Forcing and Anti-Forcing Polynomials of Perfect Matchings of a Pyrene System*

Kai Deng ${ }^{a \dagger}$, Saihua Liu ${ }^{b}$, Xiangqian Zhou ${ }^{c}$
${ }^{a}$ School of Mathematics and Information Science, North Minzu University, Yinchuan, Ningxia 750027, P. R. China
${ }^{b}$ Department of Mathematics, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
${ }^{c}$ School of Mathematics and Statistics, Huanghuai University, Zhumadian, Henan 463000, P. R. China

dengkai04@126.com, lsh1808@163.com, zhouxiangqian0502@126.com
(Received 2020)

Abstract

The forcing number of a perfect matching M of a graph G is the smallest number of edges in a subset $S \subset M$ such that S is in no other perfect matching. The antiforcing number of M is the smallest number of edges in a subset $S^{\prime} \subset E(G) \backslash M$ such that M is the unique perfect matching of $G-S^{\prime}$. Recently the forcing and anti-forcing polynomials of perfect matchings of a graph were proposed as counting polynomials for perfect matchings with the same forcing number and anti-forcing number respectively. In this paper, we obtain the explicit expressions of forcing and anti-forcing polynomials of a pyrene system. As consequences, the distributions of forcing and anti-forcing numbers of perfect matchings of the pyrene system are revealed respectively.

1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. A perfect matching of G is a set of independent edges which covers all vertices of G. A perfect matching coincides with a Kekulé structure of a conjugated molecule graph (the graph representing the carbon-atoms). Klein and Randić $[17,24]$ observed that a Kekulé structure can be determined by a few number of fixed double bonds, and they defined the innate degree

[^0]of freedom of a Kekulé structure as the smallest number of fixed double bonds required to determine it. The sum over innate degree of freedom of all Kekulé structures of a graph was called the degree of freedom of the graph, which was proposed as a novel invariant to estimate the resonance energy. In 1991, Harary, Klein and Živković [12] extended the concept of "innate degree of freedom" to a perfect matching M of a graph G, and renamed it as the forcing number of M, denoted by $f(G, M)$. Over the past 30 years, many researchers were attracted in this field [3], in addition, the anti-forcing number $[20,32,33]$ was proposed from the point of opposite view of forcing number. In general, to compute the forcing number of a perfect matching of a bipartite graph with the maximum degree 3 is an NP-complete problem [1], and to compute the anti-forcing number of a perfect matching of a bipartite graph with the maximum degree 4 is also an NP-complete problem [8]. But the particular structure of a graph enables us to do much better. In this paper, we will calculate the forcing and anti-forcing polynomials of a pyrene system. As consequences, the distributions of forcing and anti-forcing numbers of perfect matchings of the pyrene system are revealed respectively.

A forcing set S of a perfect matching M of a graph G is a subset of M such that S is contained in no other perfect matchings of G. Therefore, $f(G, M)$ equals the smallest cardinality over all forcing sets of M. The minimum (resp. maximum) forcing number of G is the minimum (resp. maximum) value over forcing numbers of all perfect matchings of G, denoted by $f(G)$ (resp. $F(G)$). Afshani et al. [2] proved that the smallest forcing number problem is NP-complete for bipartite graphs with maximum degree four. In order to investigate the distribution of forcing numbers of all perfect matchings of a graph G, the forcing spectrum [1] was proposed, denoted by $\operatorname{Spec}_{f}(G)$, which is the collection of forcing numbers of all perfect matchings of G. Further, Zhang et al. [42] introduced the forcing polynomial of a graph, which can enumerate the number of perfect matchings with the same forcing number.

A hexagonal system (or benzenoid) is a finite 2-connected planar bipartite graph in which each interior face is surrounded by a regular hexagon of side length one. Hexagonal systems are extensively used in the study of benzenoid hydrocarbons [5], as they properly represent the skeleton of such molecules. Zhang and Li [38] and Hansen and Zheng [11] characterized independently the hexagonal systems with minimum forcing number 1 , and the forcing spectrum of such a hexagonal system was determined by Zhang and Deng [39].

Zhang and Zhang [41] characterized plane elementary bipartite graphs with minimum forcing number 1. Xu et al. [35] proved that the maximum forcing number of a hexagonal system equals its Clar number, which is an invariant used to measure the stability of benzenoid hydrocarbons. Similar results also hold for polyomino graphs [43] and $(4,6)-$ fullerenes [28]. Zhang et al. [40] proved that the minimum forcing number of a fullerene graph is not less than 3 , and the lower bound can be achieved by infinitely many fullerene graphs. Randić, Vukičević and Gutman $[25,30,31]$ determined the forcing spectra of fullerene graphs $\mathrm{C}_{60}, \mathrm{C}_{70}$ and C_{72}, in particular there is a single Kekulé structure of C_{60} that has the highest innate degree of freedom 10 such that all hexagons of C_{60} have three double CC bonds, which represents the Fries structure of C_{60} and is the most important valence structure. For forcing polynomial, only a few types of hexagonal systems have been studied, such as catacondensed hexagonal systems [42] and benzenoid parallelogram [45]. For more results on forcing number, we refer the reader to see $[4,15,16,18,19,23,26,27$, 34, 47-49].

Given a perfect matching M of a graph G. A subset $S \subset E(G) \backslash M$ is called an antiforcing set of M if M is the unique perfect matching of $G-S$. The smallest cardinality over all anti-forcing sets of M is called the anti-forcing number of M, denoted by af (G, M). The minimum (resp. maximum) anti-forcing number af (G) (resp. $A f(G))$ of graph G is the minimum (resp. maximum) value of anti-forcing numbers over all perfect matchings of G. The minimum anti-forcing number of a graph was first introduced by Vukičević and Trinajstié $[32,33]$ in 2007-2008. Actually, the hexagonal systems with minimum anti-forcing number 1 had been characterized by Li [21] in 1997, where he called such a hexagonal system has a forcing single edge. Deng [6,7] obtained the minimum anti-forcing numbers of benzenoid chains and double benzenoid chains. Zhang et al. [44] computed the minimum anti-forcing number of catacondensed phenylene. Yang et al. [36] showed that a fullerene graph has the minimum anti-forcing number at least 4 , and characterized the fullerene graphs with minimum anti-forcing number 4.

By an analogous manner as the forcing number, the anti-forcing spectrum of a graph G was proposed, denoted by $\operatorname{Spec}_{a f}(G)$, which is the collection of anti-forcing numbers of all perfect matchings of G. Further, Hwang et al. [14] introduced the anti-forcing polynomial of a graph, which can enumerate the number of perfect matchings with the same anti-forcing number. Lei et al. [20] proved that the maximum anti-forcing number
of a hexagonal system equals its Fries number, which can measure the stability of benzenoid hydrocarbons. Analogous result was also obtained on (4,6)-fullerenes [28]. Further more, two tight upper bounds on the maximum anti-forcing numbers of graphs were obtained $[10,29]$. The anti-forcing spectra of some types of hexagonal systems were proved to be continuous, such as monotonic constructable hexagonal systems [8], catacondensed hexagonal systems [9]. Zhao and Zhang computed the anti-forcing polynomials of benzenoid systems with minimum forcing number 1 [46], and $2 \times n$ and $3 \times 2 n$ rectangle grids [47].

In this paper, we will calculate the forcing and anti-forcing polynomials of a pyrene system H_{n}. In section 2, as a preparation, some basic results on forcing and anti-forcing numbers are introduced, and we characterize the maximum set of disjoint M-alternating cycles and the maximum set of compatible M-alternating cycles with respect to a perfect matching M of H_{n}. In section 3, we give a recurrence formula for the forcing polynomial of H_{n}, and derive the explicit expressions of forcing polynomial of H_{n}. As corollaries, the distribution of forcing numbers of all perfect matchings of H_{n} are determined, and an asymptotic behavior of degree of freedom of H_{n} is revealed. In section 4, we obtain a recurrence formula for the anti-forcing polynomial of H_{n}, and derive the explicit expressions of anti-forcing polynomial of H_{n}. As consequences, the distribution of anti-forcing numbers of all perfect matchings of H_{n} are determined, and an asymptotic behavior of the sum over anti-forcing numbers of all perfect matchings of H_{n} is obtained.

