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Abstract

Let r ≥ 2 be a fixed integer, and xr the largest positive root of the equation

(x− 3 + 2
√

2) cosr
π

x+ 1
= x− 3 +

4
√

2

3
.

For a connected graph G on n > xr vertices with geometric–arithmetic index GA,
Randić index Ra and spectral radius λ1, it is proved that

GA

λr1
≤ Ra

2r−1

with equality if and only if G is a cycle. In particular, when r = 2, this settles
a conjecture of Aouchiche and Hansen [Comparing the geometric–arithmetic index
and the spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84
(2020) 473–482].

1 Introduction

Graphs considered in this paper are finite, undirected, simple, and connected. For a graph

G, denote by V (G) the vertex set and E(G) the edge set of G. For u ∈ V (G), denote by

dG(u) or simply du the degree of u in G.
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The geometric–arithmetic index of a graph G, proposed by Vukicević and Furtula [11],

is defined as

GA = GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

The Randić index (or product–connectivity index), proposed by Randić [8], is defined as

Ra = Ra(G) =
∑

uv∈E(G)

1√
dudv

.

The Randić index is one of the most studied molecular descriptors in mathematical chem-

istry, see, e.g., [5, 6]. Vukicević and Furtula [11] observed that the geometric–arithmetic

index shows somewhat better predictive power for physico–chemical properties than the

Randić index. Since then, the geometric–arithmetic index received much attention, see,

e.g., [4, 7, 12].

The spectral radius of a graph G, denoted by λ1 = λ1(G), is the largest eigenvalue of

its adjacency matrix A(G), where A(G) = (auv)u,v∈V (G) with auv = 1 if uv ∈ E(G) and

auv = 0 otherwise. The spectral radius has been comprehensively studied, see, e.g., [3,10].

In the rest of the paper, we denote by GA the geometric–arithmetic index, Ra the

Randić index, and λ1 the spectral radius, of a graph G, respectively.

Aouchiche and Hansen [1] gave a upper bound on GA
λ1

in terms of Ra, by combining

two inequalities: GA ≤ m and Ra · λ1 ≥ m, where m = |E(G)|.

Lemma 1.1. [1, Proposition 2.2] For any nontrivial connected graph G,

GA

λ1
≤ Ra

with equality if and only if G is regular.

They also gave another upper bound on GA
λ21

in terms of the number of vertices.

Lemma 1.2. [1, Theorem 2.5] Let G be a connected graph on n ≥ 7 vertices. Then

GA

λ21
≤ n

4

with equality if and only if G is a cycle.

Using AutoGraphiX, they proposed the following conjecture, and showed that it is

true for cyclic graphs.
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Conjecture 1.1. [1] For any connected graph G on n ≥ 8 vertices,

GA

λ21
≤ Ra

2

with equality if and only if G is a cycle.

As Ra ≤ n
2

for a graph on n vertices, Conjecture 1.1 would imply Lemma 1.2.

In this note, we will prove the following generalized version of Conjecture 1.1.

Theorem 1.1. Let r ≥ 2 be a fixed integer, and xr the largest positive root of the equation

(x− 3 + 2
√

2) cosr
π

x+ 1
= x− 3 +

4
√

2

3
.

For any connected graph G on n > xr vertices, we have

GA

λr1
≤ Ra

2r−1

with equality if and only if G is a cycle.

Remark 1.1. Set r = 2. Note that x2 ≈ 7.66251. It is then reduced to the solution of

Conjecture 1.1.

For a better illustration, we list the values of xr for 2 ≤ r ≤ 10:

r 2 3 4 5 6 7 8 9 10
xr 7.66251 12.9669 18.2289 23.478 28.7215 33.962 39.2008 44.4385 49.6754

2 Lemmas

Before proving Theorem 1.1, let us establish two auxiliary numerical results first.

Lemma 2.1. For n > xr,

n− 3 +
4
√

2

3
< (n− 3 + 2

√
2) cosr

π

n+ 1
.

Proof. Recall that xr is the largest positive root of the equation

(x− 3 + 2
√

2) cosr
π

x+ 1
= x− 3 +

4
√

2

3
.

This, together with the fact that

lim
n→∞

(
(n− 3 + 2

√
2) cosr

π

n+ 1
−

(
n− 3 +

4
√

2

3

))
=

2
√

2

3
> 0,

implies that for n > xr,

(n− 3 + 2
√

2) cosr
π

n+ 1
> n− 3 +

4
√

2

3
,

as desired.
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Lemma 2.2. For n > xr,

n− 5 +
2
√

6

5
+
√

3 +
2
√

2

3
<

(
n− 5 +

√
6

3
+

4
√

3

3
+
√

2

)
cosr

π

2n− 2
.

