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Abstract

The forcing number of a perfect matching M of a graph G is the smallest number
of edges in a subset S ⊂M such that S is in no other perfect matching. The anti-
forcing number of M is the smallest number of edges in a subset S′ ⊂ E(G) \M
such that M is the unique perfect matching of G − S′. Recently the forcing and
anti-forcing polynomials of perfect matchings of a graph were proposed as counting
polynomials for perfect matchings with the same forcing number and anti-forcing
number respectively. In this paper, we obtain the explicit expressions of forcing and
anti-forcing polynomials of a pyrene system. As consequences, the distributions
of forcing and anti-forcing numbers of perfect matchings of the pyrene system are
revealed respectively.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). A perfect matching

of G is a set of independent edges which covers all vertices of G. A perfect matching

coincides with a Kekulé structure of a conjugated molecule graph (the graph representing

the carbon-atoms). Klein and Randić [17, 24] observed that a Kekulé structure can be

determined by a few number of fixed double bonds, and they defined the innate degree
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of freedom of a Kekulé structure as the smallest number of fixed double bonds required

to determine it. The sum over innate degree of freedom of all Kekulé structures of a

graph was called the degree of freedom of the graph, which was proposed as a novel

invariant to estimate the resonance energy. In 1991, Harary, Klein and Živković [12]

extended the concept of “innate degree of freedom” to a perfect matching M of a graph

G, and renamed it as the forcing number of M , denoted by f(G,M). Over the past

30 years, many researchers were attracted in this field [3], in addition, the anti-forcing

number [20, 32, 33] was proposed from the point of opposite view of forcing number. In

general, to compute the forcing number of a perfect matching of a bipartite graph with

the maximum degree 3 is an NP-complete problem [1], and to compute the anti-forcing

number of a perfect matching of a bipartite graph with the maximum degree 4 is also

an NP-complete problem [8]. But the particular structure of a graph enables us to do

much better. In this paper, we will calculate the forcing and anti-forcing polynomials of

a pyrene system. As consequences, the distributions of forcing and anti-forcing numbers

of perfect matchings of the pyrene system are revealed respectively.

A forcing set S of a perfect matching M of a graph G is a subset of M such that S

is contained in no other perfect matchings of G. Therefore, f(G,M) equals the smallest

cardinality over all forcing sets of M . The minimum (resp. maximum) forcing number of

G is the minimum (resp. maximum) value over forcing numbers of all perfect matchings

of G, denoted by f(G) (resp. F (G)). Afshani et al. [2] proved that the smallest forcing

number problem is NP-complete for bipartite graphs with maximum degree four. In order

to investigate the distribution of forcing numbers of all perfect matchings of a graph G,

the forcing spectrum [1] was proposed, denoted by Specf (G), which is the collection of

forcing numbers of all perfect matchings of G. Further, Zhang et al. [42] introduced the

forcing polynomial of a graph, which can enumerate the number of perfect matchings with

the same forcing number.

A hexagonal system (or benzenoid) is a finite 2-connected planar bipartite graph in

which each interior face is surrounded by a regular hexagon of side length one. Hexagonal

systems are extensively used in the study of benzenoid hydrocarbons [5], as they properly

represent the skeleton of such molecules. Zhang and Li [38] and Hansen and Zheng [11]

characterized independently the hexagonal systems with minimum forcing number 1, and

the forcing spectrum of such a hexagonal system was determined by Zhang and Deng [39].
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Zhang and Zhang [41] characterized plane elementary bipartite graphs with minimum

forcing number 1. Xu et al. [35] proved that the maximum forcing number of a hexagonal

system equals its Clar number, which is an invariant used to measure the stability of

benzenoid hydrocarbons. Similar results also hold for polyomino graphs [43] and (4,6)-

fullerenes [28]. Zhang et al. [40] proved that the minimum forcing number of a fullerene

graph is not less than 3, and the lower bound can be achieved by infinitely many fullerene

graphs. Randić, Vukičević and Gutman [25, 30, 31] determined the forcing spectra of

fullerene graphs C60, C70 and C72, in particular there is a single Kekulé structure of C60

that has the highest innate degree of freedom 10 such that all hexagons of C60 have three

double CC bonds, which represents the Fries structure of C60 and is the most important

valence structure. For forcing polynomial, only a few types of hexagonal systems have been

studied, such as catacondensed hexagonal systems [42] and benzenoid parallelogram [45].

For more results on forcing number, we refer the reader to see [4, 15, 16, 18, 19, 23, 26, 27,

34,47–49].

Given a perfect matching M of a graph G. A subset S ⊂ E(G) \M is called an anti-

forcing set ofM ifM is the unique perfect matching ofG−S. The smallest cardinality over

all anti-forcing sets of M is called the anti-forcing number of M , denoted by af(G,M).

The minimum (resp. maximum) anti-forcing number af(G) (resp. Af(G)) of graph G is

the minimum (resp. maximum) value of anti-forcing numbers over all perfect matchings

of G. The minimum anti-forcing number of a graph was first introduced by Vukičević

and Trinajstié [32, 33] in 2007-2008. Actually, the hexagonal systems with minimum

anti-forcing number 1 had been characterized by Li [21] in 1997, where he called such a

hexagonal system has a forcing single edge. Deng [6,7] obtained the minimum anti-forcing

numbers of benzenoid chains and double benzenoid chains. Zhang et al. [44] computed

the minimum anti-forcing number of catacondensed phenylene. Yang et al. [36] showed

that a fullerene graph has the minimum anti-forcing number at least 4, and characterized

the fullerene graphs with minimum anti-forcing number 4.

