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Abstract

Very recently, the first geometric–arithmetic index GA and arithmetic–geometric
index AG were introduced in mathematical chemistry. In the present paper, we first
obtain some lower and upper bounds on AG and characterize the extremal graphs.
We also establish various relations between AG and other topological indices, such
as the first geometric–arithmetic index GA, atom–bond connectivity index ABC,
symmetric division deg index SDD, chromatic number χ and so on. Finally, we
present some sufficient conditions of GA(G) > GA(G− e) or AG(G) > AG(G− e)
for an edge e of a graph G. In particular, for the first geometric–arithmetic index,
we also give a refinement of Bollobás–Erdős–type theorem obtained in [3].

1. Introduction

We consider only finite, undirected and simple graph throughout this paper. Let

G = (V,E) be a simple graph of order n and size m, with vertex set V (G) = {v1, v2, · · · vn}

and edge set E(G). Denote an edge e ∈ E(G) with end vertices vi and vj by vivj, simply

by i ∼ j. Let di be the degree of vertex vi for i = 1, 2, . . . , n. If an edge e = vivj satisfying

di = 1, we say that e is a pendent edge and vi is a pendent vertex. The maximum and
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minimum degrees of G are denoted by ∆ and δ, respectively. Let d be the average degree

of G. The minimum non–pendent vertex degree of G is written by δ1. Also let p denote

number of pendent vertices in G.

If the vertex set V (G) is the disjoint union of two nonempty subsets V1 and V2, such

that every vertex in V1 has degree s and every vertex in V2 has degree r, then G is said

to be (s, r)–semiregular. In particular, if s = r, then G is said to be r–regular. As usual,

the complete bipartite graph, the complete graph and the star on n vertices are denoted

by Kp,q, Kn and K1,n−1, respectively.

Topological indices are graph invariant under graph isomorphisms and reflect some

structural properties of the corresponding molecule graph. It is found that these indices

have some chemical applications in chemical graph theory, for example, see [4, 8–10, 13,

17–22, 30, 31, 33] and the references cited therein. Recently, Vukičević and Furtula [28]

proposed a newly graph invariant, namely the first geometric–arithmetic index, which is

defined as follows:

GA(G) =
∑

vivj∈E(G)

(
2
√
didj

di + dj

)
.

They also obtained some bounds on GA index and determined the trees with maximum

and minimum GA indices, which are the star and the path, respectively. In [6], Das et

al. gave some lower and upper bounds on GA index in terms of the order n, the size

m, the minimum degree δ, maximum degree ∆ and the other topological index. In [1],

several further inequalities, involving GA index and several other graph parameters, were

obtained. Aouchiche and Hansen [2] presented some bounds on GA index in terms of

the order n, the chromatic number χ, the minimum degree δ, maximum degree ∆ and

average degree d. At the same time, some conjectures were proposed in [2]. Very recently,

Chen and Wu [3] disprove four of these conjectures. In addition, they also presented a

sufficient condition with GA(G) > GA(G− e) when an edge e is deleted from a graph G.

For a comprehensive survey and more details on this area, we refer the reader to [7] and

references therein.

In 2015, Shegehall and Kanabur [23] introduced the arithmetic–geometric index AG

of G. It is defined as follows:

AG(G) =
∑

vivj∈E(G)

1

2

(√
di
dj

+

√
dj
di

)
.

The AG index of path graph with pendent vertices attached to the middle vertices was
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discussed in [23, 24]. In addition, the AG index of graphene, which is most conductive

and effective material for electromagnetic interference shielding [26], was computed in

[25]. Using this newly topological index, Zheng and the present two authors [32] studied

spectrum and energy of arithmetic–geometric matrix, in which the sum of all elements is

equal to 2AG. Other bounds of the arithmetic–geometric energy of graphs were offered

in [5, 14]. Very recently, as one of the referees said, Vujošević et al. [27] characterized

chemical trees that maximize the value of arithmetic–geometric index. At the same time,

they also obtained some lower and upper bounds on AG and elaborated the relations

between the AG and GA. Motivated by these papers, we further consider bounds on the

AG index and discuss the effect on GA and AG indices of deleting an edge from a graph.

For the sake of convenience, here we list some degree–based topological indices, which

will be used in subsequent sections.

• The forgotten index [15], F (G) =
n∑
i=1

d3
i =

∑
vivj∈E(G)

(
d2
i + d2

j

)
.

• The first Zagreb index [15], M1(G) =
n∑
i=1

d2
i =

∑
vivj∈E(G)

(di + dj).

• The second Zagreb index [16], M2(G) =
∑

vivj∈E(G)

didj.

• The symmetric division deg index [29], SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
.

• The atom–bond connectivity index [12], ABC(G) =
∑

vivj∈E(G)

√
di+dj−2

didj
.

This paper is organized as follows. In Section 2, we present some lower and up-

per bounds on AG and characterize the extremal graphs. In Section 3, we establish

various relations between AG and other topological indices, such as the first geometric–

arithmetic index GA, atom–bond connectivity index ABC, symmetric division deg index

SDD, chromatic number and so on. In Section 4, we obtain some sufficient conditions

of GA(G) > GA(G − e) or AG(G) > AG(G − e) for an edge e of a graph G. In par-

ticular, we give a refinement of Bollobás–Erdős–type theorem obtained in [3] for the first

geometric–arithmetic index. Many examples show that there are considerable differences

between GA and AG indices of graphs.
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2. Upper and lower bounds on arithmetic–geometric

index

Throughout this section, we always assume that G is a graph with p pendent vertices.

