On Quotient of Geometric-Arithmetic Index and Square of Spectral Radius

Zhibin Du ${ }^{a}$, Bo Zhou ${ }^{b, *}$
${ }^{a}$ School of Software, South China Normal University
Foshan 528225, P.R. China
zhibindu@126.com
${ }^{b}$ School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P.R. China
zhoubo@scnu.edu.cn

(Received July 20, 2020)

Abstract

Let $r \geq 2$ be a fixed integer, and x_{r} the largest positive root of the equation $$
(x-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{x+1}=x-3+\frac{4 \sqrt{2}}{3}
$$

For a connected graph G on $n>x_{r}$ vertices with geometric-arithmetic index $G A$, Randić index $R a$ and spectral radius λ_{1}, it is proved that

$$
\frac{G A}{\lambda_{1}^{r}} \leq \frac{R a}{2^{r-1}}
$$

with equality if and only if G is a cycle. In particular, when $r=2$, this settles a conjecture of Aouchiche and Hansen [Comparing the geometric-arithmetic index and the spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 473-482].

1 Introduction

Graphs considered in this paper are finite, undirected, simple, and connected. For a graph G, denote by $V(G)$ the vertex set and $E(G)$ the edge set of G. For $u \in V(G)$, denote by $d_{G}(u)$ or simply d_{u} the degree of u in G.

[^0]The geometric-arithmetic index of a graph G, proposed by Vukicević and Furtula [11], is defined as

$$
G A=G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{d_{u} d_{v}}}{d_{u}+d_{v}}
$$

The Randić index (or product-connectivity index), proposed by Randić [8], is defined as

$$
R a=R a(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{u} d_{v}}}
$$

The Randić index is one of the most studied molecular descriptors in mathematical chemistry, see, e.g., $[5,6]$. Vukicević and Furtula [11] observed that the geometric-arithmetic index shows somewhat better predictive power for physico-chemical properties than the Randić index. Since then, the geometric-arithmetic index received much attention, see, e.g., $[4,7,12]$.

The spectral radius of a graph G, denoted by $\lambda_{1}=\lambda_{1}(G)$, is the largest eigenvalue of its adjacency matrix $A(G)$, where $A(G)=\left(a_{u v}\right)_{u, v \in V(G)}$ with $a_{u v}=1$ if $u v \in E(G)$ and $a_{u v}=0$ otherwise. The spectral radius has been comprehensively studied, see, e.g., [3,10].

In the rest of the paper, we denote by $G A$ the geometric-arithmetic index, $R a$ the Randić index, and λ_{1} the spectral radius, of a graph G, respectively.

Aouchiche and Hansen [1] gave a upper bound on $\frac{G A}{\lambda_{1}}$ in terms of $R a$, by combining two inequalities: $G A \leq m$ and $R a \cdot \lambda_{1} \geq m$, where $m=|E(G)|$.

Lemma 1.1. [1, Proposition 2.2] For any nontrivial connected graph G,

$$
\frac{G A}{\lambda_{1}} \leq R a
$$

with equality if and only if G is regular.
They also gave another upper bound on $\frac{G A}{\lambda_{1}^{2}}$ in terms of the number of vertices.
Lemma 1.2. [1, Theorem 2.5] Let G be a connected graph on $n \geq 7$ vertices. Then

$$
\frac{G A}{\lambda_{1}^{2}} \leq \frac{n}{4}
$$

with equality if and only if G is a cycle.
Using AutoGraphiX, they proposed the following conjecture, and showed that it is true for cyclic graphs.

Conjecture 1.1. [1] For any connected graph G on $n \geq 8$ vertices,

$$
\frac{G A}{\lambda_{1}^{2}} \leq \frac{R a}{2}
$$

with equality if and only if G is a cycle.
As $R a \leq \frac{n}{2}$ for a graph on n vertices, Conjecture 1.1 would imply Lemma 1.2.
In this note, we will prove the following generalized version of Conjecture 1.1.
Theorem 1.1. Let $r \geq 2$ be a fixed integer, and x_{r} the largest positive root of the equation

$$
(x-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{x+1}=x-3+\frac{4 \sqrt{2}}{3} .
$$

For any connected graph G on $n>x_{r}$ vertices, we have

$$
\frac{G A}{\lambda_{1}^{r}} \leq \frac{R a}{2^{r-1}}
$$

with equality if and only if G is a cycle.
Remark 1.1. Set $r=2$. Note that $x_{2} \approx 7.66251$. It is then reduced to the solution of Conjecture 1.1.