By an analogous manner as the forcing number, the anti-forcing spectrum of a graph

G was proposed, denoted by Specaf (G), which is the collection of anti-forcing numbers

of all perfect matchings of G. Further, Hwang et al. [14] introduced the anti-forcing

polynomial of a graph, which can enumerate the number of perfect matchings with the

same anti-forcing number. Lei et al. [20] proved that the maximum anti-forcing number
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of a hexagonal system equals its Fries number, which can measure the stability of ben-

zenoid hydrocarbons. Analogous result was also obtained on (4,6)-fullerenes [28]. Further

more, two tight upper bounds on the maximum anti-forcing numbers of graphs were ob-

tained [10, 29]. The anti-forcing spectra of some types of hexagonal systems were proved

to be continuous, such as monotonic constructable hexagonal systems [8], catacondensed

hexagonal systems [9]. Zhao and Zhang computed the anti-forcing polynomials of ben-

zenoid systems with minimum forcing number 1 [46], and 2 × n and 3 × 2n rectangle

grids [47].

In this paper, we will calculate the forcing and anti-forcing polynomials of a pyrene

system Hn. In section 2, as a preparation, some basic results on forcing and anti-forcing

numbers are introduced, and we characterize the maximum set of disjoint M -alternating

cycles and the maximum set of compatible M -alternating cycles with respect to a perfect

matching M of Hn. In section 3, we give a recurrence formula for the forcing polynomial

of Hn, and derive the explicit expressions of forcing polynomial of Hn. As corollaries,

the distribution of forcing numbers of all perfect matchings of Hn are determined, and

an asymptotic behavior of degree of freedom of Hn is revealed. In section 4, we obtain a

recurrence formula for the anti-forcing polynomial of Hn, and derive the explicit expres-

sions of anti-forcing polynomial of Hn. As consequences, the distribution of anti-forcing

numbers of all perfect matchings of Hn are determined, and an asymptotic behavior of

the sum over anti-forcing numbers of all perfect matchings of Hn is obtained.

2 Preliminaries

Let M be a perfect matching of a graph G. A cycle C of G is called an M-alternating

cycle if the edges of C appear alternately in M and E(G) \M . If C is an M -alternating

cycle, then the symmetric difference M4C is the another perfect matching of G, here

C may be viewed as its edge set. Let c(M) be the maximum number of disjoint M -

alternating cycles of G. Since any forcing set of M has to contain at least one edge of

each M -alternating cycle, f(G,M) ≥ c(M). Pachter and Kim [23] proved the following

theorem by using the minimax theorem on feedback set [22].

Theorem 2.1 [23]. Let M be a perfect matching in a planar bipartite graph G. Then

f(G,M) = c(M).
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(a) Hn

(b) Gn

Figure 1. (a) Pyrene system Hn with n pyrene fragments (b) The auxiliary graph
Gn

A pyrene system with n pyrene fragments is denoted by Hn, see Fig. 1(a). Hn is a

special hexagonal system, and also is a plane bipartite graph, by Theorem 2.1, f(Hn,M) =

c(M) for any perfect matching M of Hn.

Lemma 2.2 [37, 41]. Let M be a perfect matching of a hexagonal system H, C an

M -alternating cycle. Then there is an M -alternating hexagon in the interior of C.

Let H be a hexagonal system with a perfect matching M . A set of disjoint M -

alternating hexagons of H is called an M-resonant set, the size of a maximum M-resonant

set is denote by h(M).

Lemma 2.3. Let M be a perfect matching of the pyrene system Hn. Then f(Hn,M) =

h(M).

Proof. Let A be a maximum set of disjoint M -alternating cycles, and A contain hexagons

as more as possible. By Theorem 2.1, f(Hn,M) = |A|. We claim that A is an M -

resonance set, otherwise A contains a non-hexagonal cycle C. By Lemma 2.2 there is an

M -alternating hexagon h in the interior of C. Note that A′ = (A \ {C}) ∪ {h} also is a

maximum set of disjoint M -alternating cycles, but A′ contains more hexagons than A, a

contradiction. We have |A| ≤ h(M) ≤ f(Hn,M) = |A|, i.e. f(Hn,M) = h(M).
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Let M be a perfect matching of a graph G. A set A′ of M -alternating cycles of G is

called a compatible M -alternating set if any two cycles of A′ either are disjoint or intersect

only at edges in M . Let c′(M) denote the maximum cardinality over all compatible M -

alternating sets of G. Since any anti-forcing set of M must contain at least one edge of

each M -alternating cycle, af(G,M) ≥ c′(M). Lei et al. [20] gave the following minimax

theorem.

Theorem 2.4 [20]. Let G be a plane bipartite graph with a perfect matching M . Then

af(G,M) = c′(M).

Let A′ be a compatible M -alternating set of a plane bipartite graph with a perfect

matching M . Two cycles C1 and C2 of A′ are crossing if they share an edge f in M and

the four edges adjacent to f alternate in C1 and C2 (i.e., C1 enters into C2 from one side

and leaves for the other side via f). A′ is called non-crossing if any two cycles of A′ are

non-crossing.