Theorem 1. If G is a connected graph of order n with size m, maximum degree ∆,

minimum non–pendent vertex degree δ1, then

AG(G) ≤ p(∆ + 1)

2
√

∆
+

1

2δ1

√
(m− p)(F + 2M2 − p(δ1 + 1)2), (1)

with equality if and only if G is isomorphic to K1,n−1 or G is isomorphic to a regular

graph or G is isomorphic to a (∆, 1)–semiregular graph.

Proof. By the Cauchy–Schwarz inequality, one has

AG(G) =
∑
i∼j

1

2

(√
di
dj

+

√
dj
di

)

=
1

2

∑
i∼j, dj=1

(√
di
dj

+

√
dj
di

)
+

1

2

∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)

≤ p(∆ + 1)

2
√

∆
+

1

2

√
(m− p)

√√√√√ ∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)2

≤ p(∆ + 1)

2
√

∆
+

1

2δ1

√
(m− p)

√ ∑
i∼j,di,dj>1

(di + dj)
2 (2)

=
p(∆ + 1)

2
√

∆
+

1

2δ1

√
(m− p)

√∑
i∼j

(di + dj)
2 −

∑
i∼j,dj=1

(di + dj)
2

≤ p(∆ + 1)

2
√

∆
+

1

2δ1

√
(m− p)(F + 2M2 − p(δ1 + 1)2) as di ≥ δ1, (3)

implying the required result (1).

Now assume that the equality holds in (1). Then all inequalities in above proof must

be equalities. From the equality in (2), we have di = ∆ and dj = 1 for any pendent edge

i ∼ j, and di = dj = δ1 for any non–pendent edge i ∼ j. From the equality in (3), we

have di = δ1 and dj = 1 for any pendent edge i ∼ j. In particular, if G has no pendent

edge, that is, p = 0, then G is isomorphic to a ∆–regular graph. If every edge of G is

pendent edge, that is, m = p, then G is isomorphic to K1,n−1. Otherwise, 0 < p < m,

which implies that G is isomorphic to a (∆, 1)–semiregular graph as G is connected.

Conversely, it is easy to check that the equality holds in (1) for K1,n−1 or a regular

graph or a (∆, 1)–semiregular graph.
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Corollary 1. If G is a connected graph of order n with size m, minimum degree δ, then

AG(G) ≤ 1

2δ

√
m(F + 2M2), (4)

with equality if and only if G is isomorphic to a regular graph.

Proof. If G has no pendent edge, then p = 0 and δ = δ1. By Theorem 1, we get the
required result. Now assume that G has at least a pendent edge, that is δ = 1. We
need only to prove that AG(G) ≤ 1

2

√
m(F + 2M2). Indeed, from the Cauchy–Schwarz

inequality, one has

(2AG(G))2 =

(∑
i∼j

(√
di
dj

+
√

dj
di

))2

≤

(∑
i∼j

(di + dj)

)2

≤ m
∑
i∼j

(di + dj)
2 = m(F + 2M2),

with equality if and only if di = dj = 1 for a pendent edge i ∼ j, equivalently, G is

isomorphic to K2 as G is connected.

Theorem 2. If G is a connected graph of order n with size m, maximum degree ∆,

minimum non–pendent vertex degree δ1, then

AG(G) ≤ p(∆ + 1)

2
√

∆
+

1

2δ1

√
F + 2M2 − p(δ1 + 1)2 + 4∆2(m− p)(m− p− 1), (5)

with equality if and only if G is isomorphic to K1,n−1 or G is isomorphic to a regular

graph or G is isomorphic to a (∆, 1)–semiregular graph.

Proof. For the sake of convenience, we first estimate

∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)

=

√ ∑
i∼j,di,dj>1

(√
di

dj
+
√

dj

di

)2

+ 2
∑

i∼j,k∼l,(vi,vj)6=(vk,vl),di,dj ,dk,dl>1

(√
di

dj
+
√

dj

di

)(√
dk

dl
+
√

dl

dk

)

≤ 1

δ1

√ ∑
i∼j,di,dj>1

(di + dj)
2 + 2

∑
i∼j,k∼l,(vi,vj)6=(vk,vl),di,dj ,dk,dl>1

(di + dj) (dk + dl) (6)

≤ 1

δ1

√
F + 2M2 − p(δ1 + 1)2 + 8∆2

(
m− p

2

)
(7)

=
1

δ1

√
F + 2M2 − p(δ1 + 1)2 + 4∆2(m− p)(m− p− 1).

It is easy to see that the function f(x) = x+ 1
x

is an increasing function for x ≥ 1. Then,

we have

AG(G) =
1

2

∑
i∼j,dj=1

(√
di
dj

+

√
dj
di

)
+

1

2

∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)
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≤ p(∆ + 1)

2
√

∆
+

1

2δ1

√
F + 2M2 − p(δ1 + 1)2 + 4∆2(m− p)(m− p− 1). (8)

Now assume that the equality holds in (5). Then all inequalities in above argument

must be equalities. From the equality in (6), we have di = dj = δ1 for any non–pendent

edge i ∼ j. The equality in (7) implies that di = δ1 and dj = 1 for any pendent edge

i ∼ j. At the same time, it follows from the equality in (8) that di = ∆ and dj = 1 for

any pendent edge i ∼ j. We have to keep in mind that G is connected. Similar to the

argument of Theorem 1, then G is isomorphic to K1,n−1, or G is isomorphic to a regular

graph, or G is isomorphic to a (∆, 1)–semiregular graph.