2 Preliminaries

Let M be a perfect matching of a graph G. A cycle C of G is called an M-alternating cycle if the edges of C appear alternately in M and $E(G) \backslash M$. If C is an M-alternating cycle, then the symmetric difference $M \triangle C$ is the another perfect matching of G, here C may be viewed as its edge set. Let $c(M)$ be the maximum number of disjoint M alternating cycles of G. Since any forcing set of M has to contain at least one edge of each M-alternating cycle, $f(G, M) \geq c(M)$. Pachter and Kim [23] proved the following theorem by using the minimax theorem on feedback set [22].

Theorem 2.1 [23]. Let M be a perfect matching in a planar bipartite graph G. Then $f(G, M)=c(M)$.

(a) H_{n}

(b) G_{n}

Figure 1. (a) Pyrene system H_{n} with n pyrene fragments (b) The auxiliary graph G_{n}

A pyrene system with n pyrene fragments is denoted by H_{n}, see Fig. 1(a). H_{n} is a special hexagonal system, and also is a plane bipartite graph, by Theorem 2.1, $f\left(H_{n}, M\right)=$ $c(M)$ for any perfect matching M of H_{n}.

Lemma $2.2[37,41]$. Let M be a perfect matching of a hexagonal system H, C an M-alternating cycle. Then there is an M-alternating hexagon in the interior of C.

Let H be a hexagonal system with a perfect matching M. A set of disjoint M alternating hexagons of H is called an M-resonant set, the size of a maximum M-resonant set is denote by $h(M)$.

Lemma 2.3. Let M be a perfect matching of the pyrene system H_{n}. Then $f\left(H_{n}, M\right)=$ $h(M)$.

Proof. Let \mathcal{A} be a maximum set of disjoint M-alternating cycles, and \mathcal{A} contain hexagons as more as possible. By Theorem 2.1, $f\left(H_{n}, M\right)=|\mathcal{A}|$. We claim that \mathcal{A} is an M resonance set, otherwise \mathcal{A} contains a non-hexagonal cycle C. By Lemma 2.2 there is an M-alternating hexagon h in the interior of C. Note that $\mathcal{A}^{\prime}=(\mathcal{A} \backslash\{C\}) \cup\{h\}$ also is a maximum set of disjoint M-alternating cycles, but \mathcal{A}^{\prime} contains more hexagons than \mathcal{A}, a contradiction. We have $|\mathcal{A}| \leq h(M) \leq f\left(H_{n}, M\right)=|\mathcal{A}|$, i.e. $f\left(H_{n}, M\right)=h(M)$.

Let M be a perfect matching of a graph G. A set \mathcal{A}^{\prime} of M-alternating cycles of G is called a compatible M-alternating set if any two cycles of \mathcal{A}^{\prime} either are disjoint or intersect only at edges in M. Let $c^{\prime}(M)$ denote the maximum cardinality over all compatible M alternating sets of G. Since any anti-forcing set of M must contain at least one edge of each M-alternating cycle, $a f(G, M) \geq c^{\prime}(M)$. Lei et al. [20] gave the following minimax theorem.

Theorem 2.4 [20]. Let G be a plane bipartite graph with a perfect matching M. Then $a f(G, M)=c^{\prime}(M)$.

Let \mathcal{A}^{\prime} be a compatible M-alternating set of a plane bipartite graph with a perfect matching M. Two cycles C_{1} and C_{2} of \mathcal{A}^{\prime} are crossing if they share an edge f in M and the four edges adjacent to f alternate in C_{1} and C_{2} (i.e., C_{1} enters into C_{2} from one side and leaves for the other side via f). \mathcal{A}^{\prime} is called non-crossing if any two cycles of \mathcal{A}^{\prime} are non-crossing.

Lemma 2.5 [10,20]. Let G be a plane bipartite graph with a perfect matching M. Then there is a non-crossing compatible M-alternating set \mathcal{A}^{\prime} such that $\left|\mathcal{A}^{\prime}\right|=c^{\prime}(M)$.

A triphenylene is a benzenoid consisting of four hexagons, one hexagon at the center, for the other three disjoint hexagons, each of them has a common edge with the center one. For example, the four hexagons $s_{1,1}, s_{1,2}, h_{1,2}, h_{2,1}$ form a triphenylene, see Fig. 1(a).

Lemma 2.6. Let M be a perfect matching of the pyrene system H_{n}. Then there is a maximum non-crossing compatible M-alternating set \mathcal{A}^{\prime} such that each member of \mathcal{A}^{\prime} either is a hexagon or the periphery of a triphenylene.

Proof. By Lemma 2.5, there is a maximum non-crossing compatible M-alternating set \mathcal{A}^{\prime} such that $I\left(\mathcal{A}^{\prime}\right)=\sum_{C \in \mathcal{A}^{\prime}} I(C)$ as small as possible, where $I(C)$ denotes the number of hexagons in the interior of C. Let C^{\prime} be a member of \mathcal{A}^{\prime}. Suppose C^{\prime} is not a hexagon, by Lemma 2.2, there is an M-alternating hexagon h^{\prime} in the interior of C^{\prime}. Note that C^{\prime} and h^{\prime} must be compatible, otherwise $\mathcal{A}^{\prime \prime}=\left(\mathcal{A}^{\prime} \backslash\left\{C^{\prime}\right\}\right) \cup\left\{h^{\prime}\right\}$ can be a maximum non-crossing compatible M-alternating set such that $I\left(\mathcal{A}^{\prime \prime}\right)<I\left(\mathcal{A}^{\prime}\right)$, a contradiction. In fact, C^{\prime} has to be compatible with any M-alternating hexagon, which implies that h^{\prime} is a hexagon of type $h_{i, j}$ (see Fig. 1(a)). Without loss of generality, let $h^{\prime}=h_{i, 1}(i \neq 1)$. Then $e_{i, 1}, f_{i, 1}$ and the right vertical edge of $h_{i, 1}$ all belong to M. Let $M^{\prime}=M \triangle h_{i, 1}$. Then $s_{i, 1}$ and $s_{i, 2}$ both are M^{\prime}-alternating hexagons.

Claim 1. $h_{i-1,2}$ is M^{\prime}-alternating.
Proof. Suppose $h_{i-1,2}$ is not M^{\prime}-alternating. Then at least one of $p_{i-1,2}$ and $q_{i-1,2}$ does not belong to M. If only one of $p_{i-1,2}$ and $q_{i-1,2}$ belongs to M, say $p_{i-1,2} \in M$, then $s_{i-1,2}$ is an M-alternating hexagon which is not compatible with C^{\prime}, a contradiction. Therefore both of $p_{i-1,2}$ and $q_{i-1,2}$ are not in M, then $h_{i-1,1}$ is M-alternating. If $p_{i-2,2}$ and $q_{i-2,2}$ both belong to M, then the four hexagons $h_{i-2,2}, h_{i-1,1}, s_{i-1,1}$, and $s_{i-1,2}$ form a triphenylene whose periphery T is an M-alternating cycle. Note that T is compatible with each cycle of $\mathcal{A}^{\prime} \backslash\left\{C^{\prime}\right\}$, thus $\left(\mathcal{A}^{\prime} \backslash\left\{C^{\prime}\right\}\right) \cup\{T\}$ can be a maximum non-crossing compatible M alternating set with $I\left(\left(\mathcal{A}^{\prime} \backslash\left\{C^{\prime}\right\}\right) \cup\{T\}\right)<I\left(\mathcal{A}^{\prime}\right)$, a contradiction. Hence at least one of $p_{i-2,2}$ and $q_{i-2,2}$ does not belong to M, similar as above, we can show that $h_{i-2,1}$ is M-alternating. Keeping on this process, we will finally prove that $h_{1,1}$ is M-alternating, but $h_{1,1}$ is not compatible with C^{\prime}, a contradiction.

According to Claim 1 and the minimality of $I\left(\mathcal{A}^{\prime}\right), C^{\prime}$ has to be the periphery of the triphenylene consisting of the four hexagons $h_{i-1,2}, h_{i, 1}, s_{i, 1}$ and $s_{i, 2}$ (see Fig. 1(a)).

3 Forcing polynomial of pyrene system

The forcing polynomial of a graph G is defined as follow [42]:

$$
\begin{equation*}
F(G, x)=\sum_{M \in \mathcal{M}(G)} x^{f(G, M)}=\sum_{i=f(G)}^{F(G)} w_{i} x^{i} \tag{1}
\end{equation*}
$$

where $\mathcal{M}(G)$ is the collection of all perfect matchings of G, w_{i} is the number of perfect matchings of G with the forcing number i.