Lemma 2.5 [10,20]. Let G be a plane bipartite graph with a perfect matching M . Then

there is a non-crossing compatible M -alternating set A′ such that |A′| = c′(M).

A triphenylene is a benzenoid consisting of four hexagons, one hexagon at the center,

for the other three disjoint hexagons, each of them has a common edge with the center

one. For example, the four hexagons s1,1, s1,2, h1,2, h2,1 form a triphenylene, see Fig. 1(a).

Lemma 2.6. Let M be a perfect matching of the pyrene system Hn. Then there is a

maximum non-crossing compatible M -alternating set A′ such that each member of A′

either is a hexagon or the periphery of a triphenylene.

Proof. By Lemma 2.5, there is a maximum non-crossing compatible M -alternating set A′

such that I(A′) =
∑

C∈A′ I(C) as small as possible, where I(C) denotes the number of

hexagons in the interior of C. Let C ′ be a member of A′. Suppose C ′ is not a hexagon, by

Lemma 2.2, there is an M -alternating hexagon h′ in the interior of C ′. Note that C ′ and

h′ must be compatible, otherwise A′′ = (A′\{C ′})∪{h′} can be a maximum non-crossing

compatible M -alternating set such that I(A′′) < I(A′), a contradiction. In fact, C ′ has

to be compatible with any M -alternating hexagon, which implies that h′ is a hexagon of

type hi,j (see Fig. 1(a)). Without loss of generality, let h′ = hi,1(i 6= 1) . Then ei,1, fi,1

and the right vertical edge of hi,1 all belong to M . Let M ′ = M4hi,1. Then si,1 and si,2

both are M ′-alternating hexagons.
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Claim 1. hi−1,2 is M ′-alternating.

Proof. Suppose hi−1,2 is not M ′-alternating. Then at least one of pi−1,2 and qi−1,2 does

not belong to M . If only one of pi−1,2 and qi−1,2 belongs to M , say pi−1,2 ∈M , then si−1,2

is an M -alternating hexagon which is not compatible with C ′, a contradiction. Therefore

both of pi−1,2 and qi−1,2 are not in M , then hi−1,1 is M -alternating. If pi−2,2 and qi−2,2 both

belong to M , then the four hexagons hi−2,2, hi−1,1, si−1,1, and si−1,2 form a triphenylene

whose periphery T is an M -alternating cycle. Note that T is compatible with each cycle

of A′ \ {C ′}, thus (A′ \ {C ′}) ∪ {T} can be a maximum non-crossing compatible M -

alternating set with I((A′ \ {C ′}) ∪ {T}) < I(A′), a contradiction. Hence at least one

of pi−2,2 and qi−2,2 does not belong to M , similar as above, we can show that hi−2,1 is

M -alternating. Keeping on this process, we will finally prove that h1,1 is M -alternating,

but h1,1 is not compatible with C ′, a contradiction.

According to Claim 1 and the minimality of I(A′), C ′ has to be the periphery of the

triphenylene consisting of the four hexagons hi−1,2, hi,1, si,1 and si,2 (see Fig. 1(a)).

3 Forcing polynomial of pyrene system

The forcing polynomial of a graph G is defined as follow [42]:

F (G, x) =
∑

M∈M(G)

xf(G,M) =

F (G)∑
i=f(G)

wix
i, (1)

where M(G) is the collection of all perfect matchings of G, wi is the number of perfect

matchings of G with the forcing number i.

As a consequence, let Φ(G) be the number of perfect matchings of a graph G, then

Φ(G) = F (G, 1). Recall that the degree of freedom of a graph G is the sum over the

forcing numbers of all perfect matchings of G, denoted by IDF (G), then IDF (G) =

d
dx
F (G, x)|x=1. Φ(G) and IDF (G) both are chemically meaningful indices within a res-

onance theoretic context [17, 24]. Note that if G is a null graph or a graph has a unique

perfect matching, then F (G, x) = 1.

In the following we will derive a recurrence formula for forcing polynomial of the

pyrene system Hn, as preparations the forcing polynomials of pyrene, phenanthrene and

diphenyl are computed: F (H1, x) = 4x2 + 2x, F (L, x) = 4x2 + x, F (N, x) = 4x2 (see Fig.

2).
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(a) H1 (b) L (c) N

Figure 2. (a) Pyrene, (b) Phenanthrene and (c) Diphenyl

Theorem 3.1. Let Hn be a pyrene system with n pyrene fragments. Then

F (Hn, x) = (4x2 + 2x)F (Hn−1, x)− x2F (Hn−2, x), (2)

where n ≥ 2, F (H0, x) = 1 and F (H1, x) = 4x2 + 2x.

