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Abstract

The Mostar index of a graph G is defined as Mo(G) =
∑

e=uv∈E(G) |nu − nv|,
where nu denotes the number of vertices of G closer to u than to v and nv denotes
the number of vertices of G closer to v than to u. In this paper, we determine the
first three minimal values of the Mostar index among all hexagonal chains with h
hexagons, and characterize the corresponding extremal graphs by some transforma-
tions on hexagonal chains.

1 Introduction

Hexagonal systems are of great importance for theoretical chemistry because they are the

molecular graphs of benzenoid hydrocarbons. A hexagonal system is a connected plane

graph without cut-vertices in which all inner faces are hexagons (and all hexagons are

faces), such that two hexagons are either disjoint or have exactly one common edge, and

no three hexagons share a common edge.

A hexagonal system without any hexagon which has more than two neighboring

hexagons is called a hexagonal chain. The set of all hexagonal chains with h hexagons is

denoted by HCh.

Let r be a hexagon of a hexagonal chain G. If r has only one neighboring hexagon,

then it is said to be terminal. A hexagon r adjacent to exactly two other hexagons
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possesses two vertices of degree 2 and r is angularly connected in G if these two vertices

are adjacent. Each angularly connected hexagon in a hexagonal chain G is said to be a

kink. The kink number of G is the number of kinks in G, denoted by K(G) or K. A

linear chain is a hexagonal chain without kinks. The linear chains with h hexagons is

denoted by Lh. A segment is a maximal linear chain in a hexagonal chain, including the

kinks and/or terminal hexagons at its end. A segment including a terminal hexagon is a

terminal segment. A non-linear chain has at least two terminal segments. The number

of hexagons in a segment S is called its length and is denoted by `(S). A segment has a

common kink with S is called a neighboring segment of S. The number of segments in G

is called the segment number, denoted by `(G). For any segment S of G ∈ HCh, we have

2 ≤ `(S) ≤ h. If G ∈ HCh consists of segments S1, S2, · · · , Sn with lengths l1, l2, · · · , ln,

respectively, then the number of hexagons in G is equal to h(G) = l1 + l2 + · · ·+ ln−n+ 1

since two neighboring segments have always one hexagon in common.

Let S be a non-terminal segment of a hexagonal chain G. If its two neighboring

segments lie on different sides of the line through centers of all hexagons on S, then S is

called a zigzag segment. If these segments lie on the same side of the line, then S is said

to be a non-zigzag segment.

Throughout this paper, the notation and terminology of hexagonal systems are mainly

taken from [1,2].

Let G ∈ HCh with its vertex set V (G) and edge set E(G). G − uv and G + uv

denote the graphs obtained from G by deleting an edge uv ∈ E(G) or by adding an

edge uv /∈ E(G), respectively. |V (G)| and |E(G)| denote the numbers of vertices and the

number of edges of G, respectively. For any G ∈ HCh, we have |V (G)| = 4h + 2 and

|E(G)| = 5h + 1.

In 2018, Došlić et al. [3] introduced a new invariant of a connected graph G, i.e., the

Mostar index, defined as

Mo(G) =
∑

e=uv∈E(G)

|nu − nv|

where nu denotes the number of vertices of G closer to u than to v, and nv denotes the

number of vertices of G closer to v than to u. They pointed out that the Mostar index

measures how far a graph is from being distance-balanced [7,8] and may be viewed of as

a quantitative refinement of the distance-non-balancedness of a graph. They determined

the extremal values and characterized extremal graphs for trees and unicyclic graphs, and
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showed how it can be efficiently computed for various classes of chemically interesting

graphs using a variant of the cut method [4]. The Mostar index of bicyclic graphs was

studied by Tepeh [5]. Hayat and Zhou [6] determined the cactus of order n with the

largest Mostar index and gave a sharp upper bound of the Mostar index for all cacti of

order n with k cycles.

Some conjectures and open problems were proposed in [3], where Problem 22 is con-

cerned with benzenoid chains: find extremal benzenoid chains, catacondensed benzenoids

and general benzenoid graphs with respect to the Mostar index. In this paper, we deter-

mine the first three minimal values of the Mostar index among all hexagonal chains with

h hexagons, and characterize the corresponding extremal graphs by some transformations

on hexagonal chains.