As a consequence, let $\Phi(G)$ be the number of perfect matchings of a graph G, then $\Phi(G)=F(G, 1)$. Recall that the degree of freedom of a graph G is the sum over the forcing numbers of all perfect matchings of G, denoted by $\operatorname{IDF}(G)$, then $\operatorname{IDF}(G)=$ $\left.\frac{d}{d x} F(G, x)\right|_{x=1} . \Phi(G)$ and $I D F(G)$ both are chemically meaningful indices within a resonance theoretic context $[17,24]$. Note that if G is a null graph or a graph has a unique perfect matching, then $F(G, x)=1$.

In the following we will derive a recurrence formula for forcing polynomial of the pyrene system H_{n}, as preparations the forcing polynomials of pyrene, phenanthrene and diphenyl are computed: $F\left(H_{1}, x\right)=4 x^{2}+2 x, F(L, x)=4 x^{2}+x, F(N, x)=4 x^{2}$ (see Fig. $2)$.

(a) H_{1}

(b) L

(c) N

Figure 2. (a) Pyrene, (b) Phenanthrene and (c) Diphenyl
Theorem 3.1. Let H_{n} be a pyrene system with n pyrene fragments. Then

$$
\begin{equation*}
F\left(H_{n}, x\right)=\left(4 x^{2}+2 x\right) F\left(H_{n-1}, x\right)-x^{2} F\left(H_{n-2}, x\right) \tag{2}
\end{equation*}
$$

where $n \geq 2, F\left(H_{0}, x\right)=1$ and $F\left(H_{1}, x\right)=4 x^{2}+2 x$.
Proof. First we introduce an auxiliary graph G_{n} obtained by deleting the leftmost hexagon $h_{1,1}$ from H_{n}, see Fig. 1(b). We divide $\mathcal{M}\left(H_{n}\right)$ in two subsets: $\mathcal{M}_{f_{1,2}}^{e_{1,2}}\left(H_{n}\right)=\{M \in$ $\left.\mathcal{M}\left(H_{n}\right) \mid e_{1,2}, f_{1,2} \in M\right\}, \mathcal{M}_{\overline{1}_{1,2}}^{\bar{e}_{1,2}}\left(H_{n}\right)=\left\{M \in \mathcal{M}\left(H_{n}\right) \mid e_{1,2}, f_{1,2} \notin M\right\}$. If $M \in \mathcal{M}_{f_{1,2}}^{e_{1,2}}\left(H_{n}\right)$, then $h_{1,2}$ is a unique M-alternating hexagon in the leftmost pyrene fragment, and $M^{\prime}=$ $M \cap E\left(G_{n-1}\right)$ is a perfect matching of the graph G_{n-1} obtained by deleting vertices of the leftmost pyrene fragment and their incident edges from H_{n}. By Lemma 2.3, $f\left(H_{n}, M\right)=$ $f\left(G_{n-1}, M^{\prime}\right)+1$. If $M \in \mathcal{M}_{\bar{f}_{1,2}}^{\bar{e}_{1,2}}\left(H_{n}\right)$, then the restriction M_{1} of M on the phenanthrene L consisting of three hexagons $s_{1,1}, h_{1,1}, s_{1,2}$ is a perfect matching of L, and $M_{2}=M \cap$ $E\left(H_{n-1}\right)$ is a perfect matching of the subsystem H_{n-1} obtained by deleting vertices of L and their incident edges from H_{n}, see Fig. 1(a). According to Lemma 2.3, $f\left(H_{n}, M\right)=$ $f\left(L, M_{1}\right)+f\left(H_{n-1}, M_{2}\right)$. By Eq. (1), we have

$$
\begin{align*}
F\left(H_{n}, x\right) & =\sum_{M \in \mathcal{M}\left(H_{n}\right)} x^{f\left(H_{n}, M\right)}=\sum_{M_{\mathcal{M}_{f_{1,2}}^{e_{1,2}\left(H_{n}\right)}}} x^{f\left(H_{n}, M\right)}+\sum_{M_{M \in \mathcal{M}_{f_{1,2}}^{\bar{e}_{1,2}\left(H_{n}\right)}} x^{f\left(H_{n}, M\right)}}=\sum_{M^{\prime} \in \mathcal{M}\left(G_{n-1}\right)} x^{f\left(G_{n-1}, M^{\prime}\right)+1}+\sum_{M_{1} \in \mathcal{M}(L), M_{2} \in \mathcal{M}\left(H_{n-1}\right)} x^{f\left(L, M_{1}\right)+f\left(H_{n-1}, M_{2}\right)} \\
& =x \sum_{M^{\prime} \in \mathcal{M}\left(G_{n-1}\right)} x^{f\left(G_{n-1}, M^{\prime}\right)}+\sum_{M_{1} \in \mathcal{M}(L), M_{2} \in \mathcal{M}\left(H_{n-1}\right)} x^{f\left(L, M_{1}\right)} x^{f\left(H_{n-1}, M_{2}\right)} \\
& =x F\left(G_{n-1}, x\right)+\left(\sum_{M_{1} \in \mathcal{M}(L)} x^{f\left(L, M_{1}\right)}\right)\left(\sum_{M_{2} \in \mathcal{M}\left(H_{n-1}\right)} x^{f\left(H_{n-1}, M_{2}\right)}\right) \\
& =x F\left(G_{n-1}, x\right)+F(L, x) F\left(H_{n-1}, x\right) \\
& =x F\left(G_{n-1}, x\right)+\left(4 x^{2}+x\right) F\left(H_{n-1}, x\right) .
\end{align*}
$$

Now we deduce a recurrence relation for forcing polynomial of the auxiliary graph G_{n}. We can divide $\mathcal{M}\left(G_{n}\right)$ in two types, one is perfect matchings which containing edges
$e_{1,2}$ and $f_{1,2}$, and another is on the converse. For a perfect matching $M \in \mathcal{M}\left(G_{n}\right)$, if $e_{1,2}, f_{1,2} \in M$, then $h_{1,2}$ is a unique M-alternating hexagon in the leftmost phenanthrene consisting of three hexagons $s_{1,1}, s_{1,2}, h_{1,2}$, and the restriction M^{\prime} of M on the graph G_{n-1} obtained by deleting vertices of the leftmost phenanthrene and their incident edges from G_{n} is a perfect matching of G_{n-1}. By Lemma 2.3, $f\left(G_{n}, M\right)=f\left(G_{n-1}, M^{\prime}\right)+1$. On the other hand, if $e_{1,2}, f_{1,2} \notin M$, then the restriction M_{1} of M on the leftmost diphenyl N is a perfect matching of N, and the restriction M_{2} of M on the successive subsystem H_{n-1} is a perfect matching of H_{n-1}. Therefore $f\left(G_{n}, M\right)=f\left(N, M_{1}\right)+f\left(H_{n-1}, M_{2}\right)$, see Fig. 1(b). By a similar deducing as Eq. (3), we can obtain the following formula

$$
\begin{equation*}
F\left(G_{n}, x\right)=x F\left(G_{n-1}, x\right)+4 x^{2} F\left(H_{n-1}\right) . \tag{4}
\end{equation*}
$$

Eq. (3) minus Eq. (4), we have

$$
F\left(G_{n}, x\right)=F\left(H_{n}, x\right)-x F\left(H_{n-1}, x\right)
$$

which implies

$$
F\left(G_{n-1}, x\right)=F\left(H_{n-1}, x\right)-x F\left(H_{n-2}, x\right) .
$$

Substituting this expression into Eq. (3), we can obtain Eq. (2), the proof is completed.