Proof. First we introduce an auxiliary graph Gn obtained by deleting the leftmost hexagon

h1,1 from Hn, see Fig. 1(b). We divide M(Hn) in two subsets: Me1,2

f1,2
(Hn) = {M ∈

M(Hn) | e1,2, f1,2 ∈M},M
ē1,2

f̄1,2
(Hn) = {M ∈M(Hn) | e1,2, f1,2 6∈M}. If M ∈Me1,2

f1,2
(Hn),

then h1,2 is a unique M -alternating hexagon in the leftmost pyrene fragment, and M ′ =

M ∩E(Gn−1) is a perfect matching of the graph Gn−1 obtained by deleting vertices of the

leftmost pyrene fragment and their incident edges from Hn. By Lemma 2.3, f(Hn,M) =

f(Gn−1,M
′) + 1. If M ∈ Mē1,2

f̄1,2
(Hn), then the restriction M1 of M on the phenanthrene

L consisting of three hexagons s1,1, h1,1, s1,2 is a perfect matching of L, and M2 = M ∩

E(Hn−1) is a perfect matching of the subsystem Hn−1 obtained by deleting vertices of L

and their incident edges from Hn, see Fig. 1(a). According to Lemma 2.3, f(Hn,M) =

f(L,M1) + f(Hn−1,M2). By Eq. (1), we have

F (Hn, x) =
∑

M∈M(Hn)

xf(Hn,M) =
∑

M∈M
e1,2
f1,2

(Hn)

xf(Hn,M) +
∑

M∈M
ē1,2

f̄1,2
(Hn)

xf(Hn,M)

=
∑

M ′∈M(Gn−1)

xf(Gn−1,M ′)+1 +
∑

M1∈M(L),M2∈M(Hn−1)

xf(L,M1)+f(Hn−1,M2)

= x
∑

M ′∈M(Gn−1)

xf(Gn−1,M ′) +
∑

M1∈M(L),M2∈M(Hn−1)

xf(L,M1)xf(Hn−1,M2)

= xF (Gn−1, x) + (
∑

M1∈M(L)

xf(L,M1))(
∑

M2∈M(Hn−1)

xf(Hn−1,M2))

= xF (Gn−1, x) + F (L, x)F (Hn−1, x)

= xF (Gn−1, x) + (4x2 + x)F (Hn−1, x) . (3)

Now we deduce a recurrence relation for forcing polynomial of the auxiliary graph

Gn. We can divideM(Gn) in two types, one is perfect matchings which containing edges
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e1,2 and f1,2, and another is on the converse. For a perfect matching M ∈ M(Gn), if

e1,2, f1,2 ∈ M , then h1,2 is a unique M -alternating hexagon in the leftmost phenanthrene

consisting of three hexagons s1,1, s1,2, h1,2, and the restriction M ′ of M on the graph Gn−1

obtained by deleting vertices of the leftmost phenanthrene and their incident edges from

Gn is a perfect matching of Gn−1. By Lemma 2.3, f(Gn,M) = f(Gn−1,M
′) + 1. On the

other hand, if e1,2, f1,2 6∈ M , then the restriction M1 of M on the leftmost diphenyl N is

a perfect matching of N , and the restriction M2 of M on the successive subsystem Hn−1

is a perfect matching of Hn−1. Therefore f(Gn,M) = f(N,M1) + f(Hn−1,M2), see Fig.

1(b). By a similar deducing as Eq. (3), we can obtain the following formula

F (Gn, x) = xF (Gn−1, x) + 4x2F (Hn−1). (4)

Eq. (3) minus Eq. (4), we have

F (Gn, x) = F (Hn, x)− xF (Hn−1, x),

which implies

F (Gn−1, x) = F (Hn−1, x)− xF (Hn−2, x).

Substituting this expression into Eq. (3), we can obtain Eq. (2), the proof is completed.

Theorem 3.2. Let Hn be a pyrene system with n pyrene fragments. Then

F (Hn, x) = xn
n∑

j=0

n∑
i=d j+n

2
e

(−1)n−i22i+j−n
(

i

n− i

)(
2i− n
j

)
xj.

Proof. For convenience, let Fn := F (Hn, x), then the generating function of sequence

{Fn}∞n=0 is obtained as follow

G(z) =
∞∑
n=0

Fnz
n = 1 + (4x2 + 2x)z +

∞∑
n=2

Fnz
n

= 1 + (4x2 + 2x)z +
∞∑
n=2

((4x2 + 2x)Fn−1 − x2Fn−2)zn

= 1 + (4x2 + 2x)z + (4x2 + 2x)z(G(z)− 1)− x2z2G(z)

= 1 + (4x2 + 2x)zG(z)− x2z2G(z).
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Therefore

G(z) =
1

1− ((4x2 + 2x)z − x2z2)
=
∞∑
i=0

((4x2 + 2x)z − x2z2)i

=
∞∑
i=0

xizi
i∑

j=0

(
i

j

)
(4x+ 2)i−j(−xz)j

=
∞∑
n=0

n∑
i=dn

2
e

(−1)n−i
(

i

n− i

)
(4x+ 2)2i−nxnzn,

which implies

Fn = xn
n∑

i=dn
2
e

(−1)n−i
(

i

n− i

)
(4x+ 2)2i−n

= xn
n∑

i=dn
2
e

(−1)n−i
(

i

n− i

) 2i−n∑
j=0

22i+j−n
(

2i− n
j

)
xj

= xn
n∑

j=0

n∑
i=d j+n

2
e

(−1)n−i22i+j−n
(

i

n− i

)(
2i− n
j

)
xj.

The proof is completed.

As a consequence, the following corollary is immediate.