For a better illustration, we list the values of x_{r} for $2 \leq r \leq 10$:

r	2	3	4	5	6	7	8	9	10
x_{r}	7.66251	12.9669	18.2289	23.478	28.7215	33.962	39.2008	44.4385	49.6754

2 Lemmas

Before proving Theorem 1.1, let us establish two auxiliary numerical results first.
Lemma 2.1. For $n>x_{r}$,

$$
n-3+\frac{4 \sqrt{2}}{3}<(n-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{n+1}
$$

Proof. Recall that x_{r} is the largest positive root of the equation

$$
(x-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{x+1}=x-3+\frac{4 \sqrt{2}}{3}
$$

This, together with the fact that

$$
\lim _{n \rightarrow \infty}\left((n-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{n+1}-\left(n-3+\frac{4 \sqrt{2}}{3}\right)\right)=\frac{2 \sqrt{2}}{3}>0
$$

implies that for $n>x_{r}$,

$$
(n-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{n+1}>n-3+\frac{4 \sqrt{2}}{3}
$$

as desired.

Lemma 2.2. For $n>x_{r}$,

$$
n-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3}<\left(n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right) \cos ^{r} \frac{\pi}{2 n-2}
$$

Proof. Following a similar setting of x_{r}, we set y_{r} to be the largest positive root of the equation

$$
\left(x-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right) \cos ^{r} \frac{\pi}{2 x-2}=x-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3} .
$$

Notice that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\left(n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right) \cos ^{r} \frac{\pi}{2 n-2}-\left(n-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3}\right)\right) \\
= & \frac{5 \sqrt{2}+5 \sqrt{3}-\sqrt{6}}{15}>0 .
\end{aligned}
$$

So, if $n>y_{r}$, then

$$
n-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3}<\left(n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right) \cos ^{r} \frac{\pi}{2 n-2}
$$

It suffices to show that $x_{r}>y_{r}$. In order to complete this task, we will involve with an intermediate value, say \bar{y}_{r}, such that $x_{r} \geq \bar{y}_{r}>y_{r}$.

It is easy to see that the main difficulty we face here is the existence of two cosine functions: $\cos ^{r} \frac{\pi}{n+1}$ and $\cos ^{r} \frac{\pi}{2 n-2}$. For simplification, we resort to the following inequality about $\cos x$:

$$
1-\frac{x^{2}}{2}<\cos x<1-\frac{x^{2}}{2}+\frac{x^{4}}{24}
$$

when $0<x<\frac{\pi}{2}$. Another inequality is also helpful:

$$
1-x r<(1-x)^{r} \leq 1-r x+\binom{r}{2} x^{2}
$$

when $r \geq 2$ and $0<x<1$.
As a consequence, it follows that

$$
\begin{equation*}
\cos ^{r} \frac{\pi}{2 n-2}>\left(1-\frac{\pi^{2}}{2(2 n-2)^{2}}\right)^{r}>1-\frac{\pi^{2} r}{2(2 n-2)^{2}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{aligned}
& \cos ^{r} \frac{\pi}{n+1} \\
< & \left(1-\frac{\pi^{2}}{2(n+1)^{2}}+\frac{\pi^{4}}{24(n+1)^{4}}\right)^{r}
\end{aligned}
$$

$$
\begin{equation*}
\leq 1-r\left(\frac{\pi^{2}}{2(n+1)^{2}}-\frac{\pi^{4}}{24(n+1)^{4}}\right)+\binom{r}{2}\left(\frac{\pi^{2}}{2(n+1)^{2}}-\frac{\pi^{4}}{24(n+1)^{4}}\right)^{2} . \tag{2.2}
\end{equation*}
$$

Set the intermediate value \bar{y}_{r} as

$$
\begin{aligned}
\bar{y}_{r}= & \frac{1}{16(5 \sqrt{2}+5 \sqrt{3}-\sqrt{6})} \\
& \cdot\left(16(5 \sqrt{2}+5 \sqrt{3}-\sqrt{6})+15 \pi^{2} r\right. \\
& \left.+\sqrt{5 \pi^{2} r\left(2688-1824 \sqrt{2}-1792 \sqrt{3}+1504 \sqrt{6}+45 \pi^{2} r\right)}\right)
\end{aligned}
$$

It is somewhat tedious but not hard to verify that: When $n>\bar{y}_{r}$, from (2.1), we always have

$$
\begin{aligned}
& \left(n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right) \cos ^{r} \frac{\pi}{2 n-2} \\
> & \left(n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right)\left(1-\frac{\pi^{2} r}{2(2 n-2)^{2}}\right) \\
> & n-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

so $\bar{y}_{r}>y_{r}$.
We are left to show that $x_{r} \geq \bar{y}_{r}$. Recall from Lemma 2.1 that when $n>x_{r}$,

$$
n-3+\frac{4 \sqrt{2}}{3}<(n-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{n+1}
$$