2 The hexagonal chains with the first three minimal

Mostar indices

In this section, we will determine the hexagonal chains with the first three minimal Mostar

indices. Firstly, we introduce some transformations on hexagonal chains and discuss the

effect of the transformations on the Mostar index of hexagonal chains.

For a hexagonal chain G ∈ HCh, let the hexagonal chains G1 and G2 be obtained

from a hexagonal chain G by deleting a segment Si, that is G1 and G2 are the connected

components of G \ Si (see Figure 1). The number of hexagons of G1 and G2 will be

denoted by n1 and n2, respectively, and `(Si) = li ≥ 2. Without loss of generality, we

assume that 1 ≤ n1 ≤ n2, and h = n1 + n2 + li.

Figure 1. A hexagonal chain G with (i) a zigzag segment Si, (ii) a non-zigzag
segment Si.

Note that a adjacent segment of Si is a terminal segment, or a non-zigzag segment or
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a zigzag segment. If S ′i is a adjacent segment of Si, and the subgraph G1 = (S
′
i

⋃
G

′
1) −

(Si

⋂
S

′
i), then there are four possible structures of the hexagonal chain G, see Figure 2,

where the segment of S
′
i is the adjacent segment of Si, G

′
1 is a subgraph of G1, `(Si) = li,

`(S
′
i) = l

′
i, G

′
1 contains n1 − l

′
i + 1 hexagons, n1 ≥ l

′
i − 1.

Figure 2. The four possible structures of G.

Let G be a hexagonal chain and a segment S of G. Draw a straight line through

the centers of hexagons on the segment S and the edge-cut formed by all edges in S

orthogonal to the straight line is called the orthogonal cut of S, which is recorded as

O(S). And the two components obtained by removing edges of the orthogonal edge-cut

of S are its shores. The orthogonal cut of S is balanced if its shores have the same number

of vertices. The contribution to the Mostar index for any edge in a balanced orthogonal

cut is zero.

Two edges in the orthogonal cut of S contributes the same value to the Mostar index,

i.e. for arbitrary e1 = v1u1, e2 = v2u2 ∈ O(S), |nv1 − nu1| = |nv2 − nu2|.

In the following, we introduce some transformations on hexagonal chains and discuss

the changes of their Mostar indices.
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Figure 3. The kink transformation (I).

Lemma 1. (Kink transformation (I)). Let G be a hexagonal chain with h hexagons and

a non-zigzag segment Si. G
′
= G−{v1u2, v2u3}+{v1u1, v2u2} is obtained by changing the

angularly connected hexagon u1u2u3u4u5u6u1 in Si∩S ′i into a linearly connected hexagon,

see Figure 3. Then

Mo(G) > Mo(G
′
).

Proof. Note that the hexagon u1u2u3u4u5u6u1 is a kink hexagon of G, S
′′
i is a new segment

of G
′

= G − {v1u2, v2u3} + {v1u1, v2u2} and G′ consists of the segment S
′′
, G

′
1 and G2,

and the number of kinds of G
′

is one less than that of G.

From the structure of G, we know that G
′
1 contains (n1− l

′
i + 1) hexagons. Two cases

will be considered below. By the transformation, we can see that the contributions of

edges to the Mostar index in G are changed for the orthogonal cut of Si and S
′
i , and the

contributions of the other edges to the Mostar index are not changed.

Case 1. S
′
i is a zigzag segment or a terminal segment.

In G, the contribution of each edge uv in the orthogonal cut of Si to Mo(G) is

|nu − nv| = 4(h− li).
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Since the orthogonal cut of Si has (li + 1) edges, the contributions of the orthogonal cut

of Si to Mo(G) are ∑
uv∈O(Si)⊆E(G)

|nu − nv| = 4(li + 1)(h− li).

The contribution of each edge in the orthogonal cut of S
′
i to Mo(G) is

|nu − nv| = 4(n2 + li + l
′

i − n1 − 2).

And the orthogonal cut of S
′
i have (l

′
i + 1) edges, so the contributions of the orthogonal

cut of S
′
i to Mo(G) are∑

uv∈O(S
′
i)⊆E(G)

|nu − nv| = 4(l
′

i + 1)(n2 + li + l
′

i − n1 − 2).