Conversely, it is easy to check that the equality holds in (5) for K1,n−1 or a regular

graph or a (∆, 1)–semiregular graph.

Corollary 2. If G is a connected graph of order n with size m, minimum degree δ and

maximum degree ∆, then

AG(G) ≤ 1

2δ

√
F + 2M2 + 4m(m− 1)∆2, (9)

with equality if and only if G is isomorphic to a regular graph.

Proof. The proof is similar to that of Corollary 1, omitted.

Theorem 3. If G is a connected graph of order n with size m, then

AG(G) ≤ 1

2
p

(
n√
n− 1

)
+

1

2
(m− p)

(√
n− 1

2
+

√
2

n− 1

)
, (10)

with equality if and only if G is isomorphic to a star K1,n−1 or G is isomorphic to a

complete graph K3.

Proof. Since the function f(x) = x+ 1
x

is an increasing function for x ≥ 1. Then, for any

pendent edge i ∼ j and dj = 1,√
di
dj

+

√
dj
di
≤
√
n− 1 +

1√
n− 1

=
n√
n− 1

, (11)

with equality if and only if di = n−1. Similarly, for any non–pendent edge i ∼ j, one has√
di
dj

+

√
dj
di
≤
√
n− 1

2
+

√
2

n− 1
, (12)

with equality if and only if di = n− 1 and dj = 2 for di ≥ dj. Therefore,

AG(G) =
1

2

∑
i∼j,dj=1

(√
di
dj

+

√
dj
di

)
+

1

2

∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)

-92-



≤ p

2

(
n√
n− 1

)
+

1

2
(m− p)

(√
n− 1

2
+

√
2

n− 1

)
.

Now assume that the equality holds in (10). Then all inequalities in above argument

must be equalities. In the following, without loss of generality, assume that di ≥ dj for

every edge i ∼ j. First if G has no pendent edge, equivalently, p = 0. Then the equality

in (12) implies that there is a common neighbor between the end vertices of every edge of

G. This shows that G is isomorphic to a complete graph K3 as G is connected. Clearly,

G is isomorphic to K1,n−1 when p = m. Finally, assume that 0 < p < m and di = n− 1,

dk = 1 for some pendent edge i ∼ k. Then, there must exist a non–pendent edge i ∼ j of

G such that dj = 2 as m > p. Thus, the vertices i and j have must a common neighbor l.

Also, from the equality in (12), we have dl = n− 1. Therefore, l ∼ k, which implies that

dk ≥ 2 contradicting to our assumption.

Conversely, it is easy to check that the equality holds in (10) for a complete graph K3

or a star K1,n−1.

Corollary 3. If G is a connected graph of order n with size m, minimum degree δ ≥ 2,

then

AG(G) ≤ 1

2
m

(√
n− 1

2
+

√
2

n− 1

)
, (13)

with equality if and only if G is isomorphic to a complete graph K3.

The following lemma comes from [11]. First let (a1, a2, . . . , an), (b1, b2, . . . , bn) be

two sequences of positive real numbers, such that there are positive numbers A, a,B, b

satisfying, for any i ∈ {1, 2, . . . , n},

0 < a ≤ ai ≤ A <∞, 0 < b ≤ bi ≤ B <∞.

Lemma 1(Pólya-Szegö inequality [11]).∑n
i=1 a

2
i

∑n
i=1 b

2
i

(
∑n

i=1 aibi)
2
≤ (ab+ AB)2

4abAB
,

where the equality holds if and only if

p = n · A
a

/
(
A

a
+
B

b
), q =n · B

b

/
(
A

a
+
B

b
)

are integers and if p of the numbers a1, a2, . . . , an are equal to a and q of these numbers

are equal to A, and if the corresponding numbers bi are equal to B and b, respectively.
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Theorem 4. If G is a connected graph of order n with size m, maximum degree ∆,

minimum non–pendent vertex degree δ1, then

AG(G) ≥ p(δ1 + 1)

2
√
δ1

+

√
2(m− p)(∆ + δ1)

√
∆δ1

∆(∆ + δ1 + 2
√

∆δ1)

√
F + 2m∆2 − p(3∆2 + 1), (14)

with equality if and only if G is isomorphic to K1,n−1 or G is isomorphic to a regular

graph or G is isomorphic to a (∆, 1)–semiregular graph.

Proof. For any non–pendent edge i ∼ j, we get

2 ≤

√
di
dj

+

√
dj
di
≤
√

∆

δ1

+

√
δ1

∆
.

Then, take a = 2, A =
√

∆
δ1

+
√

δ1
∆

and b = B = 1 in Lemma 1, one has

 ∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)2

≥ 8(m− p)(∆ + δ1)
√

∆δ1

(∆ + δ1 + 2
√

∆δ1)2

∑
i∼j,di,dj>1

(
di
dj

+
dj
di

+ 2

)
. (15)

For the sake of convenience, let

Γ1 =

 ∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)2

and

Γ2 =
∑

i∼j,di,dj>1

(
di
dj

+
dj
di

+ 2

)
.