Proof. Following a similar setting of xr, we set yr to be the largest positive root of the

equation(
x− 5 +

√
6

3
+

4
√

3

3
+
√

2

)
cosr

π

2x− 2
= x− 5 +

2
√

6

5
+
√

3 +
2
√

2

3
.

Notice that

lim
n→∞

((
n− 5 +

√
6

3
+

4
√

3

3
+
√

2

)
cosr

π

2n− 2
−

(
n− 5 +

2
√

6

5
+
√

3 +
2
√

2

3

))

=
5
√

2 + 5
√

3−
√

6

15
> 0.

So, if n > yr, then

n− 5 +
2
√

6

5
+
√

3 +
2
√

2

3
<

(
n− 5 +

√
6

3
+

4
√

3

3
+
√

2

)
cosr

π

2n− 2
.

It suffices to show that xr > yr. In order to complete this task, we will involve with an

intermediate value, say ȳr, such that xr ≥ ȳr > yr.

It is easy to see that the main difficulty we face here is the existence of two cosine

functions: cosr π
n+1

and cosr π
2n−2 . For simplification, we resort to the following inequality

about cos x:

1− x2

2
< cosx < 1− x2

2
+
x4

24

when 0 < x < π
2
. Another inequality is also helpful:

1− xr < (1− x)r ≤ 1− rx+

(
r

2

)
x2

when r ≥ 2 and 0 < x < 1.

As a consequence, it follows that

cosr
π

2n− 2
>

(
1− π2

2(2n− 2)2

)r
> 1− π2r

2(2n− 2)2
(2.1)

and

cosr
π

n+ 1

<

(
1− π2

2(n+ 1)2
+

π4

24(n+ 1)4

)r
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≤ 1− r
(

π2

2(n+ 1)2
− π4

24(n+ 1)4

)
+

(
r

2

)(
π2

2(n+ 1)2
− π4

24(n+ 1)4

)2

. (2.2)

Set the intermediate value ȳr as

ȳr =
1

16(5
√

2 + 5
√

3−
√

6)

·
(

16(5
√

2 + 5
√

3−
√

6) + 15π2r

+

√
5π2r(2688− 1824

√
2− 1792

√
3 + 1504

√
6 + 45π2r)

)
.

It is somewhat tedious but not hard to verify that: When n > ȳr, from (2.1), we always

have (
n− 5 +

√
6

3
+

4
√

3

3
+
√

2

)
cosr

π

2n− 2

>

(
n− 5 +

√
6

3
+

4
√

3

3
+
√

2

)(
1− π2r

2(2n− 2)2

)
> n− 5 +

2
√

6

5
+
√

3 +
2
√

2

3
,

so ȳr > yr.

We are left to show that xr ≥ ȳr. Recall from Lemma 2.1 that when n > xr,

n− 3 +
4
√

2

3
< (n− 3 + 2

√
2) cosr

π

n+ 1
.

So our proof will be completed if

ȳr − 3 +
4
√

2

3
> (ȳr − 3 + 2

√
2) cosr

π

ȳr + 1
.

This is indeed true as, from (2.2), one has

(ȳr − 3 + 2
√

2) cosr
π

ȳr + 1

< (ȳr − 3 + 2
√

2)

(
1− r

(
π2

2(ȳr + 1)2
− π4

24(ȳr + 1)4

)
+

(
r

2

)(
π2

2(ȳr + 1)2
− π4

24(ȳr + 1)4

)2
)

< ȳr − 3 +
4
√

2

3
,

in which the last inequality follows from a series of somewhat tedious (but standard)

calculations.

The result follows finally.
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3 r = 2

First we prove the case r = 2 (Conjecture 1.1). The proof is partitioned into three

subcases: λ1 > 2, λ1 = 2, and λ1 < 2.

Lemma 3.1. For any connected graph G, if λ1 > 2, then

GA

λ21
<
Ra

2
.

Proof. From Lemma 1.1, we have

GA

λ21
=
GA

λ1
· 1

λ1
< Ra · 1

2
,

as desired.

Let us recall the characterization of graphs whose spectral radii are no more than 2.

Let K1,4 be the 5–vertex star. Let Cn be the cycle on n ≥ 3 vertices. Let Wn be the

n–vertex tree obtained from a path v1 . . . vn−2 by adding a vertex of degree one adjacent

to v2 and a vertex of degree one adjacent to vn−3, where n ≥ 6. Let T7 be the 7–vertex

tree consisting of three paths of length two at a common vertex, T8 the 8–vertex tree

consisting of two paths of length three and one path of length one at a common vertex,

and T9 the 9–vertex tree consisting of one path of length five, one path of length two and

one path of length one at a common vertex. The illustrations about Wn, T7, T8, and T9

are given in Fig. 1.