Theorem 3.2. Let H_{n} be a pyrene system with n pyrene fragments. Then

$$
F\left(H_{n}, x\right)=x^{n} \sum_{j=0}^{n} \sum_{i=\left\lceil\frac{j+n}{2}\right\rceil}^{n}(-1)^{n-i} 2^{2 i+j-n}\binom{i}{n-i}\binom{2 i-n}{j} x^{j} .
$$

Proof. For convenience, let $F_{n}:=F\left(H_{n}, x\right)$, then the generating function of sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ is obtained as follow

$$
\begin{aligned}
G(z) & =\sum_{n=0}^{\infty} F_{n} z^{n}=1+\left(4 x^{2}+2 x\right) z+\sum_{n=2}^{\infty} F_{n} z^{n} \\
& =1+\left(4 x^{2}+2 x\right) z+\sum_{n=2}^{\infty}\left(\left(4 x^{2}+2 x\right) F_{n-1}-x^{2} F_{n-2}\right) z^{n} \\
& =1+\left(4 x^{2}+2 x\right) z+\left(4 x^{2}+2 x\right) z(G(z)-1)-x^{2} z^{2} G(z) \\
& =1+\left(4 x^{2}+2 x\right) z G(z)-x^{2} z^{2} G(z) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
G(z) & =\frac{1}{1-\left(\left(4 x^{2}+2 x\right) z-x^{2} z^{2}\right)}=\sum_{i=0}^{\infty}\left(\left(4 x^{2}+2 x\right) z-x^{2} z^{2}\right)^{i} \\
& =\sum_{i=0}^{\infty} x^{i} z^{i} \sum_{j=0}^{i}\binom{i}{j}(4 x+2)^{i-j}(-x z)^{j} \\
& =\sum_{n=0}^{\infty} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i}\binom{i}{n-i}(4 x+2)^{2 i-n} x^{n} z^{n},
\end{aligned}
$$

which implies

$$
\begin{aligned}
F_{n} & =x^{n} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i}\binom{i}{n-i}(4 x+2)^{2 i-n} \\
& =x^{n} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i}\binom{i}{n-i} \sum_{j=0}^{2 i-n} 2^{2 i+j-n}\binom{2 i-n}{j} x^{j} \\
& =x^{n} \sum_{j=0}^{n} \sum_{i=\left\lceil\frac{j+n}{2}\right\rceil}^{n}(-1)^{n-i} 2^{2 i+j-n}\binom{i}{n-i}\binom{2 i-n}{j} x^{j} .
\end{aligned}
$$

The proof is completed.
As a consequence, the following corollary is immediate.
Corollary 3.3. Let H_{n} be a pyrene system with n pyrene fragments. Then

1. $f\left(H_{n}\right)=n$;
2. $F\left(H_{n}\right)=2 n$;
3. $\operatorname{Spec}_{f}\left(H_{n}\right)=[n, 2 n]$.

In the following we compute the degree of freedom of H_{n}, and discuss its asymptotic behavior. He and He [13] gave the following formula:

$$
\begin{equation*}
\Phi\left(H_{n}\right)=6 \Phi\left(H_{n-1}\right)-\Phi\left(H_{n-2}\right), \tag{5}
\end{equation*}
$$

further we can obtain an general formula as follow:

$$
\begin{equation*}
\Phi\left(H_{n}\right)=\frac{17-12 \sqrt{2}}{16-12 \sqrt{2}}(3-2 \sqrt{2})^{n}+\frac{17+12 \sqrt{2}}{16+12 \sqrt{2}}(3+2 \sqrt{2})^{n} . \tag{6}
\end{equation*}
$$

Theorem 3.4.

$$
\begin{align*}
\operatorname{IDF}\left(H_{n}\right)= & \frac{\sqrt{2}}{32}(3-2 \sqrt{2})^{n}+\frac{7-5 \sqrt{2}}{8} n(3-2 \sqrt{2})^{n}-\frac{\sqrt{2}}{32}(3+2 \sqrt{2})^{n} \\
& +\frac{7+5 \sqrt{2}}{8} n(3+2 \sqrt{2})^{n} \tag{7}
\end{align*}
$$

Proof. According to Eq. (2),

$$
\begin{aligned}
\frac{d}{d x} F\left(H_{n}, x\right)= & (8 x+2) F\left(H_{n-1}, x\right)+\left(4 x^{2}+2 x\right) \frac{d}{d x} F\left(H_{n-1}, x\right) \\
& -2 x F\left(H_{n-2}, x\right)-x^{2} \frac{d}{d x} F\left(H_{n-2}, x\right) .
\end{aligned}
$$

For convenience, let $\Phi_{n}:=\Phi\left(H_{n}\right)$ and $I D F_{n}:=\operatorname{IDF}\left(H_{n}\right)$, then we have

$$
\begin{aligned}
I D F_{n} & =\left.\frac{d}{d x} F\left(H_{n}, x\right)\right|_{x=1} \\
& =6 I D F_{n-1}-I D F_{n-2}+10 \Phi_{n-1}-2 \Phi_{n-2}
\end{aligned}
$$

So

$$
\begin{aligned}
& I D F_{n+1}=6 I D F_{n}-I D F_{n-1}+10 \Phi_{n}-2 \Phi_{n-1} \\
& I D F_{n+2}=6 I D F_{n+1}-I D F_{n}+10 \Phi_{n+1}-2 \Phi_{n}
\end{aligned}
$$

by Eq. (5), $\Phi_{n+1}=6 \Phi_{n}-\Phi_{n-1}$ and $\Phi_{n}=6 \Phi_{n-1}-\Phi_{n-2}$, which implies

$$
\begin{align*}
I D F_{n+2}= & 6 I D F_{n+1}-I D F_{n}+10\left(6 \Phi_{n}-\Phi_{n-1}\right)-2\left(6 \Phi_{n-1}-\Phi_{n-2}\right) \\
= & 6 I D F_{n+1}-I D F_{n}+60 \Phi_{n}-22 \Phi_{n-1}+2 \Phi_{n-2} \\
= & 6 I D F_{n+1}-I D F_{n}+6\left(6 I D F_{n}-I D F_{n-1}+10 \Phi_{n}-2 \Phi_{n-1}\right)-\left(6 I D F_{n-1}\right. \\
& \left.-I D F_{n-2}+10 \Phi_{n-1}-2 \Phi_{n-2}\right)-36 I D F_{n}+12 I D F_{n-1}-I D F_{n-2} \\
= & 12 I D F_{n+1}-38 I D F_{n}+12 I D F_{n-1}-I D F_{n-2} \tag{8}
\end{align*}
$$

Therefore the homogeneous characteristics equation of recurrence formula (8) is $x^{4}-$ $12 x^{3}+38 x^{2}-12 x+1=0$, and its roots are $x_{1}=x_{2}=3-2 \sqrt{2}, x_{3}=x_{4}=3+2 \sqrt{2}$. Suppose the general solution of Eq. (8) is $I D F_{n}=\lambda_{1}(3-2 \sqrt{2})^{n}+\lambda_{2} n(3-2 \sqrt{2})^{n}+\lambda_{3}(3+$ $2 \sqrt{2})^{n}+\lambda_{4} n(3+2 \sqrt{2})^{n}$. According to the initial values $I D F_{3}=1036, I D F_{4}=8068$, $I D F_{5}=58854$ and $I D F_{6}=411978$, we can obtain $\lambda_{1}=\frac{\sqrt{2}}{32}, \lambda_{2}=\frac{7-5 \sqrt{2}}{8}, \lambda_{3}=-\frac{\sqrt{2}}{32}$ and $\lambda_{4}=\frac{7+5 \sqrt{2}}{8}$, so Eq. (7) holds for $n \geq 3$. In fact, we can check that Eq. (7) also holds for $n=0,1,2$, so the proof is completed.

By Eqs. (6) and (7), the following result is obtained.
Corollary 3.5. Let H_{n} be a pyrene system with n pyrene fragments. Then

$$
\lim _{n \rightarrow \infty} \frac{I D F\left(H_{n}\right)}{n \Phi\left(H_{n}\right)}=1+\frac{\sqrt{2}}{2} .
$$

4 Anti-forcing polynomial of pyrene system

The anti-forcing polynomial of a graph G is defined as follow [14]:

$$
\begin{equation*}
A f(G, x)=\sum_{M \in \mathcal{M}(G)} x^{a f(G, M)}=\sum_{i=a f(G)}^{A f(G)} u_{i} x^{i} \tag{9}
\end{equation*}
$$

where u_{i} is the number of perfect matchings of G with the anti-forcing number i.
As a consequence, $\Phi(G)=A f(G, 1)$, and the sum over the anti-forcing numbers of all perfect matchings of G equals $\left.\frac{d}{d x} A f(G, x)\right|_{x=1}$. If G is a null graph or a graph with unique perfect matching, then $\operatorname{Af}(G, x)=1$. We obtain the following recursive formula.