We first estimate the value of Γ2,

Γ2 =
∑

i∼j,di,dj>1

(
di
dj

+
dj
di

)
+ 2(m− p)

≥ 1

∆2

∑
i∼j

(
d2
i + d2

j

)
−

∑
i∼j,dj=1

(
d2
i + d2

j

)+ 2(m− p) (16)

≥ 1

∆2
(F − p(∆2 + 1)) + 2(m− p). (17)

Plugging (17) into (15), one gets

Γ1 ≥
8(m− p)(∆ + δ1)

√
∆δ1

∆2(∆ + δ1 + 2
√

∆δ1)2
(F + 2m∆2 − p(3∆2 + 1)),

which implies that

AG(G) =
1

2

∑
i∼j,dj=1

(√
di
dj

+

√
dj
di

)
+

1

2

∑
i∼j,di,dj>1

(√
di
dj

+

√
dj
di

)
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≥ p(δ1 + 1)

2
√
δ1

+

√
2(m− p)(∆ + δ1)

√
∆δ1

∆(∆ + δ1 + 2
√

∆δ1)

√
F + 2m∆2 − p(3∆2 + 1). (18)

Now assume that the equality holds in (14). Then all inequalities in above proof must

be equalities. From the equality in (16), we have di = dj = ∆ for any non–pendent edge

i ∼ j. It follows from the equality in (18) that di = δ1 and dj = 1 for any pendent edge

i ∼ j with pendent vertex j.

Next, one has to keep in mind that G is connected. If p = 0, that is, G has no pendent

edge, then G is isomorphic to a ∆–regular graph. If m = p, that is, each one of edges in

G is pendent edge, then G is isomorphic to K1,n−1. Otherwise, 0 < p < m, which implies

that G is isomorphic to a (∆, 1)–semiregular graph.

Conversely, it is easy to see that the equality holds in (14) for K1,n−1 or a regular

graph or a (∆, 1)–semiregular graph.

Corollary 4. Let G be a connected graph of order n with size m, maximum degree ∆,

minimum degree δ. If G has no pendent vertices, then

AG(G) ≥
√

2m(∆ + δ1)
√

∆δ1

∆(∆ + δ1 + 2
√

∆δ1)

√
F + 2m∆2,

with equality if and only if G is isomorphic to a regular graph.

Similar to the proof of Theorem 4, we may obtain the following theorem.

Theorem 5. If G is a connected graph of order n with size m, maximum degree ∆,

minimum non–pendent vertex degree δ1, then

AG(G) ≥ p(δ1 + 1)

2
√
δ1

+

√
2(m− p)(∆ + δ1)

√
∆δ1

∆ + δ1 + 2
√

∆δ1

√
SDD − p(∆ +

1

∆
) + 2(m− p),

with equality if and only if G is isomorphic to K1,n−1 or G is isomorphic to a regular

graph or G is isomorphic to a (∆, 1)–semiregular graph.

Clearly, AG(G) ≥ M1

2∆
. Here we shall give a minor improvement on this lower bound

as follow.

Theorem 6. If G is a connected graph of order n with size m, maximum degree ∆,

minimum non–pendent vertex degree δ1, then

AG(G) ≥ p(δ1 + 1)

2
√
δ1

+
1

2∆
(M1 − p(∆ + 1)),

with equality if and only if G is isomorphic to K1,n−1 or G is isomorphic to a regular

graph or G is isomorphic to a (∆, 1)–semiregular graph.
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Proof. It is easy to verify that

AG(G) = 1
2

∑
i∼j,dj=1

(√
di
dj

+
√

dj
di

)
+ 1

2

∑
i∼j,di,dj>1

(√
di
dj

+
√

dj
di

)
≥ p

2

(√
δ1 + 1√

δ1

)
+ 1

2∆

(∑
i∼j

(di + dj)−
∑

i∼j,dj=1

(di + dj)

)
≥ p(δ1+1)

2
√
δ1

+ 1
2∆

(M1 − p(∆ + 1)),

with equality if and only if G has same degree for all non–pendent vertex. The rest of the

proof is similar to that of Theorem 4, omitted.

3. Comparison between arithmetic–geometric index

and other topological indices

Theorem 7. Let G be a connected graph of order n, with minimum degree δ. Then

GA(G) ≤ AG(G) ≤ (δ + n− 1)2

4δ(n− 1)
GA(G) (19)

with left–hand side of equality if and only if G is a regular graph, and right–hand side of

equality if and only if G is isomorphic to K1,n−1 or G is isomorphic to Kn.