 

 

 

                                 

nW                                                             7T  

 

                         

8T                                                             9T  

 Figure 1. The illustrations about Wn, T7, T8, and T9.

Lemma 3.2. [9] If G is a connected graph with λ1 = 2, then G is one of K1,4, Cn, Wn,

T7, T8, T9. If G is a connected graph with λ1 < 2, then G is a proper induced (connected)

subgraph of one of K1,4, Cn, Wn, T7, T8, T9.
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Lemma 3.3. For any connected graph G on n ≥ 8 vertices, if λ1 = 2, then

GA

λ21
≤ Ra

2

with equality if and only if G is the cycle Cn.

Proof. From Lemma 3.2, G is Cn, Wn, T8, or T9. The result follows from direct calcula-

tions.

Lemma 3.4. For any connected graph G on n ≥ 8 vertices, if λ1 < 2, then

GA

λ21
<
Ra

2
.

Proof. From Lemma 3.2 again, we may assume that G is a proper induced (connected)

subgraph of C`, W`, or T9 for some ` > n.

If G is a proper induced (connected) subgraph of C`, then G ∼= Pn, where Pn represents

the path on n vertices. Note that λ1 = 2 cos π
n+1

, see, e.g., [2]. Our desired inequality is

equivalent to

n− 3 + 4
√
2

3

cos2 π
n+1

< n− 3 + 2
√

2

for n ≥ 8, which is a direct consequence of Lemma 2.1 with r = 2.

If G is a proper induced (connected) subgraph of W`, then either G ∼= Pn, or the tree

obtained from Wn+1 by deleting a vertex of degree one (see Fig. 2). As above, we have

verified the former case. For the latter case, we have λ1 = 2 cos π
2n−2 (see, e.g., [2]), and

we resort to Lemma 2.2 with r = 2, and get

n− 5 + 2
√
6

5
+
√

3 + 2
√
2

3

cos2 π
2n−2

< n− 5 +

√
6

3
+

4
√

3

3
+
√

2,

as desired.

 

 

                                 
                                                             

 
 

Figure 2. A proper induced (connected) subgraph of W`.

Suppose that G is a proper induced (connected) subgraph of T9. Recall the T9 is a tree

on 9 vertices, and G has at least 8 vertices, it means that G contains exactly 8 vertices.
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More precisely, G is obtained from T9 by deleting one vertex of degree one, so we have

three candidates, two of which are just the ones considered in last two paragraphs, and

the remaining one is the 8–vertex tree consisting of one path of length four, one path of

length two and one path of length one at a common vertex (see Fig. 3), it can be verified

by direct calculation.

 

 
 

                         
                                                             

 
Figure 3. A proper induced (connected) subgraph of T9.

The proof is completed.

Combining all the arguments as above, we may deduce that Conjecture 1.1 is true.

Theorem 3.1. For any connected graph G on n ≥ 8 vertices,

GA

λ21
≤ Ra

2

with equality if and only if G is the cycle Cn.

4 General r

Finally, we give an extension to all positive integers r ≥ 2 (Theorem 1.1), which comes

from induction.

The case r = 2 is our basic case. Further, suppose that r ≥ 3 and that Theorem 1.1

is true for r − 1. So
GA

λr−11

≤ Ra

2r−2

with equality if and only if G is the cycle Cn (in such case λ1 = 2). Next we show that it

is still valid for r.

If λ1 ≥ 2, then

GA

λr1
=

GA

λr−11

· 1

λ1
≤ Ra

2r−2
· 1

λ1
≤ Ra

2r−2
· 1

2
=

Ra

2r−1

with equalities if and only if G is the cycle Cn (and λ1 = 2).
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Suppose that λ1 < 2. Note that xr > 9 for r ≥ 3. As in the proof of the case r = 2

(Lemma 3.4), we may assume that either G ∼= Pn, or the tree obtained from Wn+1 by

deleting a vertex of degree one. In the former case,

GA

λr1
<

Ra

2r−1

is equivalent to

n− 3 +
4
√

2

3
< (n− 3 + 2

√
2) cosr

π

n+ 1

for n > xr, which is verified in Lemma 2.1. In the latter case, Lemma 2.2 guarantees the

validity of
GA

λr1
<

Ra

2r−1
,

by considering its equivalent form:

n− 5 +
2
√

6

5
+
√

3 +
2
√

2

3
<

(
n− 5 +

√
6

3
+

4
√

3

3
+
√

2

)
cosr

π

2n− 2

for n > xr.

Combining the above two cases, Theorem 1.1 follows.
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