactive drug-target pairs.  Because of this, such pairs are necessarily 

counted in the class of null drug-target pairs.  However, Eq. (5.5), which can be obtained by 

rearranging Eq. (2.18) and substituting it into Eq. (5.4),  

 

  , (5.5) 

 

shows that the presence of non-interactive pairs, , can significantly reduce the 

interval of knowledge-based uncertainty.  This follows since  are constant, thus 

 is determined by the number of  non-interactive drug-target pairs associated with the 

i-th drug, .  Not reporting non-interactive drug-target pairs increases the 

interval of uncertainty in the value of the polypharmacology, as should indeed be expected.  

This emphasizes the importance of reporting all drug-target interaction data, even those that 

correspond to non or weakly interactive pairs. Lastly, in the rare case that there are no null 

pairs for ,  for , and the interval collapses so that 

 for . 

 

5.2 Polyspecificities 

 Comparable expressions for polyspecificities, which involve the columns rather than the 

rows of Table 2, are given in Eqs. (5.6) to (5.8): 

 

  , (5.6) 

 

   , (5.7) 

 

and  

   (5.8) 
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In the case polyspecificities, the size of the interval is equal to the knowledge-based uncertainty 

in the polyspecificity,  

 

  
. (5.9)   

 

(Cf.  Eq. (2.15)). 

 As was described for polypharmacology values in the previous section, the presence of 

non-interactive drug-target pairs reduces the interval of knowledge-based uncertainty for 

polyspecificity values as shown by Eq. (5.9), which is identical in form to that given in Eq. 

(5.5) for polypharmacology values.  Hence, for all    

 

   . (5.10) 

 

The same argument applies in this case as well, and the size of the interval, is 

determined by the number of inactive drug-target pairs associated with the j-th target, 

. 

 Again, in the rare case that there are no null pairs in the column associated with a specific 

,  for , the interval collapses so that 

for . 

 

5.3 Examples of polypharmacologies and polyspecificities 

 The maxima associated with polypharmacologies, given in Eq. (5.2), and 

polyspecificities, in Eq. (5.6), represent extremes since they assume that all of the null drug-

target pairs are interactive, an assumption, as noted earlier, that leads to overly optimistic 

estimates of the of these quantities.  Table 3 gives the max and min values of the 

polypharmacologies and polyspecificities obtained from the data in Table 2.  

 Although the naive examples described here illustrate a number of features of our 

approach, they do not adequately capture the difficulties brought about by the distribution of 

interactive and non-interactive pairs in real drug-target databases since in many cases the 

activity or lack thereof of drug-target pairs has only been experimentally measured or 

computationally estimated for less than 20 percent of the possible pairs in any dataset and in 

some cases less than five percent (Cf. Table 1). In any case, the percent of null pairs generally 

far exceeds the percent of interactive and non-interactive pairs.  Although this may appear to 

be extreme, it is not.  As noted earlier, most drug-target databases are, in fact, plagued by a 
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significant lack of data completeness [9], which gives rise to upper bounds of 

polypharmacologies and polyspecificities that are much too large to be of practical use.  For 

these bounds to be useful the percentage of known interactive drug-target pairs should be 

significantly greater than the number of null pairs, a condition that is rarely met in practice. 

 Vogt, et al. [72] have developed a method for obtaining drug-target matrices with a 

minimal number of null pairs, but their method may also remove some pairs of interest.  By 

combining their method with the one described here it may be possible to retain a significant 

portion of the desired pairs along with a reduced number of null pairs so that improved 

estimates of upper bounds to polypharmacologies and polyspecificities can be obtained.   In 

such instances, the estimated bounds may be tight enough so that the values of these two entities 

will be suitable for the further analysis of drug-target data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 3.  Interval values and knowledge-based uncertainties of polypharmacologies and 

polyspecificities are obtained from the data in Table 2. Polypharmacology values lie in 

the interval defined by corresponding their min and max values defined by Eq. (5.3), and 

the knowledge-based uncertainty is the difference between these two values as given by 

Eq. (5.4). Polyspecificity values lie in the interval defined by corresponding their min and 

max values defined by Eq. (5.7), and the knowledge-based uncertainty is the difference 

between these two values as given by Eq. (5.8). 

 

Polypharmacologies  Polyspecificities 

Drug    Target   

1 [4,7] 3  1 [5,9] 4 

2 [4,5] 1  2 [8,12] 4 

3 [5,6] 1  3 [2,5] 3 

4 [3,6] 3  4 [5,12] 7 

5 [3,5] 2  5 [4,8] 4 

6 [3,5] 2  6 [6,8] 2 

7 [2,6] 4  7 [4,7] 3 

8 [2,6] 4  8 [7,10] 3 

9 [3,6] 3     

10 [3,5] 2     

11 [3,6] 3     

12 [3,6] 3     
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6 Joint polypharmacologies and polyspecificities 

 

6.1 Joint polypharmacologies 

 Joint analogs of polypharmacologies and polyspecificities can also be defined.  The 

minimum value of joint polypharmacologies is given by the number of common targets that 

are known to interact with the  pair of drugs, i.e. 