Theorem 4.1. Let H_{n} be the pyrene system with n pyrene fragments. Then

$$
\begin{equation*}
A f\left(H_{n}, x\right)=\left(2 x^{3}+2 x^{2}+2 x\right) A f\left(H_{n-1}, x\right)-x^{2} A f\left(H_{n-2}, x\right) \tag{10}
\end{equation*}
$$

where $n \geq 2, \operatorname{Af}\left(H_{0}, x\right)=1$ and $\operatorname{Af}\left(H_{1}, x\right)=2 x^{3}+2 x^{2}+2 x$.
Proof. First we divide $\mathcal{M}\left(H_{n}\right)$ in two subsets: $\mathcal{M}_{f_{1,2}}^{e_{1,2}}\left(H_{n}\right)=\left\{M \in \mathcal{M}\left(H_{n}\right) \mid e_{1,2}, f_{1,2} \in\right.$ $M\}, \mathcal{M}_{\bar{f}_{1,2}}^{\bar{e}_{1,2}}\left(H_{n}\right)=\left\{M \in \mathcal{M}\left(H_{n}\right) \mid e_{1,2}, f_{1,2} \notin M\right\}$. There are two cases to be considered.

Case 1. Suppose $e_{1,2}$ and $f_{1,2}$ both belong to M. Then the restriction M_{1} of M on the leftmost pyrene fragment is a perfect matching of it, and $h_{1,2}$ is an M-alternating hexagon ,see Fig. 1(a).

Subcase 1.1. If $p_{2,1}$ and $q_{2,1}$ both belong to M, then the hexagons $s_{2,1}$ and $s_{2,2}$ both are M-alternating, and the four hexagons $s_{1,1}, s_{1,2}, h_{1,2}, h_{2,1}$ form a triphenylene whose perimeter T is an M-alternating cycle, and $\left\{h_{1,2}, s_{2,1}, s_{2,2}, T\right\}$ is a non-crossing compatible M-alternating set. Note that the restriction M^{\prime} of M on the subsystem H_{n-2} obtained by the removal of the leftmost two pyrene fragments from H_{n} is a perfect matching of H_{n-2}. Let \mathcal{A}^{\prime} be a maximum non-crossing compatible M^{\prime}-alternating set of H_{n-2}, by Lemma 2.6, then $\left\{h_{1,2}, s_{2,1}, s_{2,2}, T\right\} \cup \mathcal{A}^{\prime}$ is a maximum non-crossing compatible M alternating set of H_{n}. By Theorem 2.4, $a f\left(H_{n}, M\right)=4+a f\left(H_{n-2}, M^{\prime}\right)$. Let $Y_{1}=\{M \in$ $\left.\mathcal{M}_{f_{1,2}}^{e_{1,2}}\left(H_{n}\right) \mid p_{2,1}, q_{2,1} \in M\right\}$, by Eq. (9),

$$
\begin{equation*}
\sum_{M \in Y_{1}} x^{a f\left(H_{n}, M\right)}=\sum_{M^{\prime} \in \mathcal{M}\left(H_{n-2}\right)} x^{4+a f\left(H_{n-2}, M^{\prime}\right)}=x^{4} A f\left(H_{n-2}, x\right) . \tag{11}
\end{equation*}
$$

Subcase 1.2. If one of $p_{2,1}, q_{2,1}$ does not belong to M, then the perimeter of the triphenylene consisting of the four hexagons $s_{1,1}, s_{1,2}, h_{1,2}, h_{2,1}$ is not an M-alternating
cycle. Recall that $M_{1} \subseteq M$ is a perfect matching of the first pyrene fragment, thus $M_{2}=M \backslash M_{1}$ is a perfect matching of the subgraph G_{n-1} (see Fig. 1(b)). By Lemma 2.6, $a f\left(H_{n}, M\right)=1+a f\left(G_{n-1}, M_{2}\right)$. Let X be a perfect matching of G_{n-1}. Suppose X contains edges $p_{2,1}, q_{2,1}$, then $s_{2,1}$ and $s_{2,2}$ both are X-alternating hexagons, and $X_{1}=X \cap E\left(H_{n-2}\right)$ is a perfect matching of the subsystem H_{n-2} obtained by deleting the vertices of the leftmost diphenyl of G_{n-1} and their incident edges. Note that Lemma 2.6 also holds for the auxiliary graph G_{n}, and $h_{2,2}$ is not X-alternating, so af $\left(G_{n-1}, X\right)=2+a f\left(H_{n-2}, X_{1}\right)$. Let $\mathcal{M}_{q_{2,1}}^{p_{2,1}}\left(G_{n-1}\right)=\left\{X \in \mathcal{M}\left(G_{n-1}\right) \mid p_{2,1}, q_{2,1} \in X\right\}, Y_{2}=\mathcal{M}_{f_{1,2}}^{e_{1,2}}\left(H_{n}\right) \backslash Y_{1}$, then

$$
\begin{align*}
\sum_{M \in Y_{2}} x^{a f\left(H_{n}, M\right)} & =\sum_{M_{2} \in \mathcal{M}\left(G_{n-1}\right) \backslash \mathcal{M}_{q_{2,1}}^{p_{2,1}\left(G_{n-1}\right)}} x^{1+a f\left(G_{n-1}, M_{2}\right)} \\
& =x\left(\sum_{X \in \mathcal{M}\left(G_{n-1}\right)} x^{a f\left(G_{n-1}, X\right)}-\sum_{X \in \mathcal{M}_{q 2,1}^{p_{2,1}\left(G_{n-1}\right)}} x^{a f\left(G_{n-1}, X\right)}\right) \\
& =x\left(A f\left(G_{n-1}, x\right)-\sum_{X_{1} \in \mathcal{M}\left(H_{n-2}\right)} x^{2+a f\left(H_{n-2}, X_{1}\right)}\right) \\
& =x A f\left(G_{n-1}, x\right)-x^{3} A f\left(H_{n-2}, x\right) . \tag{12}
\end{align*}
$$

Case 2. Suppose $e_{1,2}$ and $f_{1,2}$ both are not in M, then we can divide $\mathcal{M}_{\overline{1}_{1,2}}^{\bar{\epsilon}_{1,2}}\left(H_{n}\right)$ in two subsets $Y_{3}=\left\{M \in \mathcal{M}_{\bar{f}_{1,2}}^{\bar{e}_{1,2}}\left(H_{n}\right) \mid e_{2,1}, f_{2,1} \in M\right\}$ and $Y_{4}=\left\{M \in \mathcal{M}_{\overline{1}_{1,2}}^{\bar{e}_{1,2}}\left(H_{n}\right) \mid e_{2,1}, f_{2,1}\right.$ $\notin M\}$.

Subcase 2.1. Suppose $M \in Y_{3}$, then $h_{2,1}$ must be an M-alternating hexagon, and the restrictions M_{1} and M_{2} of M on the leftmost phenanthrene L and the rightmost subsystem H_{n-2} are perfect matchings of L and H_{n-2} respectively (see Fig. 1(a)). Let \mathcal{A}^{\prime} be a maximum non-crossing compatible M_{2}-alternating set of H_{n-2}. Note that M_{1} contains only five distinct members, we can divide Y_{3} in five subsets: $Y_{3,1}=\left\{M \in Y_{3} \mid p_{1,2}, q_{1,2} \in M\right\}$, $Y_{3,2}=\left\{M \in Y_{3} \mid p_{1,1}, q_{1,1} \in M\right\}, Y_{3,3}=\left\{M \in Y_{3} \mid e_{1,1}, f_{1,1} \in M\right\}, Y_{3,4}=\left\{M \in Y_{3} \mid p_{1,2} \in\right.$ $\left.M, q_{1,2} \notin M\right\}, Y_{3,5}=\left\{M \in Y_{3} \mid p_{1,2} \notin M, q_{1,2} \in M\right\}$. If $M \in Y_{3,1}$, then the four hexagons $h_{1,2}, h_{2,1}, s_{2,1}, s_{2,2}$ form a triphenylene whose perimeter T is an M-alternating cycle, and $\left\{s_{1,1}, s_{1,2}, h_{2,1}, T\right\}$ is a non-crossing compatible M-alternating set. By Lemma 2.6, $\left\{s_{1,1}, s_{1,2}, h_{2,1}, T\right\} \cup \mathcal{A}^{\prime}$ is a maximum non-crossing compatible M-alternating set of H_{n}. By Theorem 2.4, af $\left(H_{n}, M\right)=4+a f\left(H_{n-2}, M_{2}\right)$, which implies that $\sum_{M \in Y_{31}} x^{a f\left(H_{n}, M\right)}=$ $x^{4} A f\left(H_{n-2}, x\right)$. If $M \in Y_{3,2}$, then $\left\{s_{1,1}, s_{1,2}, h_{1,1}, h_{2,1}\right\}$ is an non-crossing compatible M-alternating set, and $\left\{s_{1,1}, s_{1,2}, h_{1,1}, h_{2,1}\right\} \cup \mathcal{A}^{\prime}$ is a maximum non-crossing compatible M-alternating set of H_{n}. By Theorem 2.4, $a f\left(H_{n}, M\right)=4+a f\left(H_{n-2}, M_{2}\right)$, so $\sum_{M \in Y_{3,2}} x^{a f\left(H_{n}, M\right)}=x^{4} A f\left(H_{n-2}, x\right)$. If $M \in Y_{3,3}$, then $\left\{h_{1,1}, h_{2,1}\right\} \cup \mathcal{A}^{\prime}$ is a maxi-
mum non-crossing compatible M-alternating set of H_{n}. By Theorem 2.4, af $\left(H_{n}, M\right)=$ $2+a f\left(H_{n-2}, M_{2}\right)$, we have $\sum_{M \in Y_{3,3}} x^{a f\left(H_{n}, M\right)}=x^{2} A f\left(H_{n-2}, x\right)$. If $M \in Y_{3,4}$ or $M \in$ $Y_{3,5}$, then $\left\{s_{1,1}, s_{1,2}, h_{2,1}\right\} \cup \mathcal{A}^{\prime}$ is a maximum non-crossing compatible M-alternating set of H_{n}. By Theorem 2.4, af $\left(H_{n}, M\right)=3+a f\left(H_{n-2}, M_{2}\right)$, thus $\sum_{M \in Y_{3,4}} x^{a f\left(H_{n}, M\right)}+$ $\sum_{M \in Y_{3,5}} x^{a f\left(H_{n}, M\right)}=2 x^{3} A f\left(H_{n-2}, x\right)$. Finally, we have