Proof. Consider the following function

f(x, y) =

1
2

(√
x
y

+
√

y
x

)
2
√
xy

x+y

=
(x+ y)2

4xy
,

where 1 ≤ δ ≤ x ≤ y ≤ n− 1. Now, by a simple computation, we get

∂f

∂x
=

4y(x2 − y2)

16x2y2
≤ 0,

which implies that f(x, y) is decreasing in x. Thus, f(x, y) attains the maximum at (δ, y)

for some δ ≤ y ≤ n−1. On the other hand, it is easy to verify that f(δ, y) is an increasing

function for y ≥ δ ≥ 1. Therefore,

f(x, y) ≤ f(δ, n− 1) =
(δ + n− 1)2

4δ(n− 1)
,

which implies that

AG(G) ≤ (δ + n− 1)2

4δ(n− 1)
GA(G)

with equality if and only if (di, dj) = (δ, n − 1) for every edge i ∼ j of G. If δ = 1, then

G is isomorphic to K1,n−1. Otherwise, δ ≥ 2, this time G has no pendent edge. Without
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loss of generality, suppose that di = δ, then the vertex i has at least two adjacent vertices

with degree n− 1. This implies that δ = n− 1. Therefore, G is isomorphic to Kn.

The left–hand side of inequality in (19) is clearly true (also see [27], Observation 1).

Therefore, the required result follows.

Corollary 5 [27]. Let G be a connected graph of order n ≥ 2. Then

AG(G) ≤ n2

4(n− 1)
GA(G),

with equality if and only if G is isomorphic to K1,n−1.

Denote the chromatic number of a graph G by χ(G). It was proved in [1] that if G

is a connected graph with δ ≥ 2, then χ(G) ≤ 2
δ
GA(G) with equality if and only if G is

isomorphic to Kn. In [2], Aouchiche and Hansen proposed the following conjecture.

Conjecture 1 [2]. Let G be a connected graph of order n with m edges and average

degree d. Then

χ(G) ≤ 2GA(G)

d

with equality if and only if G is isomorphic to Kn.

It is easy to see that Conjecture 1 holds for a regular graph G or complete bipartite

graph Kn1,n2 of order n = n1 + n2. Denote the join of G1 and G2 by G1 ∨ G2, we define

L(n, k) = Kk ∨Kn−k, where Kn−k is the complement of the complete graph Kn−k. Notice

that L(n, 1) = K1,n−1 and L(n, n−1) = Kn. Next we assume that 2 ≤ k ≤ n−2. Clearly,

χ(L(n, k)) = k + 1. By a simple computation, we obtain

2GA(L(n, k))

d
= n ·

(
k
2

)
+ k(n− k)

2
√
k(n−1)

n+k−1(
k
2

)
+ k(n− k)

= O(
√
n).

Hence, we arrive at

Theorem 8. For a fixed number k and sufficiently large n, we have

χ(L(n, k)) ≤ 2GA(L(n, k))

d
.

As we all know, Conjecture 1 is still open. However, if the first geometric–arithmetic

index GA(G) is replaced by arithmetic–geometric index AG(G) in above conjecture, then

χ(G) ≤ 2m

d
≤ 2AG(G)

d
,

with equality if and only if G is isomorphic to Kn.
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In [2], it is also pointed out that, there exist graphs with χ(G) > 2GA(G)
∆

. But, similar

to Theorem 8, It can be easily proved that, for a sufficiently large n,

χ(L(n, k)) ≤ 2AG(L(n, k))

n− 1
.

Thus, the following problem arises: does there exist a graph G satisfying χ(G) > 2AG(G)
∆

?

In the following, we shall consider relations between arithmetic–geometric index

AG(G) and atom–bond connectivity index ABC(G). Let T ∗ denote the tree obtained by

joining the central vertices of two copies of K1,3 by an edge. Das and Trinajstić [8] proved

that if G is a connected graph with ∆− δ ≤ 3 and it is neither isomorphic to K1,4 nor T ∗,

then GA(G) > ABC(G). Note that AG(K1,4) > ABC(K1,4) and AG(T ∗) > ABC(T ∗).

Thus, combining these results with Theorem 7, one gets AG(G) > ABC(G) for any

connected graph G with ∆− δ ≤ 3. Next, we give an improvement on this result.

Theorem 9. Let G be a connected graph of order n, with minimum degree δ ≥ 2. Then

δ√
2δ − 2

ABC(G) ≤ AG(G) ≤ n− 1√
2n− 4

ABC(G). (20)

Moreover, the left–hand side of equality holds in (20) if and only if G is a δ–regular graph,

and right–hand side of equality holds in (20) if and only if G is isomorphic to Kn.

Proof. Consider the following function

f(x, y) =


1
2

(√
x
y

+
√

y
x

)
√
x+y−2√
xy


2

=
(x+ y)2

4(x+ y − 2)
,

where 2 ≤ δ ≤ x ≤ y ≤ n− 1. Now, by a simple computation, we get

∂f

∂x
=

(x+ y)(x+ y − 4)

4(x+ y − 2)2
≥ 0,

which implies that f(x, y) is increasing in x. Thus, f(x, y) attains the minimum at (δ, y1)

for some δ ≤ y1 ≤ n− 1 and maximum at (y2, y2) for some δ ≤ y2 ≤ n− 1. On the other

hand, it is easy to verify that f(δ, y) is an increasing function for y ≥ δ ≥ 2. Thus,

f(δ, δ) ≤ f(x, y) ≤ f(n− 1, n− 1),

which implies that

δ√
2δ − 2

ABC(G) ≤ AG(G) ≤ n− 1√
2n− 4

ABC(G)
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with left–hand side of equality if and only if (di, dj) = (δ, δ) for every edge i ∼ j of G,

and right–hand side of equality if and only if (di, dj) = (n− 1, n− 1) for every edge i ∼ j

of G. Hence, the required result follows.