 

   . (6.1) 

 

As set intersections are symmetric, only terms in the upper triangle of the joint 

polypharmacology and joint polyspecificity matrices are considered as those in the lower 

triangle of these matrices are equivalent.  Diagonal terms are also omitted because they are 

equivalent to the polypharmacologies and polyspecificities discussed in Section 5.  Hence, 

there are  unique joint polypharmacologies.  A related definition of joint 

polypharmacology was given by Paolini, et al. [43].  Because 

 

    (6.2) 

 

it follows that 

 

  . (6.3) 

 

The maximum values of the joint polypharmacologies are given by the number of targets that 

are known to interact with the  pair of drugs plus the number of targets whose 

interaction with these drugs is unknown, i.e.     
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  .  (6.4) 

 

In a similar fashion to the case of the polypharmacology of single drugs, this assumes that all 

of the drug-target pairs of unknown interaction are now considered to be interactive, and hence 

all of the pairs of unknown interaction no longer exist.  In analogy to Eqs. (6.2) and (6.3), it 

follows that 

    

  (6.5) 

 

so that 

 

   . (6.6) 

 

Also, since 

 

  (6.7) 

 

it follows that, as expected,  

 

  . (6.8) 

 

Again, as was the case for polypharmacologies in Eq. (5.3), the values of joint poly-

pharmacologies are also given by an interval, 
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  . (6.9) 

 

6.2 Examples of joint polypharmacologies 

 These relationships are exemplified by the examples in Table 4.  

 all correspond to single drug profiles, while 

 correspond to joint drug profiles.  The first term in square 

brackets in the right most column of the table gives the minimum values of the 

polypharmacologies or joint polypharmacologies, and the second term corresponds to their 

maximum values—their ‘true’ values lie in these intervals, which could include their endpoints. 

An examination of the table shows that the results are consistent with the relationships 

described in Eqs. (6.3) and (6.6). 

 

and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Joint polyspecificities 

 Similar expressions arise for joint polyspecificities, which are defined as the number of 

drugs that bind to two targets, and , that are listed below for completeness.  Their derivation 

the meaning of these expressions are similar to those shown above for joint 

polypharmacologies and will not be repeated here. 

 

Table 4. Example of IFSEV’s taken from Table 2.  The rows correspond to drug profiles and the columns  

to individual targets. The far-right column corresponds interval defined by the min and max  

polypharmacology values. 

 

Drug 

Profiles 
t
1
 t

2
 t

3
 t

4
 t

5
 t

6
 t

7
 t

8
  

 (0,0,1) (1,0,0) (0,1,0) (1,0,0) (0,0,1) (1,0,0) (0,0,1) (1,0,0) [4,7] 

 (1,0,0) (1,0,0) (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0) [4,5] 

 (0,0,1) (1,0,0) (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0) [3,5] 

 (0,1,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (0,0,1) (1,0,0) (0,1,0) [5,6] 

 (0,1,0) (1,0,0) (1,0,0) (0,0,1) (1,0,0) (0,1,0) (0,0,1) (0,1,0) [3,5] 

 (0,1,0) (1,0,0) (1,0,0) (0,0,1) (1,0,0) (0,1,0) (0,1,0) (0,1,0) [3,4] 

 (1,0,0) (0,0,1) (0,0,1) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0) [3,6] 

 (1,0,0) (0,0,1) (0,1,0) (0,0,1) (1,0,0) (1,0,0) (0,1,0) (0,1,0) [3,5] 

 (1,0,0) (0,0,1) (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (0,1,0) [2,4] 
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   , (6.10) 

 

   , (6.11) 

and 
 

   . (6.12) 

 

Lastly, the polyspecificity inequalities comparable to those given in Eqs. (6.3), (6.6), and (6.8) 

for polypharmacologies, are given by 
 

    . (6.13) 

 

Because of the similarities of the mathematics of polyspecificities to those of 

polypharmacologies and their joint counterparts, examples such as those given above for 

polypharmacologies in Table 4, are not given here for polyspecificities.   

 

7.  Summary and Conclusions 

 Despite rapid growth in the size and coverage of publicly available drug-target databases, 

interactive and non-interactive drug-target pairs typically make up less than five percent of the 

total.  The extremely low percentage suggests that polypharmacolgy and polyspecificity values 

are likely to be significantly underestimated.  Even if only a small percentage of the null pairs 

where found to be interactive—a very mild assumption—they would nevertheless contribute 

to the polypharmacology and polyspecificity values, in some cases significantly. Increasing the 

number of targets and/or the number of drugs, given the above assumption, could also add to 

these values.  