$$
\begin{equation*}
\sum_{M \in Y_{3}} x^{a f\left(H_{n}, M\right)}=\sum_{j=1}^{5} \sum_{M \in Y_{3, j}} x^{a f\left(H_{n}, M\right)}=\left(2 x^{4}+2 x^{3}+x^{2}\right) A f\left(H_{n-2}, x\right) . \tag{13}
\end{equation*}
$$

Subcase 2.2. If $M \in Y_{4}$, then the common vertical edge d of $h_{1,2}$ and $h_{2,1}$ belongs to M, and the restrictions M_{1} and M_{2} of M on the leftmost pyrene fragment H_{1} and the rightmost subsystem H_{n-1} are perfect matchings of H_{1} and H_{n-1} respectively (see Fig. 1(a)). We divide $\mathcal{M}\left(H_{1}\right)$ in two subsets: $\mathcal{M}_{d}\left(H_{1}\right)=\left\{M_{1} \in \mathcal{M}\left(H_{1}\right) \mid d \in M_{1}\right\}, \mathcal{M}_{\bar{d}}\left(H_{1}\right)=$ $\left\{M_{1} \in \mathcal{M}\left(H_{1}\right) \mid d \notin M_{1}\right\}$. Note that $\mathcal{M}_{\bar{d}}\left(H_{1}\right)$ contains only one perfect matching M_{1}^{\prime} of H_{1}, and $h_{1,2}$ is the unique M_{1}^{\prime}-alternating hexagon in H_{1}, so af $\left(H_{1}, M_{1}^{\prime}\right)=1$, we have

$$
\begin{align*}
\sum_{M_{1} \in \mathcal{M}_{d}\left(H_{1}\right)} x^{a f\left(H_{1}, M_{1}\right)} & =\sum_{M_{1} \in \mathcal{M}\left(H_{1}\right)} x^{a f\left(H_{1}, M_{1}\right)}-\sum_{M_{1}^{\prime} \in \mathcal{M}_{\bar{d}}\left(H_{1}\right)} x^{a f\left(H_{1}, M_{1}^{\prime}\right)} \\
& =A f\left(H_{1}, x\right)-x=2 x^{3}+2 x^{2}+x \tag{14}
\end{align*}
$$

We also divide $\mathcal{M}\left(H_{n-1}\right)$ in two subsets: $\mathcal{M}_{d}\left(H_{n-1}\right)=\left\{M_{2} \in \mathcal{M}\left(H_{n-1}\right) \mid d \in M_{2}\right\}$ and $\mathcal{M}_{\bar{d}}\left(H_{n-1}\right)=\left\{M_{2} \in \mathcal{M}\left(H_{n-1}\right) \mid d \notin M_{2}\right\}$. Suppose $M_{2} \in \mathcal{M}_{\bar{d}}\left(H_{n-1}\right)$, then $e_{2,1}, f_{2,1} \in M_{2}$ and $h_{2,1}$ is an M_{2}-alternating hexagon, and the restriction M_{2}^{\prime} of M_{2} on the rightmost subsystem H_{n-2} is a perfect matching of H_{n-2}. Let \mathcal{A}^{\prime} be a maximum non-crossing compatible M_{2}^{\prime}-alternating set of H_{n-2}. Then $\mathcal{A}^{\prime} \cup\left\{h_{2,1}\right\}$ is a maximum non-crossing compatible M_{2}-alternating set of H_{n-1}. Thus $a f\left(H_{n-1, M_{2}}\right)=1+a f\left(H_{n-2}, M_{2}^{\prime}\right)$, we have

$$
\begin{align*}
\sum_{M_{2} \in \mathcal{M}_{d}\left(H_{n-1}\right)} x^{a f\left(H_{n-1}, M_{2}\right)} & =\sum_{M_{2} \in \mathcal{M}\left(H_{n-1}\right)} x^{a f\left(H_{n-1}, M_{2}\right)}-\sum_{M_{2} \in \mathcal{M}_{\bar{d}\left(H_{n-1}\right)}} x^{a f\left(H_{n-1}, M_{2}\right)} \\
& =A f\left(H_{n-1}, x\right)-\sum_{M_{2}^{\prime} \in \mathcal{M}\left(H_{n-2}\right)} x^{1+a f\left(H_{n-2}, M_{2}^{\prime}\right)} \\
& =A f\left(H_{n-1}, x\right)-x A f\left(H_{n-2}, x\right) . \tag{15}
\end{align*}
$$

Recall that d is the common edge of $h_{1,2}$ and $h_{2,1}$, for any $M \in Y_{4}$, then $M=M_{1} \cup M_{2}$, where M_{1} is a perfect matching of the first pyrene fragment H_{1} and M_{2} is a perfect matching of the rightmost subsystem H_{n-1}, and $\{d\}=M_{1} \cap M_{2}$. By Theorem 2.4 and Lemma 2.6, we have $a f\left(H_{n}, M\right)=a f\left(H_{1}, M_{1}\right)+a f\left(H_{n-1}, M_{2}\right)$. According to Eqs. (14)
and (15), we have

$$
\begin{align*}
\sum_{M \in Y_{4}} x^{a f\left(H_{n}, M\right)} & =\sum_{M_{1} \in \mathcal{M}_{d}\left(H_{1}\right), M_{2} \in \mathcal{M}_{d}\left(H_{n-1}\right)} x^{a f\left(H_{1}, M_{1}\right)+a f\left(H_{n-1}, M_{2}\right)} \\
& =\left(\sum_{M_{1} \in \mathcal{M}_{d}\left(H_{1}\right)} x^{a f\left(H_{1}, M_{1}\right)}\right)\left(\sum_{M_{2} \in \mathcal{M}_{d}\left(H_{n-1}\right)} x^{a f\left(H_{n-1}, M_{2}\right)}\right) \\
& =\left(2 x^{3}+2 x^{2}+x\right)\left(A f\left(H_{n-1}, x\right)-x A f\left(H_{n-2}, x\right)\right) \\
& =\left(2 x^{3}+2 x^{2}+x\right) A f\left(H_{n-1}, x\right)-\left(2 x^{4}+2 x^{3}+x^{2}\right) A f\left(H_{n-2}, x\right) . \tag{16}
\end{align*}
$$

By Eqs. (11), (12), (13) and (16), we obtain a recursive relation as below:

$$
\begin{align*}
A f\left(H_{n}, x\right) & =\sum_{M \in \mathcal{M}\left(H_{n}\right)} x^{a f\left(H_{n}, M\right)} \\
& =\sum_{M \in Y_{1}} x^{a f\left(H_{n}, M\right)}+\sum_{M \in Y_{2}} x^{a f\left(H_{n}, M\right)}+\sum_{M \in Y_{3}} x^{a f\left(H_{n}, M\right)}+\sum_{M \in Y_{4}} x^{a f\left(H_{n}, M\right)} \\
& =\left(2 x^{3}+2 x^{2}+x\right) A f\left(H_{n-1}, x\right)+\left(x^{4}-x^{3}\right) A f\left(H_{n-2}, x\right)+x A f\left(G_{n-1}, x\right) . \tag{17}
\end{align*}
$$

Similar as above, we can prove the following recursive formula for the auxiliary graph G_{n} (see Fig. 1(b)),

$$
\begin{equation*}
A f\left(G_{n}, x\right)=\left(x^{3}+3 x^{2}\right) A f\left(H_{n-1}, x\right)+\left(x^{4}-x^{3}\right) A f\left(H_{n-2}, x\right)+x A f\left(G_{n-1}, x\right) \tag{18}
\end{equation*}
$$

Eq. (17) subtracts Eq. (18), we have

$$
A f\left(G_{n}, x\right)=A f\left(H_{n}, x\right)-\left(x^{3}-x^{2}+x\right) A f\left(H_{n-1}, x\right)
$$

so

$$
A f\left(G_{n-1}, x\right)=\operatorname{Af}\left(H_{n-1}, x\right)-\left(x^{3}-x^{2}+x\right) A f\left(H_{n-2}, x\right)
$$

Substituting this expression into Eq. (17), we can obtain the Eq. (10), the proof is completed.