Note that it follows from Theorem 9 that, for a graph G with δ ≥ 2, AG(G) >
√

2ABC(G) unless G is isomorphic to Cn.

Using the similar technique to the proof in Theorem 9, we easily obtain the following

bounds for the arithmetic–geometric index AG(G) in terms of the symmetric division deg

index SDD(G) (the details is omitted).

Theorem 10. Let G be a connected graph of order n, with minimum degree δ. Then

(δ + n− 1)
√
δ(n− 1)

2(δ2 + (n− 1)2)
SDD(G) ≤ AG(G) ≤ 1

2
SDD(G). (21)

Moreover, the left–hand side of equality holds in (21) if and only if G is isomorphic to

K1,n−1 or G is isomorphic to Kn, and right–hand side of equality holds in (21) if and only

if G is a δ–regular graph.

4. Effect on GA and AG indices of deleting an edge

from a graph

In this section, we mainly discuss the effect on GA and AG indices when an edge is

deleted from a graph G. First we note that GA and AG indices will always decrease when

an edge e = vivj with di = dj = 1, is deleted from G. For the sake of convenience, assume

that e = vivj is an edge with non–pendent vertex vj throughout this section.

4.1. Effect on GA index of deleting an edge

In [6], Das et al. presented a sufficient condition with GA(G + e) > GA(G) when a

new edge e is inserted into the graph G. Recently, Chen and Wu [3] pointed out that the

result obtained in [6] is not complete. Furthermore, they established Bollobás–Erdős–type

theorem for the first geometric–arithmetic index of a graph G as follows.

Theorem 11 [3]. Let G be a simple graph with an edge e = vivj. Also let dr =

max{dk|vivk ∈ E(G)} and ds = max{dl|vjvl ∈ E(G)}. If one of the following conditions

is satisfied, then GA(G) > GA(G− e):

(i) max{ di
dr
,
dj
ds
} ≤ 1, or
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(ii) max{ di
dj
,
dj
di
} ≤ min{ di

dr
,
dj
ds
}.

Example 1. Let G be the graph as shown in Figure 1, where di = 10 and dj = dr = ds =

1000. Clearly, G satisfies the condition (i) of Theorem 11, that is, max{ 10
1000

, 1000
1000
} ≤ 1,

but GA(G)−GA(G− e) = −0.0447.
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Figure 1. A counterexample to the (i) of Theorem 11.

Example 2. Let G be the graph as shown in Figure 2, where di = 100, dj = 500, dr = 500

and ds = 100. By a simple calculation, one can see that GA(G) − GA(G − e) = 0.5501,

in spite of max{100
500
, 500

100
} > min{100

500
, 500

100
}. Therefore, the (ii) of Theorem 11 is invalid for

this graph G.
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Figure 2. The graph G in Example 2.

Example 3. For two given graphs G1, G2 in Figure 3, one can see that GA(G1) −

GA(G1 − e) = 0.0652, whereas GA(G2) − GA(G2 − e) = −0.0363. This example shows

that GA index may either increase or decrease when a pendent edge e is deleted from a

graph.
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Figure 3. In the case of G1 the GA index decreases, whereas in the case of G2 the
GA index increases.
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Assume that G is a simple graph and e = vivj is an edge of G with non–pendent vertex

vj. For the sake of convenience, we define

d
(j)
min = min{dk|vk ∈ N(vj)\{vi}} and d(j)

max = max{dk|vk ∈ N(vj)\{vi}}.

Note that one may give similar definitions when vi also is a non–pendent vertex of G.

Next, by many helpful techniques provided in [3, 6] and some analysis, we first provide a

sufficient condition for GA(G) > GA(G− e) when e = vivj is a pendent edge of G.

Theorem 12. Assume that G is a simple graph and e = vivj is a pendent edge of G

with non-pendent vertex vj. If one of the following conditions is satisfied, then GA(G) >

GA(G− e):

(i) d
(j)
min ≥ dj, or

(ii)

√
d
(j)
max

2

√
dj− 1

2
+6d

(j)
max

≤
√
dj

dj+1
.

Proof. Since e = vivj is a pendent edge of G with non–pendent vertex vj, then

GA(G)−GA(G− e) = 2
∑

vk∈N(vj)\{vi}

(√
djdk

dj + dk
−
√

(dj − 1)dk
dj + dk − 1

)
+ 2

√
dj

dj + 1
. (22)

If d
(j)
min ≥ dj, then dk ≥ dj for any vk ∈ N(vj)\{vi}. Notice that f(x) = 1

x+ 1
x

is an

increasing function for x ∈ (0, 1]. Thus one can easily see that√
(dj − 1)dk

dj + dk − 1
−
√
djdk

dj + dk
< 0, (23)

which implies that GA(G) > GA(G− e). Hence, the (i) follows.