Corollary 3.3. Let Hn be a pyrene system with n pyrene fragments. Then

1. f(Hn) = n;

2. F (Hn) = 2n;

3. Specf (Hn) = [n, 2n].

In the following we compute the degree of freedom of Hn, and discuss its asymptotic

behavior. He and He [13] gave the following formula:

Φ(Hn) = 6Φ(Hn−1)− Φ(Hn−2), (5)

further we can obtain an general formula as follow:

Φ(Hn) =
17− 12

√
2

16− 12
√

2
(3− 2

√
2)n +

17 + 12
√

2

16 + 12
√

2
(3 + 2

√
2)n. (6)

Theorem 3.4.

IDF (Hn) =

√
2

32
(3− 2

√
2)n +

7− 5
√

2

8
n(3− 2

√
2)n −

√
2

32
(3 + 2

√
2)n

+
7 + 5

√
2

8
n(3 + 2

√
2)n. (7)
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Proof. According to Eq. (2),

d

dx
F (Hn, x) = (8x+ 2)F (Hn−1, x) + (4x2 + 2x)

d

dx
F (Hn−1, x)

−2xF (Hn−2, x)− x2 d

dx
F (Hn−2, x).

For convenience, let Φn := Φ(Hn) and IDFn := IDF (Hn), then we have

IDFn =
d

dx
F (Hn, x)

∣∣∣
x=1

= 6IDFn−1 − IDFn−2 + 10Φn−1 − 2Φn−2.

So

IDFn+1 = 6IDFn − IDFn−1 + 10Φn − 2Φn−1,

IDFn+2 = 6IDFn+1 − IDFn + 10Φn+1 − 2Φn,

by Eq. (5), Φn+1 = 6Φn − Φn−1 and Φn = 6Φn−1 − Φn−2, which implies

IDFn+2 = 6IDFn+1 − IDFn + 10(6Φn − Φn−1)− 2(6Φn−1 − Φn−2)

= 6IDFn+1 − IDFn + 60Φn − 22Φn−1 + 2Φn−2

= 6IDFn+1 − IDFn + 6(6IDFn − IDFn−1 + 10Φn − 2Φn−1)− (6IDFn−1

−IDFn−2 + 10Φn−1 − 2Φn−2)− 36IDFn + 12IDFn−1 − IDFn−2

= 12IDFn+1 − 38IDFn + 12IDFn−1 − IDFn−2. (8)

Therefore the homogeneous characteristics equation of recurrence formula (8) is x4 −

12x3 + 38x2 − 12x + 1 = 0, and its roots are x1 = x2 = 3 − 2
√

2, x3 = x4 = 3 + 2
√

2.

Suppose the general solution of Eq. (8) is IDFn = λ1(3−2
√

2)n +λ2n(3−2
√

2)n +λ3(3+

2
√

2)n + λ4n(3 + 2
√

2)n. According to the initial values IDF3 = 1036, IDF4 = 8068,

IDF5 = 58854 and IDF6 = 411978, we can obtain λ1 =
√

2
32

, λ2 = 7−5
√

2
8

, λ3 = −
√

2
32

and

λ4 = 7+5
√

2
8

, so Eq. (7) holds for n ≥ 3. In fact, we can check that Eq. (7) also holds for

n = 0, 1, 2, so the proof is completed.

By Eqs. (6) and (7), the following result is obtained.

Corollary 3.5. Let Hn be a pyrene system with n pyrene fragments. Then

lim
n→∞

IDF (Hn)

nΦ(Hn)
= 1 +

√
2

2
.

-37-



4 Anti–forcing polynomial of pyrene system

The anti-forcing polynomial of a graph G is defined as follow [14]:

Af(G, x) =
∑

M∈M(G)

xaf(G,M) =

Af(G)∑
i=af(G)

uix
i, (9)

where ui is the number of perfect matchings of G with the anti-forcing number i.

As a consequence, Φ(G) = Af(G, 1), and the sum over the anti-forcing numbers of

all perfect matchings of G equals d
dx
Af(G, x)

∣∣
x=1

. If G is a null graph or a graph with

unique perfect matching, then Af(G, x) = 1. We obtain the following recursive formula.

Theorem 4.1. Let Hn be the pyrene system with n pyrene fragments. Then

Af(Hn, x) = (2x3 + 2x2 + 2x)Af(Hn−1, x)− x2Af(Hn−2, x), (10)

where n ≥ 2, Af(H0, x) = 1 and Af(H1, x) = 2x3 + 2x2 + 2x.

Proof. First we divide M(Hn) in two subsets: Me1,2

f1,2
(Hn) = {M ∈ M(Hn) | e1,2, f1,2 ∈

M}, Mē1,2

f̄1,2
(Hn) = {M ∈M(Hn) | e1,2, f1,2 6∈M}. There are two cases to be considered.

Case 1. Suppose e1,2 and f1,2 both belong to M . Then the restriction M1 of M on

the leftmost pyrene fragment is a perfect matching of it, and h1,2 is an M -alternating

hexagon ,see Fig. 1(a).