By theorem 4.1, we can obtain an explicit expression as below.

Theorem 4.2. Let H_{n} be the pyrene system with n pyrene fragments. Then

$$
\begin{equation*}
A f\left(H_{n}, x\right)=x^{n} \sum_{l=0}^{2 n} \sum_{i=\left\lceil\frac{l+2 n}{4}\right\rceil}^{n} \sum_{j=\left\lceil\frac{l}{2}\right\rceil}^{l}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n}\binom{2 i-n}{j}\binom{j}{l-j} x^{l} . \tag{19}
\end{equation*}
$$

Proof. Let $A_{n}:=A f\left(H_{n}, x\right)$, then the generating function of sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ is

$$
\begin{aligned}
G(t) & =\sum_{n=0}^{\infty} A_{n} t^{n}=1+\left(2 x^{3}+2 x^{2}+2 x\right) t+\sum_{n=2}^{\infty} A_{n} t^{n} \\
& =1+\left(2 x^{3}+2 x^{2}+2 x\right) t+\sum_{n=2}^{\infty}\left(\left(2 x^{3}+2 x^{2}+2 x\right) A_{n-1}-x^{2} A_{n-2}\right) t^{n} \\
& =1+\left(2 x^{3}+2 x^{2}+2 x\right) t \sum_{n=0}^{\infty} A_{n} t^{n}-x^{2} t^{2} \sum_{n=0}^{\infty} A_{n} t^{n} \\
& =1+\left(2 x^{3}+2 x^{2}+2 x\right) t G(t)-x^{2} t^{2} G(t) .
\end{aligned}
$$

So

$$
\begin{aligned}
G(t) & =\frac{1}{1-\left(\left(2 x^{3}+2 x^{2}+2 x\right) t-x^{2} t^{2}\right)}=\sum_{i=0}^{\infty}\left(\left(2 x^{3}+2 x^{2}+2 x\right) t-x^{2} t^{2}\right)^{i} \\
& =\sum_{i=0}^{\infty} \sum_{j=0}^{i}\binom{i}{j}\left(2 x^{3}+2 x^{2}+2 x\right)^{j} t^{j}\left(-x^{2} t^{2}\right)^{i-j} \\
& =\sum_{i=0}^{\infty} \sum_{n=i}^{2 i}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n}\left(x^{2}+x+1\right)^{2 i-n} x^{n} t^{n} \\
& =\sum_{n=0}^{\infty} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n}\left(x^{2}+x+1\right)^{2 i-n} x^{n} t^{n},
\end{aligned}
$$

we have

$$
\begin{aligned}
A f\left(H_{n}, x\right) & =x^{n} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n}\left(x^{2}+x+1\right)^{2 i-n} \\
& =x^{n} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n} \sum_{j=0}^{2 i-n}\binom{2 i-n}{j} x^{j} \sum_{k=0}^{j}\binom{j}{k} x^{k} \\
& =x^{n} \sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n} \sum_{j=0}^{2 i-n} \sum_{l=j}^{2 j}\binom{2 i-n}{j}\binom{j}{l-j} x^{l} \\
& =x^{n} \sum_{l=0}^{2 n} \sum_{i=\left\lceil\frac{l+2 n}{4}\right\rceil}^{n} \sum_{j=\left\lceil\frac{l}{2}\right\rceil}^{l}(-1)^{n-i} 2^{2 i-n}\binom{i}{2 i-n}\binom{2 i-n}{j}\binom{j}{l-j} x^{l} .
\end{aligned}
$$

According to Theorem 4.2, the following corollary is immediate.
Corollary 4.3. Let H_{n} be a pyrene system with n pyrene fragments. Then

1. $a f\left(H_{n}\right)=n$;
2. $\operatorname{Af}\left(H_{n}\right)=3 n$;
3. $\operatorname{Spec}_{a f}\left(H_{n}\right)=[n, 3 n]$.

In the following, we will calculate the sum over the anti-forcing numbers of all perfect matchings of H_{n}, and investigate its asymptotic behavior.

Theorem 4.4. The sum over the anti-forcing numbers of all perfect matchings of H_{n} is

$$
\begin{align*}
\left.\frac{d}{d x} A f\left(H_{n}, x\right)\right|_{x=1} & =\frac{3 \sqrt{2}}{64}(3-2 \sqrt{2})^{n}+\frac{17-12 \sqrt{2}}{16} n(3-2 \sqrt{2})^{n}-\frac{3 \sqrt{2}}{64}(3+2 \sqrt{2})^{n} \\
& +\frac{17+12 \sqrt{2}}{16} n(3+2 \sqrt{2})^{n} \tag{20}
\end{align*}
$$

Proof. By Theorem 4.1,

$$
\begin{align*}
\frac{d}{d x} A f\left(H_{n}, x\right)= & \left(6 x^{2}+4 x+2\right) A f\left(H_{n-1}, x\right)+\left(2 x^{3}+2 x^{2}+2 x\right) \frac{d}{d x} A f\left(H_{n-1}, x\right) \\
& -2 x A f\left(H_{n-2}, x\right)-x^{2} \frac{d}{d x} A f\left(H_{n-2}, x\right) \tag{21}
\end{align*}
$$

For convenience, let $\Phi_{n}:=\Phi\left(H_{n}\right)$ and $A F_{n}:=\left.\frac{d}{d x} A f\left(H_{n}, x\right)\right|_{x=1}$, by Eq. (21), we have

$$
\begin{equation*}
A F_{n}=6 A F_{n-1}-A F_{n-2}+12 \Phi_{n-1}-2 \Phi_{n-2} \tag{22}
\end{equation*}
$$

By Eq. (5), $\Phi_{n}=6 \Phi_{n-1}-\Phi_{n-2}$, so $A F_{n}=6 A F_{n-1}-A F_{n-2}+2 \Phi_{n}$, which implies $2 \Phi_{n}=A F_{n}-6 A F_{n-1}+A F_{n-2}$. Therefore $2 \Phi_{n-1}=A F_{n-1}-6 A F_{n-2}+A F_{n-3}$ and $2 \Phi_{n-2}=A F_{n-2}-6 A F_{n-3}+A F_{n-4}$, substituting them into Eq. (22), we obtain the following recurrence formula

$$
\begin{equation*}
A F_{n}=12 A F_{n-1}-38 A F_{n-2}+12 A F_{n-3}-A F_{n-4} . \tag{23}
\end{equation*}
$$

Note that recurrence formulas (8) and (23) have the same homogeneous characteristics equation, so the general solution of Eq. (23) is $A F_{n}=\lambda_{1}(3-2 \sqrt{2})^{n}+\lambda_{2} n(3-2 \sqrt{2})^{n}+$ $\lambda_{3}(3+2 \sqrt{2})^{n}+\lambda_{4} n(3+2 \sqrt{2})^{n}$. By the initial values $A F_{5}=70956, A F_{6}=496794$, $A F_{7}=3380640$ and $A F_{8}=22531256$, we have $\lambda_{1}=\frac{3 \sqrt{2}}{64}, \lambda_{2}=\frac{17-12 \sqrt{2}}{16}, \lambda_{3}=-\frac{3 \sqrt{2}}{64}$ and $\lambda_{4}=\frac{17+12 \sqrt{2}}{16}$, so Eq. (20) holds for $n \geq 5$. We can check that Eq. (20) also holds for $n=0,1,2,3,4$, the proof is completed.