Now suppose that dk ≤ dj − 1 for some vk ∈ N(vj)\{vi}. Then√
(dj − 1)dk

dj + dk − 1
−
√
djdk

dj + dk

=

√
dk

(dj + dk)(dj + dk − 1)

(√
dj − 1(dj + dk)−

√
dj(dj + dk − 1)

)

≤

√
dk

(√
dj − 1(dj + dk)− (dj + dk − 1)(

√
dj − 1 + 1

2
√
dj−1
− 1

8(dj−1)3/2
)

)
(dj + dk)(dj + dk − 1)

=

√
dk

(dj + dk)(dj + dk − 1)

(
dj − dk − 1 +

dj + dk − 1

4(dj − 1)

)
1

2
√
dj − 1

≤
√
dk

2(dj − 1)
√
dj − 1

2
+ 6dk

·
(dj − dk − 1

2
)
√
dj − 1

√
dj − 1

2
+ 6dk

(dj + dk)(dj + dk − 1)
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<

√
dk

2(dj − 1)
√
dj − 1

2
+ 6dk

·
(dj − dk − 1

2
)(dj + 3dk − 1

2
)

(dj + dk)(dj + dk − 1)

<

√
dk

2(dj − 1)
√
dj − 1

2
+ 6dk

≤

√
d

(j)
max

2(dj − 1)
√
dj − 1

2
+ 6d

(j)
max

, (24)

where the last inequality holds as d
(j)
max ≥ dk and f(x) =

√
x√

a+6x
is an increasing function

in x > 0 whenever a > 0. Now, using (23) and (24), one may get

∑
vk∈N(vj)\{vi}

(√
(dj − 1)dk

dj + dk − 1
−
√
djdk

dj + dk

)
<

√
d

(j)
max

2
√
dj − 1

2
+ 6d

(j)
max

. (25)

Therefore, if the condition (ii) is satisfied, then GA(G) > GA(G− e).

The proof is complete.

Remark that, in Example 3, it is easy to verify that G1 satisfies the condition (ii)

of Theorem 12. So, GA(G1) > GA(G1 − e). However, G2 does not satisfy each one of

conditions of Theorem 11. Hence, Theorem 12 is an improvement on Theorem 11 when e

is a pendent edge of a graph.

Theorem 13. Assume that G is a graph with non–pendent edge e = vivj. If one of the

following conditions is satisfied, then GA(G) > GA(G− e):

(i) max

{
di

d
(i)
min

,
dj

d
(j)
min

}
≤ 1, or

(ii) max
{
di
dj
,
dj
di

}
≤ min

{
di− 1

2

d
(i)
max

,
dj− 1

2

d
(j)
max

}
.

Proof. Since e = vivj is a non–pendent edge of G. Then, from the definition of GA index,

one gets

GA(G)−GA(G− e) = 2
∑

vl∈N(vi)\{vj}

( √
didl

di + dl
−
√

(di − 1)dl
di + dl − 1

)

+ 2
∑

vk∈N(vj)\{vi}

(√
djdk

dj + dk
−
√

(dj − 1)dk
dj + dk − 1

)
+ 2

√
didj

di + dj
. (26)

If G satisfies the condition (i), then dl ≥ di for any vl ∈ N(vi)\{vj} and dk ≥ dj for

any vk ∈ N(vj)\{vi}. Now, from (23), one can easily see that√
(di − 1)dl

di + dl − 1
−
√
didl

di + dl
< 0,
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and √
(dj − 1)dk

dj + dk − 1
−
√
djdk

dj + dk
< 0.

So, it follows from (26) that GA(G) > GA(G− e). Otherwise, again from (23) and (24),

one has ∑
vk∈N(vj)\{vi}

(√
(dj − 1)dk

dj + dk − 1
−
√
djdk

dj + dk

)
<

√
d

(j)
max

2
√
dj − 1

2
+ 6d

(j)
max

.

Similarly, ∑
vl∈N(vi)\{vj}

(√
(di − 1)dl

di + dl − 1
−
√
didl

di + dl

)
<

√
d

(i)
max

2
√
di − 1

2
+ 6d

(i)
max

.

The following proof is similar to that of Theorem 3.4 in [3]. For the convenience of

readers, here we give the detailed proof. Let t1 = max
{
di
dj
,
dj
di

}
, t2 =

di− 1
2

d
(i)
max

and t3 =
dj− 1

2

d
(j)
max

.

Without loss of generality, assume that t2 ≤ t3. The condition (ii) implies that 1 ≤ t1 ≤

t2 ≤ t3. After some rearrangements, one has√
d

(i)
max

2
√
di − 1

2
+ 6d

(i)
max

+

√
d

(j)
max

2
√
dj − 1

2
+ 6d

(j)
max

=
1

2
√
t2 + 6

+
1

2
√
t3 + 6

≤ 1√
t2 + 6

≤
√
t1

t1 + 1
=

√
didj

di + dj
.

Hence, it follows from (26) that GA(G) > GA(G− e). The proof is complete.

Remark that, in Example 2, di = 100, dj = 500, d
(i)
max = d

(j)
max = 2. Clearly, G1 satisfies

the condition (ii) of Theorem 13. So, GA(G) > GA(G − e). Hence, Theorem 13 is an

improvement on Theorem 11. In addition, if G has an edge e = vivj with the property

(i) in Theorem 13, we say e is an ascending edge of G.

Corollary 6. If e = vivj is an ascending edge of G, then GA(G) > GA(G− e).