In G′, the contribution of each edge in the orthogonal cut of S
′′
i to Mo(G′) is

|nu − nv| = 4(n2 − n1 + l
′

i − 1)

and the orthogonal cut of S
′′
i has li+l

′
i edges, so the contributions of the edges of orthogonal

cut of S
′′
i to Mo(G

′
) are∑

uv∈O(S
′′
i )⊆E(G′ )

|nu − nv| = 4(li + l
′

i)(n2 + l
′

i − n1 − 1).

Note that the edges of e1 = u2u3, e2 = u5u6 ∈ S ′i in G, but e1, e2 6∈ Si
′′ in G

′
, and the

contributions of e1, e2 to Mo(G
′
) are∑

uv∈{e1,e2}⊆E(G′ )

|nu − nv| = 2× 4(n2 − n1 + li − 1).

So, we have

Mo(G)−Mo(G
′
) = {

∑
uv∈O(Si)⊆E(G)

|nu − nv|+
∑

uv∈O(S
′
i)⊆E(G)

|nu − nv|}

− {
∑

uv∈O(S′′ )

|nu − nv|+
∑

uv∈{e1,e2}⊆E(G′ )

|nu − nv|}

= [4(li + 1)(h− li) + 4(l
′

i + 1)(n2 + li + l
′

i − n1 − 2)]

− [4(li + l
′

i)(n2 + l
′

i − n1 − 1) + 2× 4(n2 − n1 + li − 1)]

= 8n1(li + 1) > 0

and Mo(G) > Mo(G
′
).
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Case 2. S
′
i is a non-zigzag segment.

In G, the contribution of each edge uv in the orthogonal cut of Si to Mo(G) is

|nu − nv| = 4(h− li)

and the contributions of the orthogonal cut of Si to Mo(G) are∑
uv∈O(Si)⊆E(G)

|nu − nv| = 4(li + 1)(h− li).

The contribution of each edge in the orthogonal cut of S
′
i to Mo(G) is

|nu − nv| = 4(h− l
′

i)

and the contributions of the orthogonal cut of S
′
i to Mo(G) are∑

uv∈O(S
′
i)⊆E(G)

|nu − nv| = 4(l
′

i + 1)(h− l
′

i).

In G′, the contribution of each edge in the orthogonal cut of S
′′
i to Mo(G′) is

|nu − nv| = 4(h− li − l
′

i + 1)

and the orthogonal cut of S
′′
i has li+l

′
i edges, so the contributions of the edges of orthogonal

cut of S
′′
i to Mo(G

′
) are∑
uv∈O(S

′′
i )⊆E(G′ )

|nu − nv| = 4(li + l
′

i)(h− li − l
′

i + 1).

Note that the edges of e1 = u2u3, e2 = u5u6 ∈ S ′i in G, but e1, e2 6∈ Si
′′ in G

′
, and the

contributions of e1, e2 to Mo(G
′
) are∑

uv∈{e1,e2}⊆E(G′ )

|nu − nv| = 2× 4(n2 − n1 + li − 1).

So, we have

Mo(G)−Mo(G
′
) = {

∑
uv∈O(Si)⊆E(G)

|nu − nv|+
∑

uv∈O(S
′
i)⊆E(G)

|nu − nv|}

− {
∑

uv∈O(S′′ )

|nu − nv|+
∑

uv∈{e1,e2}⊆E(G′ )

|nu − nv|}

= [4(li + 1)(h− li) + 4(l
′

i + 1)(h− l
′

i)]

− [4(li + l
′

i)(h− li − l
′

i − n1 + 1) + 2× 4(n2 − n1 + li − 1)]

= 8× [2n1 − l′i + li(l
′
i − 1)] > 0

and Mo(G) > Mo(G
′
).
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Figure 4. The kink transformation (II).

Lemma 2. (Kink transformation (II)). Let G be a hexagonal chain with h hexagons

and a zigzag segment Si. G
′
= G−{v1u2, v2u3}+{v1u1, v2u2} is obtained by changing the

angularly connected hexagon u1u2u3u4u5u6u1 in Si∩S ′i into a linearly connected hexagon,

see Figure 4. If S ′i is a non-zigzag segment or a terminal segment, then

Mo(G) ≥Mo(G
′
)

with equality if and only if S ′i is a terminal segment.