By Eq. (6) and Eq. (20), we can prove the following corollary.
Corollary 4.5. Let H_{n} be a pyrene system with n pyrene fragments. Then

$$
\lim _{n \rightarrow \infty} \frac{A F_{n}}{n \Phi_{n}}=1+\frac{3 \sqrt{2}}{4}
$$

References

[1] P. Adams, M. Mahdian, E. S. Mahmoodian, On the forced matching numbers of bipartite graphs, Discr. Math. 281 (2004) 1-12.
[2] P. Afshani, H. Hatami, E. S. Mahmoodian, On the spectrum of the forced matching number of graphs, Australas. J. Comb. 30 (2004) 147-160.
[3] Z. Che, Z. Chen, Forcing on perfect matchings - A survey, MATCH Commun. Math. Comput. Chem. 66 (2011) 93-136.
[4] Z. Che, Z. Chen, Conjugated circuits and forcing edges, MATCH Commun. Math. Comput. Chem. 69 (2013) 721-731.
[5] S. J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, Springer, Berlin, 1988.
[6] H. Deng, The anti-forcing number of hexagonal chains, MATCH Commun. Math. Comput. Chem. 58 (2007) 675-682.
[7] H. Deng, The anti-forcing number of double hexagonal chains, MATCH Commun. Math. Comput. Chem. 60 (2008) 183-192.
[8] K. Deng, H. Zhang, Anti-forcing spectra of perfect matchings of graphs, J. Comb. Optim. 33 (2017) 660-680.
[9] K. Deng, H. Zhang, Anti-forcing spectrum of any cata-condensed hexagonal system is continuous, Front. Math. China 12 (2017) 19-33.
[10] K. Deng, H. Zhang, Extremal anti-forcing numbers of perfect matchings of graphs. Discr. Appl. Math. 224 (2017) 69-79.
[11] P. Hansen, M. Zheng, Bonds fixed by fixing bonds, J. Chem. Inf. Comput. Sci. 34 (1994) 297-304.
[12] F. Harary, D. Klein, T. Živković, Graphical properties of polyhexes: perfect matching vector and forcing, J. Math. Chem. 6 (1991) 295-306.
[13] W. He, W. He, P-V matrix and enumeration of Kekuklé structures, Theor. Chim. Acta 75 (1989) 389-400.
[14] H. K. Wang, H. Lei, Y. Yeh, H. Zhang, Distribution of forcing and anti-forcing numbers of random perfect matchings on hexagonal chains and crowns (preprint, 2015). http://140.109.74.92/hk/?p=873
[15] X. Jiang, H. Zhang, On forcing matching number of boron-nitrogen fullerene graphs, Discr. Appl. Math. 159 (2011) 1581-1593.
[16] X. Jiang, H. Zhang, The maximum forcing number of cylindrical grid, toroidal 4-8 lattice and Klein bottle 4-8 lattice. J. Math. Chem. 54 (2016) 18-32.
[17] D. Klein, M. Randić, Innate degree of freedom of a graph, J. Comput. Chem. 8 (1987) 516-521.
[18] S. Kleinerman, Bounds on the forcing numbers of bipartite graphs, Discr. Math. 306 (2006) 66-73.
[19] F. Lam, L. Pachter, Forcing number for stop signs, Theor. Comput. Sci. 303 (2003) 409-416.
[20] H. Lei, Y. Yeh, H. Zhang, Anti-forcing numbers of perfect matchings of graphs, Discr. Appl. Math. 202 (2016) 95-105.
[21] X. Li, Hexagonal systems with forcing single edges, Discr. Appl. Math. 72 (1997) 295-301.
[22] C. L. Lucchesi, D. H. Younger, A minimax theorem for directed graphs, J. Lond. Math. Soc. 17 (1978) 369-374.
[23] L. Pachter, P. Kim, Forcing matchings on square grids, Discr. Math. 190 (1998) 287-294.
[24] M. Randić, D. J. Klein, Kekulé valence structures revisited. Innate degrees of freedom of π-electron couplings, in: N. Trinajstić (Ed.), Mathematical and Computational Concepts in Chemistry, Wiley, New York, 1985, pp. 274-282.
[25] M. Randić, D. Vukičević, Kekulé structures of fullerene C_{70}, Croat. Chem. Acta 79 (2006) 471-481.
[26] M. E. Riddle, The minimum forcing number for the torus and hypercube, Discr. Math. 245 (2002) 283-292.
[27] L. Shi, H. Zhang, Forcing and anti-forcing numbers of (3,6)-fullerenes, MATCH Commun. Math. Comput. Chem. 76 (2016) 597-614.
[28] L. Shi, H. Wang, H. Zhang, On the maximum forcing and anti-forcing numbers of (4,6)-fullerenes, Discr. Appl. Math. 233 (2017) 187-194.
[29] L. Shi, H. Zhang, Tight upper bound on the maximum anti-forcing numbers of graphs, Discr. Math. Theor. Comput. Sci. 19 (2017) \#9.
[30] D. Vukičević, I. Gutman, M. Randić, On instability of fullerene C_{72}, Croat. Chem. Acta 79 (2006) 429-436.
[31] D. Vukičević, M. Randić, On Kekulé structures of buckminsterfullerene, Chem. Phys. Lett. 401 (2005) 446-450.
[32] D. Vukičević, N. Trinajstié, On the anti-forcing number of benzenoids, J. Math. Chem. 42 (2007) 575-583.
[33] D. Vukičević, N. Trinajstié, On the anti-Kekulé number and anti-forcing number of cata-condensed bezenoids, J. Math. Chem. 43 (2008) 719-726.
[34] H. Wang, D. Ye, H. Zhang, The forcing number of toroidal polyhexes, J. Math. Chem. 43 (2008) 457-475.
[35] L. Xu, H. Bian, F. Zhang, Maximum forcing number of hexagonal systems, MATCH Commun. Math. Comput. Chem. 70 (2013) 493-500.
[36] Q. Yang, H. Zhang, Y. Lin, On the anti-forcing number of fullerene graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 681-700.
[37] F. Zhang, X. Guo, R. Chen, Z-transformation graphs of perfect matchings of hexagonal systems, Discr. Math. 72 (1988) 405-415.
[38] F. Zhang, X. Li, Hexagonal systems with forcing edges, Discr. Math. 140 (1995) 253-263.
[39] H. Zhang, K. Deng, Forcing spectrum of a hexagonal system with a forcing edge, MATCH Commun. Math. Comput. Chem. 73 (2015) 457-471.
[40] H. Zhang, D. Ye, W. C. Shiu, Forcing matching numbers of fullerene graphs, Discr. Appl. Math. 158 (2010) 573-582.
[41] H. Zhang, F. Zhang, Plane elementary bipartite graphs, Discr. Appl. Math. 105 (2000) 291-311.
[42] H. Zhang, S. Zhao, R. Lin, The forcing polynomial of catacondensed hexagonal systems, MATCH Commun. Math. Comput. Chem. 73 (2015) 473-490.
[43] H. Zhang, X. Zhou, A maximum resonant set of polyomino graphs, Discuss. Math. Graph Theory 36 (2016) 323-337.
[44] Q. Zhang, H. Bian, E. Vumar, On the anti-Kekulé and anti-forcing number of catacondensed phenylenes, MATCH Commun. Math. Comput. Chem. 65 (2011) 799-806.
[45] S. Zhao, H. Zhang, Forcing polynomials of benzenoid parallelogram and its related benzenoids, Appl. Math. Comput. 284 (2016) 209-218.
[46] S. Zhao, H. Zhang, Anti-forcing polynomials for benzenoid systems with forcing edges, Discr. Appl. Math. 250 (2018) 342-356.
[47] S. Zhao, H. Zhang, Forcing and anti-forcing polynomials of perfect matchings for some rectangle grids, J. Math. Chem. 57 (2019) 202-225.
[48] X. Zhou, H. Zhang, Clar sets and maximum forcing numbers of hexagonal systems, MATCH Commun. Math. Comput. Chem. 74 (2015) 161-174.
[49] X. Zhou, H. Zhang, A minimax result for perfect matchings of a polyomino graph, Discr. Appl. Math. 206 (2016) 165-171.

[^0]: *This work is supported by the Science and Technology Research Foundation of the Higher Education Institutions of Ningxia (Grant No. NGY2018-139) and the Natural Science Foundation of Ningxia (Grant No. 2019AAC03124).
 ${ }^{\dagger}$ Corresponding author.