4.2. Effect on AG index of deleting an edge

Theorem 14. Let e = vivj be an edge of a graph G with non–pendent vertex vj. If one

of the following conditions is satisfied, then AG(G) > AG(G− e):

(i) min
{

di

d
(i)
max

,
dj

d
(j)
max

}
> 1, or

(ii) d
(i)
max−di+1

2
√
d
(i)
max
√
di

+
d
(j)
max−dj+1

2
√
d
(j)
max

√
dj
≤ di+dj√

didj
,

where di/d
(i)
max is stipulated as ∝ and d

(i)
max−di+1

2
√
d
(i)
max
√
di

= d
(i)
max

2
= 0 when vi is a pendent vertex.
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Proof. First suppose that e = vivj is a non–pendent edge of G. Then, in the light of the

definition of GA index,

AG(G)− AG(G− e) =
1

2

∑
vk∈N(vi)\{vj}

(
di + dk√
didk

− di + dk − 1√
(di − 1)dk

)

+
1

2

∑
vl∈N(vj)\{vi}

(
dj + dl√
djdl

− dj + dl − 1√
(dj − 1)dl

)
+
di + dj

2
√
didj

.

If the graph G satisfies the condition (i), then di > dk for any vk ∈ N(vi)\{vj} and

dj > dl for any vl ∈ N(vj)\{vi}. Since f(x) = x + 1
x

is an increasing function for x ≥ 1.

Thus, one has
di + dk√
didk

>
di + dk − 1√

(di − 1)dk
(27)

and
dj + dl√
djdl

>
dj + dl − 1√

(dj − 1)dl
.

Hence, AG(G) > AG(G− e).

If dk ≥ di > 1 for some vk ∈ N(vi)\{vj}, then

di + dk − 1√
(di − 1)dk

− di + dk√
didk

=

√
di
√

(di − 1)(di + dk − 1)− (di − 1)(di + dk)

(di − 1)
√
dk
√
di

<
(di − 1

2
)(di + dk − 1)− (di − 1)(di + dk)

(di − 1)
√
dk
√
di

=
dk − di + 1

2(di − 1)
√
dk
√
di

≤ d
(i)
max − di + 1

2(di − 1)

√
d

(i)
max

√
di

, (28)

where the last inequality holds as d
(i)
max ≥ dk and f(x) = x−a

b
√
x

(a, b > 0) is an increasing

function for x ≥ 0. Hence, from (27) and (28), one has

∑
vk∈N(vi)\{vj}

(
di + dk − 1√

(di − 1)dk
− di + dk√

didk

)
<
d

(i)
max − di + 1

2

√
d

(i)
max

√
di

.

Similarly, ∑
vl∈N(vj)\{vi}

(
dj + dl − 1√

(dj − 1)dl
− dj + dl√

djdl

)
<
d

(j)
max − dj + 1

2

√
d

(j)
max

√
dj

.

Therefore, if G is a graph satisfying the condition (ii), then AG(G) > AG(G− e).

If e = vivj is a pendent edge, then vi is a pendent vertex. After a simple check, the

result still holds. The proof is complete.
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Let H be any graph of order n−2 with maximum degree ∆(H) < n−3 and G = K2∨H.

If e = vivj is the edge with di = dj = n− 1, then AG(G) > AG(G− e). We say e = vivj

is a descending edge of G if the edge e has the property (i) in Theorem 14.

Corollary 7. If e = vivj is a descending edge of G, then AG(G) > AG(G− e).

Example 4. For given two graphs G1, G2 in Figure 4, one can see that AG(G1) −

AG(G1 − e) = −1.0170, whereas AG(G2) − AG(G2 − e) = 0.6309. In fact, G2 satisfies

the (ii) of Theorem 14. This example also shows that AG index may either increase or

decrease when an ascending edge e is deleted from a graph. However, Corollary 6 implies

that GA indices of G1 and G2 are all decrease when the ascending edge e is deleted. So

there are considerable differences between GA and AG indices of graphs.
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Figure 4. In the case of G1 the AG index increases, whereas in the case of G2 the
AG index decreases.

Finally, we suggest the following problem.

Problem 1. Is there a graph G such that GA(G) = GA(G− e) or AG(G) = AG(G− e)

for some edge e ∈ E(G)?

Acknowledgements: The authors thank the anonymous referees for their careful reading

and invaluable comments. S.-Y. Cui was supported by NSFC (Grant No. 11801521). W.

Wang was supported by NSFC (Grant Nos. 12031018, 11771402). B. Wu was supported

by NSFC (Grant No. 12061073).

References

[1] A. Ali, A. A. Bhatti, Z. Raza, Further inequalities between vertex–degree–based
topological indices, Int. J. Appl. Comput. Math. 3 (2017) 1921–1930.

[2] M. Aouchiche, P. Hansen, The geometric–arithmetic index and the chromatic number
of connected graphs, Discr. Appl. Math. 232 (2017) 207–212.

-105-



[3] Y. Chen, B. Wu, On the geometric–arithmetic index of a graph, Discr. Appl. Math.
254 (2019) 268–273.

[4] K. C. Das, Atom–bond connectivity index of graphs, Discr. Appl. Math. 158 (2010)
1181–1188.
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[16] I. Gutman, B. Ruščić, N. Trinajstić, C.F. Wilcox, Graph theory and molecular or-
bitals. XII Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.

[17] B. Horoldagva, S. G. Lee, Comparing Zagreb indices for connected graphs, Discr.
Appl. Math. 158 (2010) 1073–1078.
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