Proof. As in the proof of Lemma 1, the contribution of each edge uv in the orthogonal

cut of Si in G to Mo(G) is

|nu − nv| = 4(n2 − n1)

and the contributions of the orthogonal cut of Si to Mo(G) are∑
uv∈O(Si)⊆E(G)

|nu − nv| = 4(li + 1)(n2 − n1).

The contribution of each edge in the orthogonal cut of S
′
i to Mo(G) is

|nu − nv| = 4(h− l
′

i)

and the contributions of the orthogonal cut of S
′
i to Mo(G) are∑

uv∈O(S
′
i)⊆E(G)

|nu − nv| = 4(l
′

i + 1)(h− l
′

i).

In G′, the contribution of each edge in the orthogonal cut of S
′′
i to Mo(G′) is

|nu − nv| = 4(n2 − n1 + l′i − 1)
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and the contributions of the edges of orthogonal cut of S
′′
i to Mo(G

′
) are∑

uv∈O(S
′′
i )⊆E(G′ )

|nu − nv| = 4(li + l
′

i)(n2 − n1 + l′i − 1).

The contributions of e1, e2 to Mo(G
′
) are∑

uv∈{e1,e2}⊆E(G′ )

|nu − nv| = 2× 4(n2 − n1 + li − 1).

So, we have

Mo(G)−Mo(G
′
) = {

∑
uv∈O(Si)⊆E(G)

|nu − nv|+
∑

uv∈O(S
′
i)⊆E(G)

|nu − nv|}

− {
∑

uv∈O(S
′′
)

|nu − nv|+
∑

uv∈{e1,e2}⊆E(G
′
)

|nu − nv|}

= [4(li + 1)(n2 − n1) + 4(l
′

i + 1)(n2 + n1 + li − l
′

i)]

− [4(li + l
′

i)(n2 − n1 + l′i − 1) + 2× 4(n2 − n1 + li − 1)]

= 8× [n1 + n1l
′
i − l

′2
i + 1]

≥ 8× [(l
′

i − 1) + (l
′

i − 1)l
′

i − (l
′

i)
2 + 1]

= 8× [l
′

i − 1− l
′

i + 1 + (l
′

i)
2 − (l

′

i)
2]

= 0

and Mo(G) ≥ Mo(G
′
) with equality if and only if n1 = l′i − 1, i.e., S ′i is a terminal

segment.

Figure 5. A hexagonal chain G with K(G) = 1 and Lh.
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Lemma 3. Let G ∈ HCh with K(G) = 1. Then Mo(G) > Mo(Lh).

Proof. From G ∈ HCh with K(G) = 1, we know that G has only two segments S1, S2,

see Figure 5. Let `(S1) = l1 and `(S2) = l2, where l2 ≥ l1 ≥ 2 and h = l1 + l2 − 1. Then

Lh = G− {v1u2, v2u3}+ {v1u1, v2u2}. It can be seen by direct calculation that

Mo(G)−Mo(Lh) = {
∑

uv∈O(S1)⊆E(G)

|nu − nv|+
∑

uv∈O(S2)⊆E(G)

|nu − nv|}

−
∑

uv∈{u2u3,u5u6}⊆E(Lh)

|nu − nv|

= [4× (l1 + 1)(l2 − 1) + 4× (l2 + 1)(l1 − 1)]− 8× (l2 − l1)

= 8× (l1 − 1)(l2 + 1) > 0.

i.e., Mo(G) > Mo(Lh).

Lemma 4. Let G ∈ HCh with K(G) = k ≥ 1 and its segments S1, S2, · · · , Sk+1, where

S1 and Sk+1 are its terminal segments with `(S1) ≤ `(Sk+1). If k = 1 or at least one of

Si(2 ≤ i ≤ k) is a non-zigzag segment, then there exists a hexagonal chain G
′ ∈ HCh with

K(G
′
) = k − 1 such that Mo(G

′
) < Mo(G); otherwise, there exists a hexagonal chain

G
′ ∈ HCh with K(G

′
) = k − 1 such that Mo(G

′
) = Mo(G), where G′ is obtained by the

kink transformation (II) on the zigzag segment S2.

Proof. From Lemma 3, we know the result is true for k = 1.