So our proof will be completed if

$$
\bar{y}_{r}-3+\frac{4 \sqrt{2}}{3}>\left(\bar{y}_{r}-3+2 \sqrt{2}\right) \cos ^{r} \frac{\pi}{\bar{y}_{r}+1} .
$$

This is indeed true as, from (2.2), one has

$$
\begin{aligned}
& \left(\bar{y}_{r}-3+2 \sqrt{2}\right) \cos ^{r} \frac{\pi}{\bar{y}_{r}+1} \\
< & \left(\bar{y}_{r}-3+2 \sqrt{2}\right)\left(1-r\left(\frac{\pi^{2}}{2\left(\bar{y}_{r}+1\right)^{2}}-\frac{\pi^{4}}{24\left(\bar{y}_{r}+1\right)^{4}}\right)\right. \\
& \left.+\binom{r}{2}\left(\frac{\pi^{2}}{2\left(\bar{y}_{r}+1\right)^{2}}-\frac{\pi^{4}}{24\left(\bar{y}_{r}+1\right)^{4}}\right)^{2}\right) \\
< & \bar{y}_{r}-3+\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

in which the last inequality follows from a series of somewhat tedious (but standard) calculations.

The result follows finally.

$3 \quad r=2$

First we prove the case $r=2$ (Conjecture 1.1). The proof is partitioned into three subcases: $\lambda_{1}>2, \lambda_{1}=2$, and $\lambda_{1}<2$.

Lemma 3.1. For any connected graph G, if $\lambda_{1}>2$, then

$$
\frac{G A}{\lambda_{1}^{2}}<\frac{R a}{2}
$$

Proof. From Lemma 1.1, we have

$$
\frac{G A}{\lambda_{1}^{2}}=\frac{G A}{\lambda_{1}} \cdot \frac{1}{\lambda_{1}}<R a \cdot \frac{1}{2},
$$

as desired.
Let us recall the characterization of graphs whose spectral radii are no more than 2 . Let $K_{1,4}$ be the 5 -vertex star. Let C_{n} be the cycle on $n \geq 3$ vertices. Let W_{n} be the n-vertex tree obtained from a path $v_{1} \ldots v_{n-2}$ by adding a vertex of degree one adjacent to v_{2} and a vertex of degree one adjacent to v_{n-3}, where $n \geq 6$. Let T_{7} be the 7 -vertex tree consisting of three paths of length two at a common vertex, T_{8} the 8 -vertex tree consisting of two paths of length three and one path of length one at a common vertex, and T_{9} the 9 -vertex tree consisting of one path of length five, one path of length two and one path of length one at a common vertex. The illustrations about W_{n}, T_{7}, T_{8}, and T_{9} are given in Fig. 1.

Figure 1. The illustrations about W_{n}, T_{7}, T_{8}, and T_{9}.

Lemma 3.2. [9] If G is a connected graph with $\lambda_{1}=2$, then G is one of $K_{1,4}, C_{n}, W_{n}$, T_{7}, T_{8}, T_{9}. If G is a connected graph with $\lambda_{1}<2$, then G is a proper induced (connected) subgraph of one of $K_{1,4}, C_{n}, W_{n}, T_{7}, T_{8}, T_{9}$.

Lemma 3.3. For any connected graph G on $n \geq 8$ vertices, if $\lambda_{1}=2$, then

$$
\frac{G A}{\lambda_{1}^{2}} \leq \frac{R a}{2}
$$

with equality if and only if G is the cycle C_{n}.

Proof. From Lemma 3.2, G is C_{n}, W_{n}, T_{8}, or T_{9}. The result follows from direct calculations.

Lemma 3.4. For any connected graph G on $n \geq 8$ vertices, if $\lambda_{1}<2$, then

$$
\frac{G A}{\lambda_{1}^{2}}<\frac{R a}{2} .
$$

Proof. From Lemma 3.2 again, we may assume that G is a proper induced (connected) subgraph of C_{ℓ}, W_{ℓ}, or T_{9} for some $\ell>n$.

If G is a proper induced (connected) subgraph of C_{ℓ}, then $G \cong P_{n}$, where P_{n} represents the path on n vertices. Note that $\lambda_{1}=2 \cos \frac{\pi}{n+1}$, see, e.g., [2]. Our desired inequality is equivalent to

$$
\frac{n-3+\frac{4 \sqrt{2}}{3}}{\cos ^{2} \frac{\pi}{n+1}}<n-3+2 \sqrt{2}
$$

for $n \geq 8$, which is a direct consequence of Lemma 2.1 with $r=2$.
If G is a proper induced (connected) subgraph of W_{ℓ}, then either $G \cong P_{n}$, or the tree obtained from W_{n+1} by deleting a vertex of degree one (see Fig. 2). As above, we have verified the former case. For the latter case, we have $\lambda_{1}=2 \cos \frac{\pi}{2 n-2}$ (see, e.g., [2]), and we resort to Lemma 2.2 with $r=2$, and get

$$
\frac{n-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3}}{\cos ^{2} \frac{\pi}{2 n-2}}<n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2},
$$

as desired.