Subcase 1.1. If p2,1 and q2,1 both belong to M , then the hexagons s2,1 and s2,2 both

are M -alternating, and the four hexagons s1,1, s1,2, h1,2, h2,1 form a triphenylene whose

perimeter T is an M -alternating cycle, and {h1,2, s2,1, s2,2, T} is a non-crossing compatible

M -alternating set. Note that the restriction M ′ of M on the subsystem Hn−2 obtained

by the removal of the leftmost two pyrene fragments from Hn is a perfect matching

of Hn−2. Let A′ be a maximum non-crossing compatible M ′-alternating set of Hn−2,

by Lemma 2.6, then {h1,2, s2,1, s2,2, T} ∪ A′ is a maximum non-crossing compatible M -

alternating set of Hn. By Theorem 2.4, af(Hn,M) = 4 + af(Hn−2,M
′). Let Y1 = {M ∈

Me1,2

f1,2
(Hn)| p2,1, q2,1 ∈M}, by Eq. (9),∑

M∈Y1

xaf(Hn,M) =
∑

M ′∈M(Hn−2)

x4+af(Hn−2,M ′) = x4Af(Hn−2, x). (11)

Subcase 1.2. If one of p2,1, q2,1 does not belong to M , then the perimeter of the

triphenylene consisting of the four hexagons s1,1, s1,2, h1,2, h2,1 is not an M -alternating
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cycle. Recall that M1 ⊆ M is a perfect matching of the first pyrene fragment, thus

M2 = M \M1 is a perfect matching of the subgraph Gn−1 (see Fig. 1(b)). By Lemma 2.6,

af(Hn,M) = 1+af(Gn−1,M2). LetX be a perfect matching ofGn−1. SupposeX contains

edges p2,1, q2,1, then s2,1 and s2,2 both are X-alternating hexagons, and X1 = X∩E(Hn−2)

is a perfect matching of the subsystem Hn−2 obtained by deleting the vertices of the

leftmost diphenyl of Gn−1 and their incident edges. Note that Lemma 2.6 also holds for

the auxiliary graph Gn, and h2,2 is not X-alternating, so af(Gn−1, X) = 2+af(Hn−2, X1).

Let Mp2,1
q2,1 (Gn−1) = {X ∈M(Gn−1)|p2,1, q2,1 ∈ X}, Y2 =Me1,2

f1,2
(Hn) \ Y1, then∑

M∈Y2

xaf(Hn,M) =
∑

M2∈M(Gn−1)\M
p2,1
q2,1

(Gn−1)

x1+af(Gn−1,M2)

= x
( ∑

X∈M(Gn−1)

xaf(Gn−1,X) −
∑

X∈M
p2,1
q2,1

(Gn−1)

xaf(Gn−1,X)
)

= x
(
Af(Gn−1, x)−

∑
X1∈M(Hn−2)

x2+af(Hn−2,X1)
)

= xAf(Gn−1, x)− x3Af(Hn−2, x). (12)

Case 2. Suppose e1,2 and f1,2 both are not in M , then we can divide Mē1,2

f̄1,2
(Hn) in

two subsets Y3 = {M ∈ Mē1,2

f̄1,2
(Hn)|e2,1, f2,1 ∈ M} and Y4 = {M ∈ Mē1,2

f̄1,2
(Hn)|e2,1, f2,1

6∈M}.

Subcase 2.1. Suppose M ∈ Y3, then h2,1 must be an M -alternating hexagon, and the

restrictions M1 and M2 of M on the leftmost phenanthrene L and the rightmost subsystem

Hn−2 are perfect matchings of L and Hn−2 respectively (see Fig. 1(a)). Let A′ be a max-

imum non-crossing compatible M2-alternating set of Hn−2. Note that M1 contains only

five distinct members, we can divide Y3 in five subsets: Y3,1 = {M ∈ Y3|p1,2, q1,2 ∈ M},

Y3,2 = {M ∈ Y3|p1,1, q1,1 ∈ M}, Y3,3 = {M ∈ Y3|e1,1, f1,1 ∈ M}, Y3,4 = {M ∈ Y3|p1,2 ∈

M, q1,2 6∈ M}, Y3,5 = {M ∈ Y3|p1,2 6∈ M, q1,2 ∈ M}. If M ∈ Y3,1, then the four

hexagons h1,2, h2,1, s2,1, s2,2 form a triphenylene whose perimeter T is an M -alternating cy-

cle, and {s1,1, s1,2, h2,1, T} is a non-crossing compatible M -alternating set. By Lemma 2.6,

{s1,1, s1,2, h2,1, T} ∪ A′ is a maximum non-crossing compatible M -alternating set of Hn.

By Theorem 2.4, af(Hn,M) = 4 +af(Hn−2,M2), which implies that
∑

M∈Y31
xaf(Hn,M) =

x4Af(Hn−2, x). If M ∈ Y3,2, then {s1,1, s1,2, h1,1, h2,1} is an non-crossing compatible

M -alternating set, and {s1,1, s1,2, h1,1, h2,1} ∪ A′ is a maximum non-crossing compati-

ble M -alternating set of Hn. By Theorem 2.4, af(Hn,M) = 4 + af(Hn−2,M2), so∑
M∈Y3,2

xaf(Hn,M) = x4Af(Hn−2, x). If M ∈ Y3,3, then {h1,1, h2,1} ∪ A′ is a maxi-
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mum non-crossing compatible M -alternating set of Hn. By Theorem 2.4, af(Hn,M) =