Now, let G ∈ HCh with K(G) = k > 1 and its segments S1, S2, · · · , Sk+1, where S1

and Sk+1 are its terminal segments with `(S1) ≤ `(Sk+1). If there is 2 ≤ i ≤ k such that

Si is a non-zigzag segment, then by the kink transformation (I) on the segment Si, we

can get G′ ∈ HCh with K(G
′
) = k − 1 such that Mo(G′) < Mo(G). Otherwise, S2 is a

zigzag segment, then by the kink transformation (II) on S2, we can get G′ ∈ HCh with

K(G
′
) = k − 1 such that Mo(G

′
) = Mo(G).

Lemma 5. [3] Let Lh be the linear chain with h hexagons. Then

Mo(Lh) = 32bh
2
cdh

2
e.

From Lemmas 3,4 and 5, we can obtain the following theorem.

Theorem 6. Let G ∈ HCh. Then Mo(G) ≥ Mo(Lh) = 32bh
2
cdh

2
e with equality if and

only if G ∼= Lh.
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Theorem 6 shows that the linear chain Lh is the unique graph with the minimum

Mostar index among all hexagonal chains with h hexagons.

Now, we consider the hexagonal chains with the second minimal Mostar index among

all hexagonal chains with h hexagons.

Let Bt
h denote the hexagonal chain with h hexagons and two segments of lengths t

and h− t + 1, where 2 ≤ t ≤ bh+1
2
c. Now, we compute the Mostar index of Bt

h and order

all hexagonal chains with exactly one kink by their Mostar indices.

Theorem 7. Let Bt
h be the hexagonal chain with h hexagons and two segments of lengths

t and h− t + 1, where 2 ≤ t ≤ bh+1
2
c. Then

Mo(B2
h) < Mo(B3

h) < · · · < Mo(B
bh+1

2
c

h ).

Proof. Let S1 and S2 be two segments of Bt
h, `(S1) = t and `(S2) = h− t + 1, see Figure

5. Then

Mo(Bt
h)−Mo(Lh) = {

∑
uv∈O(S1)⊆E(Bt

h)

|nu − nv|+
∑

uv∈O(S2)⊆E(Bt
h)

|nu − nv|}

− {
∑

uv∈O(Sh)⊆E(Lh)

|nu − nv|+
∑

uv∈{u2u3,u5u6}⊆E(Lh)

|nu − nv|}

= [4(t + 1)(h− t) + 4(h− t + 2)(t− 1)]− [0 + 8(h− 2t + 1)]

= 8[−t2 + (h + 3)t− h− 2].

So, Mo(Bt
h) = Mo(Lh) + 8[−t2 + (h + 3)t − h − 2] and Mo(B2

h) < Mo(B3
h) < · · · <

Mo(B
bh+1

2
c

h ).

Let Bt1,t3
h denote the hexagonal chain with h hexagons and exactly three segments

S1, S2, S3 of lengths t1, t2 = h− t1 − t3 + 2 and t3, respectively, where 2 ≤ t1 ≤ t3, S1, S3

are the terminal segments and S2 is a zigzag segment.

Let B̄t1,t3
h denote the hexagonal chain with h hexagons and exactly three segments

S1, S2, S3 of lengths t1, t2 = h− t1 − t3 + 2 and t3, respectively, where 2 ≤ t1 ≤ t3, S1, S3

are the terminal segments and S2 is a non-zigzag segment.

Using Lemma 2, we can get the Mostar index of Bt1,t3
h .

Theorem 8. For the hexagonal chain Bt1,t3
h , we have Mo(Bt1,t3

h ) = Mo(B
mim{t3,h−t3+1}
h ),

i.e.,

(1) Mo(Bt1,t3
h ) = Mo(Bt3

h ) for t3 ≤ 1
2
(h + 1);

(2) Mo(Bt1,t3
h ) = Mo(Bh−t3+1

h ) for t3 >
1
2
(h + 1).
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Theorem 9. If G ∈ HCh and G 6∼= Lh, then Mo(G) ≥ Mo(B2
h) = Mo(B2,2

h ) = 8h +

32bh
2
cdh

2
e with equality if and only if G ∼= B2

h or B2,2
h , see Figure 6.

Proof. It can be calculated directly that Mo(B2
h) = Mo(B2,2

h ) = 8h + Mo(Lh) = 8h +

32bh
2
cdh

2
e.

Let K(G) = k, k ≥ 1 since G 6∼= Lh.

If k = 1, then G ∼= Bt
h, by Theorem 7, we have Mo(G) ≥Mo(B2

h) with equality if and

only if G ∼= B2
h.