Figure 2. A proper induced (connected) subgraph of W_{ℓ}.
Suppose that G is a proper induced (connected) subgraph of T_{9}. Recall the T_{9} is a tree on 9 vertices, and G has at least 8 vertices, it means that G contains exactly 8 vertices.

More precisely, G is obtained from T_{9} by deleting one vertex of degree one, so we have three candidates, two of which are just the ones considered in last two paragraphs, and the remaining one is the 8 -vertex tree consisting of one path of length four, one path of length two and one path of length one at a common vertex (see Fig. 3), it can be verified by direct calculation.

Figure 3. A proper induced (connected) subgraph of T_{9}.

The proof is completed.
Combining all the arguments as above, we may deduce that Conjecture 1.1 is true.

Theorem 3.1. For any connected graph G on $n \geq 8$ vertices,

$$
\frac{G A}{\lambda_{1}^{2}} \leq \frac{R a}{2}
$$

with equality if and only if G is the cycle C_{n}.

4 General r

Finally, we give an extension to all positive integers $r \geq 2$ (Theorem 1.1), which comes from induction.

The case $r=2$ is our basic case. Further, suppose that $r \geq 3$ and that Theorem 1.1 is true for $r-1$. So

$$
\frac{G A}{\lambda_{1}^{r-1}} \leq \frac{R a}{2^{r-2}}
$$

with equality if and only if G is the cycle C_{n} (in such case $\lambda_{1}=2$). Next we show that it is still valid for r.

If $\lambda_{1} \geq 2$, then

$$
\frac{G A}{\lambda_{1}^{r}}=\frac{G A}{\lambda_{1}^{r-1}} \cdot \frac{1}{\lambda_{1}} \leq \frac{R a}{2^{r-2}} \cdot \frac{1}{\lambda_{1}} \leq \frac{R a}{2^{r-2}} \cdot \frac{1}{2}=\frac{R a}{2^{r-1}}
$$

with equalities if and only if G is the cycle C_{n} (and $\lambda_{1}=2$).

Suppose that $\lambda_{1}<2$. Note that $x_{r}>9$ for $r \geq 3$. As in the proof of the case $r=2$ (Lemma 3.4), we may assume that either $G \cong P_{n}$, or the tree obtained from W_{n+1} by deleting a vertex of degree one. In the former case,

$$
\frac{G A}{\lambda_{1}^{r}}<\frac{R a}{2^{r-1}}
$$

is equivalent to

$$
n-3+\frac{4 \sqrt{2}}{3}<(n-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{n+1}
$$

for $n>x_{r}$, which is verified in Lemma 2.1. In the latter case, Lemma 2.2 guarantees the validity of

$$
\frac{G A}{\lambda_{1}^{r}}<\frac{R a}{2^{r-1}}
$$

by considering its equivalent form:

$$
n-5+\frac{2 \sqrt{6}}{5}+\sqrt{3}+\frac{2 \sqrt{2}}{3}<\left(n-5+\frac{\sqrt{6}}{3}+\frac{4 \sqrt{3}}{3}+\sqrt{2}\right) \cos ^{r} \frac{\pi}{2 n-2}
$$

for $n>x_{r}$.
Combining the above two cases, Theorem 1.1 follows.

Acknowledgement. This work was supported by the National Natural Science Foundation of China (Grant No. 11701505).

References

[1] M. Aouchiche, P. Hansen, Comparing the geometric-arithmetic index and the spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 473-482.
[2] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.
[3] D. Cvetković, I. Gutman, Note on branching, Croat. Chem. Acta 49 (1977) 115-121.
[4] Z. Du, B. Zhou, N. Trinajstić, On geometric-arithmetic indices of (molecular) trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 681-697.
[5] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
[6] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[7] I. Ž. Milovanović, E. I. Milovanović, M. M. Matejić, On upper bounds for the geometric-arithmetic topological index, MATCH Commun. Math. Comput. Chem. 80 (2018) 109-127.
[8] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[9] J. H. Smith, Some properties of the spectrum of a graph, in: R. Guy, H. Hanani, N. Sauer, J. Schonheim (Eds.), Combinatorial Structures and Their Applications, Gordon \& Breach, New York, 1970, pp. 403-406.
[10] D. Stevanović, Spectral Radius, Academic Press, Oxford, 2014.
[11] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 13691376.
[12] Y. Yuan, B. Zhou, N. Trinajstić, On geometric-arithmetic index, J. Math. Chem. 47 (2010) 833-841.

[^0]: *Corresponding author.