 As an example, consider the Binding DB database given in Table 1.  There are essentially 

7,123,260 – 89,815 = 7,033,445 null pairs.  If only one percent of them interact with the 681 
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targets it will yield about 70,000 additional interactive pairs.  As there are about 10,000 drugs 

in the database, the polypharmacology of each drug would on average be augmented by about 

seven interactive pairs.  This is admittedly a very crude calculation, but it illustrates the 

potential magnitude by which polypharmacologies may be underestimated—since seven is a 

mean value, the polypharmacology for some of the drugs may be increase by less, while others 

may increase by more than seven.  Moreover, since the number of druggable targets is about 

2,000, there are approximately 1,300 more targets whose interaction with the set of ~10,000 

drugs considered above could be investigated.  Even if only one percent of the new targets 

interact with any of these drugs, it would result in an average of 13 new interactive drug-target 

pairs for each drug.  Although these are obviously very crude estimates, they do provide 

additional, albeit tentative, evidence which indicates that current polypharmacology values 

may be significantly underestimated.  Hence, completely neglecting null pairs, or assuming 

that they correspond to inactive pairs, could seriously effect polypharmacology and 

polyspecificity values.  Totally addressing this lack experimentally in a way that maintains 

public accessibility of the data is, however, beyond the capability of essentially all non-

industrial pharmaceutical laboratories, the PubChem database supported by the United States 

National Institutes of Health being one possible exception [9].   

 Because of the significant lack of data completeness in most drug-target databases (Cf. 

Mestres, et al. [10]), computational methods are necessary if substantial progress is to be made 

in alleviating this problem.  Imputing interaction data for such a large number of null drug-

target pairs from a relatively sparse set of known interactive and non-interactive pairs is 

problematic at best, especially given the highly inhomogeneous distribution of these pairs in 

drug-target space.  While applying computational chemogenomic methods [17-25] could help, 

most such methods have not been tested on diverse enough sets of drugs and targets to provide 

meaningful results in all cases.  In addition, there may be a lack of the data needed to implement 

some of the methods for certain classes of drug-target pairs.  Hence, their reliability or 

applicability is likely to be somewhat questionable when applied broadly.  Although this 

precludes a complete assessment of the interaction of all drug-target pairs in a typical publicly 

accessible drug-target database, this could in some instances be achievable for smaller more 

directed sets of drug-target pairs using experimental methods, supplemented where necessary 

with computational methods. 

 Using the methodology described in this work it is possible to determine bounds for 

polypharmacologies and polyspecificities.  However, as discussed in Section 5, the size of the 

bounds will generally be much too large to be of any practical value.  They would be more 

useful if the percent of null pairs could be reduced to something significantly less that the 

percent of interactive pairs.  An approach for accomplishing such a reduction was recently 

proposed by Vogt, et al. [72].  Their approach, which was discussed in Sections 1 and 5, is 

based on a method they developed for removing null pairs, thus creating datasets more fully 

-490-



 

populated with pairs whose interactivities have been determined experimentally or 

computationally, but smaller in size than the original database. However, it has the unfortunate 

side effect of also removing some interacting or non-interacting pairs that may be of interest.  

As noted earlier, by combining their method with that described in this work it may be possible 

to retain many of the desired drug-target pairs and also to estimate useful bounds for the 

resulting polypharmacology and polyspecificity values. But this is a subject for future research. 

 A number of other issues have been largely overlooked in many studies of drug-target 

databases. One issue involves weakly or non-interacting drug-target pairs, which are assumed 

to be of little value and thus are largely ignored due to a preoccupation of many researchers 

with the identification of strongly interacting pairs.  This is exemplified by a number of studies 

based on drug-target networks, which typically ignore the information on weakly or non-

interacting pairs [51-53] (Cf. [54]), since edges are only drawn between drug and target nodes 

if the pair strongly interacts.  This is tantamount to placing weakly and non-interacting pairs in 

the same category as null pairs, which should not be the case as these pairs contain structure-

activity information while the latter do not. In addition, since the presence of non-interactive 

pairs reduces the number of null pairs, the magnitude of the knowledge-based uncertainties for 

drugs or targets, which depend on the size of these intervals, are correspondingly reduced, 

leading to a general tightening of the bounds on the polypharmacology and polyspecificity 

values, as discussed in Section 5. 

 Currently, there is interest in determining the similarity of drugs and targets based on 

their drug and target profiles [75-79].  In a following paper, we will extend the current approach 

to include these similarities, which can be described as functions of their single and joint 

polypharmacologies or polyspecificities, and we will show that rigorous bounds for these 

quantities can be obtained that are related to, but slightly more complex than, the bounds 

described in the current work.  In addition, we will describe a generalization of the method 

presented here, which will remove the restriction of activity thresholds in the case of 

experimental data and allow for continuous activity values. 
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