2 + af(Hn−2,M2), we have
∑

M∈Y3,3
xaf(Hn,M) = x2Af(Hn−2, x). If M ∈ Y3,4 or M ∈

Y3,5, then {s1,1, s1,2, h2,1} ∪ A′ is a maximum non-crossing compatible M -alternating set

of Hn. By Theorem 2.4, af(Hn,M) = 3 + af(Hn−2,M2), thus
∑

M∈Y3,4
xaf(Hn,M) +∑

M∈Y3,5
xaf(Hn,M) = 2x3Af(Hn−2, x). Finally, we have∑
M∈Y3

xaf(Hn,M) =
5∑

j=1

∑
M∈Y3,j

xaf(Hn,M) = (2x4 + 2x3 + x2)Af(Hn−2, x). (13)

Subcase 2.2. If M ∈ Y4, then the common vertical edge d of h1,2 and h2,1 belongs

to M , and the restrictions M1 and M2 of M on the leftmost pyrene fragment H1 and the

rightmost subsystem Hn−1 are perfect matchings of H1 and Hn−1 respectively (see Fig.

1(a)). We divide M(H1) in two subsets: Md(H1) = {M1 ∈ M(H1)|d ∈M1}, Md̄(H1) =

{M1 ∈ M(H1)|d 6∈ M1}. Note that Md̄(H1) contains only one perfect matching M ′
1 of

H1, and h1,2 is the unique M ′
1-alternating hexagon in H1, so af(H1,M

′
1) = 1, we have∑

M1∈Md(H1)

xaf(H1,M1) =
∑

M1∈M(H1)

xaf(H1,M1) −
∑

M ′1∈Md̄(H1)

xaf(H1,M ′1)

= Af(H1, x)− x = 2x3 + 2x2 + x . (14)

We also divide M(Hn−1) in two subsets: Md(Hn−1) = {M2 ∈ M(Hn−1)|d ∈ M2} and

Md̄(Hn−1) = {M2 ∈ M(Hn−1)|d 6∈ M2}. Suppose M2 ∈ Md̄(Hn−1), then e2,1, f2,1 ∈ M2

and h2,1 is an M2-alternating hexagon, and the restriction M ′
2 of M2 on the rightmost

subsystem Hn−2 is a perfect matching of Hn−2. Let A′ be a maximum non-crossing

compatible M ′
2-alternating set of Hn−2. Then A′ ∪ {h2,1} is a maximum non-crossing

compatible M2-alternating set of Hn−1. Thus af(Hn−1,M2) = 1 + af(Hn−2,M
′
2), we have∑

M2∈Md(Hn−1)

xaf(Hn−1,M2) =
∑

M2∈M(Hn−1)

xaf(Hn−1,M2) −
∑

M2∈Md̄(Hn−1)

xaf(Hn−1,M2)

= Af(Hn−1, x)−
∑

M ′2∈M(Hn−2)

x1+af(Hn−2,M ′2)

= Af(Hn−1, x)− xAf(Hn−2, x). (15)

Recall that d is the common edge of h1,2 and h2,1, for any M ∈ Y4, then M = M1∪M2,

where M1 is a perfect matching of the first pyrene fragment H1 and M2 is a perfect

matching of the rightmost subsystem Hn−1, and {d} = M1 ∩M2. By Theorem 2.4 and

Lemma 2.6, we have af(Hn,M) = af(H1,M1) + af(Hn−1,M2). According to Eqs. (14)
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and (15), we have∑
M∈Y4

xaf(Hn,M) =
∑

M1∈Md(H1),M2∈Md(Hn−1)

xaf(H1,M1)+af(Hn−1,M2)

=
( ∑

M1∈Md(H1)

xaf(H1,M1)
)( ∑

M2∈Md(Hn−1)

xaf(Hn−1,M2)
)

= (2x3 + 2x2 + x)(Af(Hn−1, x)− xAf(Hn−2, x))

= (2x3 + 2x2 + x)Af(Hn−1, x)− (2x4 + 2x3 + x2)Af(Hn−2, x).

(16)

By Eqs. (11), (12), (13) and (16), we obtain a recursive relation as below:

Af(Hn, x) =
∑

M∈M(Hn)

xaf(Hn,M)

=
∑
M∈Y1

xaf(Hn,M) +
∑
M∈Y2

xaf(Hn,M) +
∑
M∈Y3

xaf(Hn,M) +
∑
M∈Y4

xaf(Hn,M)

= (2x3 + 2x2 + x)Af(Hn−1, x) + (x4 − x3)Af(Hn−2, x) + xAf(Gn−1, x).

(17)

Similar as above, we can prove the following recursive formula for the auxiliary graph

Gn (see Fig. 1(b)),

Af(Gn, x) = (x3 + 3x2)Af(Hn−1, x) + (x4 − x3)Af(Hn−2, x) + xAf(Gn−1, x). (18)

Eq. (17) subtracts Eq. (18), we have

Af(Gn, x) = Af(Hn, x)− (x3 − x2 + x)Af(Hn−1, x),

so

Af(Gn−1, x) = Af(Hn−1, x)− (x3 − x2 + x)Af(Hn−2, x).

Substituting this expression into Eq. (17), we can obtain the Eq. (10), the proof is

completed.

By theorem 4.1, we can obtain an explicit expression as below.