If k = 2, then G ∼= Bt1,t3
h or B̄t1,t3

h , where t1, t2, t3 ≥ 2 and t1 ≤ t3. If G ∼= B̄t1,t3
h ,

then Mo(G) > Mo(B2
h) by Lemma 2 and Theorem 7. If G ∼= Bt1,t3

h , then, by Theorem

8, Mo(Bt1,t3
h ) = Mo(B

min{t3,h−t3+1}
h ) ≥ Mo(B2

h) with equality if and only if t3 = 2 since

h− t3 + 1 = `(S1) + `(S2)− 1 ≥ 3, i.e., G ∼= B2,2
h because 2 ≤ t1 ≤ t3.

If k ≥ 3, by the kink transformation (I) or (II) and Lemma 4, there exist Bt1,t3
h or

B̄t1,t3
h (where t1 ≥ 3 or t3 ≥ 3) such that Mo(G) ≥ Mo(Bt1,t3

h ) > Mo(B2,2
h ) or Mo(G) ≥

Mo(B̄t1,t3
h ) > Mo(B2,2

h ).

So, we have Mo(G) ≥ Mo(B2
h) = Mo(B2,2

h ) with equality if and only if G ∼= B2
h or

G ∼= B2,2
h .

Theorem 9 shows that the hexagonal chain B2
h and B2,2

h are only the extremal graphs

with the second minimal Mostar index among all hexagonal chains with h hexagons.

Figure 6. The graph of B2
h (i) and B2,2

h (ii)

In the following, we will characterize the hexagonal chains with the third minimal

Mostar index among all hexagonal chains with h hexagons.

Let B
t1,t2,··· ,tk+1

h be the hexagonal chain with h hexagons and exactly k + 1 segments

S1, S2, · · · , Sk+1 of lengths t1, t2, · · · , tk+1, respectively, where S1, Sk+1 are the terminal

segments, all Si (2 ≤ i ≤ k) are zigzag segments and 2 ≤ t1 ≤ tk+1.
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Theorem 10. If G ∈ HCh and G 6∈ {Lh, B
2
h, B

2,2
h }, then Mo(G) ≥ 16(h− 1) + 32bh

2
cdh

2
e

with equality if and only if G ∈ {B3
h, B

2,h−2
h , B2,3

h , B3,3
h , B2,2,h−3,2

h , B2,2,h−4,3
h , B2,2,h−4,2,2

h },

see Figure 7.

Proof. Firstly, it can be calculated that Mo(B3
h) = Mo(B2,h−2

h ) = Mo(B2,3
h ) = Mo(B3,3

h ) =

Mo(B2,2,h−3,2
h ) = 16(h− 1) + 32bh

2
cdh

2
e by Lemma 4.

Let K(G) = k, where k ≥ 1 since G 6∼= Lh.

Case 1. k = 1. Then G ∼= Bt
h and t ≥ 3 since G 6∼= B2

h. By Theorem 7, we have

Mo(G) ≥Mo(B3
h) = 16(h− 1) + 32bh

2
cdh

2
e with equality if and only if G ∼= B3

h.

Case 2. k = 2. Let S1, S2, S3 be the segments of G with lengths t1, t2, t3, respectively,

where ti ≥ 2 (i = 1, 2, 3), 2 ≤ t1 ≤ t3, S1, S3 are the terminal segments.

If S2 is a non-zigzag segment and t3 ≥ 3, then Mo(G) > Mo(B3
h) by Lemma 1; If S2

is a non-zigzag segment and t3 = 2, then we have t1 = 2 and t2 = h − 2 since t1 ≤ t3,

and Mo(G) = Mo(B2
h) + 8(t1 − 1)(t2 + 1) from the proof of Case 1 in Lemma 1. So,

Mo(G) = 8h + Mo(Lh) + 8(h− 1) > 16(h− 1) + Mo(Lh).

If S2 is a zigzag segment, then G ∼= Bt1,t3
h , by Theorem 8, Mo(Bt1,t3

h ) = Mo(Bt3
h ) ≥

Mo(B3
h) for t3 ≤ 1

2
(h + 1) and Mo(Bt1,t3

h ) = Mo(Bh−t3+1
h ) ≥ Mo(B3

h) for t3 > 1
2
(h + 1),

with equality if and only if t3 = 3 or t3 = h−2, respectively, i.e., G ∈ {B2,3
h , B3,3

h , B2,h−2
h }.

Case 3. k = 3. Let S1, S2, S3, S4 be the segments of G with lengths t1, t2, t3, t4,

respectively, where ti ≥ 2 (i = 1, 2, 3, 4), 2 ≤ t1 ≤ t4, S1, S4 are the terminal segments.

If exactly one of S2 and S3 is a non-zigzag segment, then there is a hexagonal chain

B
t′1,t

′
3

h such that Mo(G) > Mo(B
t′1,t

′
3

h ) ≥ Mo(B3
h) by the kink transformation (I) on S2 or

S3.

If S2 and S3 are non-zigzag segments, then there is a hexagonal chain G′ with K(G′) =

2 kinks and a non-zigzag segment such that Mo(G) > Mo(G′) by the kink transformation

(I) on S2, and Mo(G′) ≥Mo(B3
h) from Case 2. So, Mo(G) > Mo(B3

h).

If S2 and S3 are zigzag segments, then we can get Mo(G) = Mo(Bt1+t2−1,t4
h ) by the

kink transformation (II) on S2. Moreover, Mo(Bt1+t2−1,t4
h ) = Mo(B

min{t1+t2+t3−2,t4}
h ) >

Mo(B3
h) for t4 > t1 + t2 − 1, and Mo(Bt1+t2−1,t4

h ) = Mo(B
min{t1+t2−1,t3+t4−1}
h ) ≥ Mo(B3

h)

for t4 ≤ t1 + t2 − 1 with equality if and only if min{t1 + t2 − 1, t3 + t4 − 1} = 3, i.e.,

t1 = t2 = 2 or t3 = t4 = 2, i.e., G ∈ {B2,2,h−3,2
h , B2,2,h−4,3

h }.

Case 4. k = 4. Let Si be the segments of G with lengths ti, respectively, where ti ≥ 2

(i = 1, 2, 3, 4, 5),2 ≤ t1 ≤ t5, S1, S5 are the terminal segments.
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If at least one of Si (2 ≤ i ≤ 4) is a non-zigzag segment, then there is a hexagonal

chain G′ with K(G′) = 3 kinks such that Mo(G) > Mo(G′) ≥ Mo(B3
h) from Lemma 4

and Case 3.

If all Si (2 ≤ i ≤ 4) are zigzag segments, then we can get Mo(G) = Mo(Bt1+t2−1,t3,t4,t5
h )

by the kink transformation (II) on S2. From Case 3, Mo(Bt1+t2−1,t3,t4,t5
h ) ≥Mo(B3

h) with

equality if and only if Bt1+t2−1,t3,t4,t5
h ∈ {B2,2,h−3,2

h , B2,2,h−4,3
h }, i.e., t1 + t2 − 1 = 3 and

t4 = t5 = 2 since t1 + t2 − 1 ≥ 3, i.e., G ∼= B2,2,h−4,2,2
h .

Case 5. k ≥ 5. Let Si be the segments of G with lengths ti, respectively, where ti ≥ 2

(i = 1, 2, · · · , k + 1), 2 ≤ t1 ≤ tk+1, S1, Sk+1 are the terminal segments. Then there is a

hexagonal chain G′ with K(G′) = 4 kinks such that Mo(G) ≥ Mo(G′) from Lemma 4,

and G′ 6∼= B2,2,h−4,2,2
h . So, Mo(G) ≥Mo(G′) > Mo(B3

h) by Case 4.

The proof is completed.

Theorem 10 shows that the hexagonal chains B3
h, B2,h−2

h , B2,3
h , B3,3

h , B2,2,h−3,2
h , B2,2,h−4,3

h

and B2,2,h−4,2,2
h are only the graphs with the third minimal Mostar index among all hexag-

onal chains with h hexagons.

Figure 7. The hexagonal chains with the third minimal Mostar index
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3 Conclusions

In this paper, we gave the first three minimal values of the Mostar index for hexagonal

chains, and determined the corresponding extremal graphs. The proof techniques used

the kink transformations of hexagonal chains and the structural properties of the Mostar

index. In the future, we will continue to study the maximal values of the Mostar index

for hexagonal chains and the extremal values of this topological index for more general

graphs, such as catacondensed hexagonal systems and polymeric networks.
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