Theorem 4.2. Let Hn be the pyrene system with n pyrene fragments. Then

Af(Hn, x) = xn
2n∑
l=0

n∑
i=d l+2n

4
e

l∑
j=d l

2
e

(−1)n−i22i−n
(

i

2i− n

)(
2i− n
j

)(
j

l − j

)
xl. (19)
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Proof. Let An := Af(Hn, x), then the generating function of sequence {An}∞n=0 is

G(t) =
∞∑
n=0

Ant
n = 1 + (2x3 + 2x2 + 2x)t+

∞∑
n=2

Ant
n

= 1 + (2x3 + 2x2 + 2x)t+
∞∑
n=2

((2x3 + 2x2 + 2x)An−1 − x2An−2)tn

= 1 + (2x3 + 2x2 + 2x)t
∞∑
n=0

Ant
n − x2t2

∞∑
n=0

Ant
n

= 1 + (2x3 + 2x2 + 2x)tG(t)− x2t2G(t).

So

G(t) =
1

1− ((2x3 + 2x2 + 2x)t− x2t2)
=
∞∑
i=0

((2x3 + 2x2 + 2x)t− x2t2)i

=
∞∑
i=0

i∑
j=0

(
i

j

)
(2x3 + 2x2 + 2x)jtj(−x2t2)i−j

=
∞∑
i=0

2i∑
n=i

(−1)n−i22i−n
(

i

2i− n

)
(x2 + x+ 1)2i−nxntn

=
∞∑
n=0

n∑
i=dn

2
e

(−1)n−i22i−n
(

i

2i− n

)
(x2 + x+ 1)2i−nxntn,

we have

Af(Hn, x) = xn
n∑

i=dn
2
e

(−1)n−i22i−n
(

i

2i− n

)
(x2 + x+ 1)2i−n

= xn
n∑

i=dn
2
e

(−1)n−i22i−n
(

i

2i− n

) 2i−n∑
j=0

(
2i− n
j

)
xj

j∑
k=0

(
j

k

)
xk

= xn
n∑

i=dn
2
e

(−1)n−i22i−n
(

i

2i− n

) 2i−n∑
j=0

2j∑
l=j

(
2i− n
j

)(
j

l − j

)
xl

= xn
2n∑
l=0

n∑
i=d l+2n

4
e

l∑
j=d l

2
e

(−1)n−i22i−n
(

i

2i− n

)(
2i− n
j

)(
j

l − j

)
xl.

According to Theorem 4.2, the following corollary is immediate.

Corollary 4.3. Let Hn be a pyrene system with n pyrene fragments. Then

1. af(Hn) = n;

2. Af(Hn) = 3n;
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3. Specaf (Hn) = [n, 3n].

In the following, we will calculate the sum over the anti-forcing numbers of all perfect

matchings of Hn, and investigate its asymptotic behavior.

Theorem 4.4. The sum over the anti-forcing numbers of all perfect matchings of Hn is

d

dx
Af(Hn, x)

∣∣
x=1

=
3
√

2

64
(3− 2

√
2)n +

17− 12
√

2

16
n(3− 2

√
2)n − 3

√
2

64
(3 + 2

√
2)n

+
17 + 12

√
2

16
n(3 + 2

√
2)n. (20)

Proof. By Theorem 4.1,

d

dx
Af(Hn, x) = (6x2 + 4x+ 2)Af(Hn−1, x) + (2x3 + 2x2 + 2x)

d

dx
Af(Hn−1, x)

−2xAf(Hn−2, x)− x2 d

dx
Af(Hn−2, x). (21)

For convenience, let Φn := Φ(Hn) and AFn := d
dx
Af(Hn, x)

∣∣
x=1

, by Eq. (21), we have

AFn = 6AFn−1 − AFn−2 + 12Φn−1 − 2Φn−2. (22)

By Eq. (5), Φn = 6Φn−1 − Φn−2, so AFn = 6AFn−1 − AFn−2 + 2Φn, which implies

2Φn = AFn − 6AFn−1 + AFn−2. Therefore 2Φn−1 = AFn−1 − 6AFn−2 + AFn−3 and

2Φn−2 = AFn−2 − 6AFn−3 + AFn−4, substituting them into Eq. (22), we obtain the

following recurrence formula

AFn = 12AFn−1 − 38AFn−2 + 12AFn−3 − AFn−4. (23)

Note that recurrence formulas (8) and (23) have the same homogeneous characteristics

equation, so the general solution of Eq. (23) is AFn = λ1(3− 2
√

2)n + λ2n(3− 2
√

2)n +

λ3(3 + 2
√

2)n + λ4n(3 + 2
√

2)n. By the initial values AF5 = 70956, AF6 = 496794,

AF7 = 3380640 and AF8 = 22531256, we have λ1 = 3
√

2
64

, λ2 = 17−12
√

2
16

, λ3 = −3
√

2
64

and

λ4 = 17+12
√

2
16

, so Eq. (20) holds for n ≥ 5. We can check that Eq. (20) also holds for

n = 0, 1, 2, 3, 4, the proof is completed.

By Eq. (6) and Eq. (20), we can prove the following corollary.

Corollary 4.5. Let Hn be a pyrene system with n pyrene fragments. Then

lim
n→∞

AFn

nΦn

= 1 +
3
√

2

4
.
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Concepts in Chemistry , Wiley, New York, 1985, pp. 274–282.
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