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Abstract

The Merrifield–Simmons index i(G) of a graph G is defined as the total num-
ber of the independent vertex sets (including the empty vertex set) in G and the
Wiener index W (G) is the sum of the distances in all unordered pairs of vertices of
G. Motivated by the recent work [H. Hua, M. Wang, On the Merrifield–Simmons
index and some Wiener-type indices, MATCH Commun. Math. Comput. Chem.
85 (2021) in press], we characterize some relations between i(G) and W (G) for con-
nected graphs. It is shown that i(G) > W (G) for any graph G of order n ≥ 11 with
m edges where n − 1 ≤ m ≤ n + 1. Moreover, some relations between i(G) and
W (G) are obtained for graphs with diameter 2 and Cartesian products of graphs.
In particular, we prove that i(G�P2) > W (G�P2) for any connected bipartite
graph G of order at least 54 and i(G�Sn) > W (G�Sn) for any connected graph
G and star Sn with n ≥ 6.

1 Introduction

All graphs considered in this paper are finite, undirected and simple. If G = (V (G), E(G))

is a graph, we will use n(G) = |V (G)| for its order and m(G) = |E(G)| for its size. The

degree degG(v) of v ∈ V (G) is the number of vertices in G adjacent to v. We denote

by NG(v) the open neighborhood of vertex v in G. For two vertices u, v ∈ V (G), we use

dG(u, v) to denote the distance between u and v in the graph G. The eccentricity εG(v) of

a vertex v ∈ V (G) is the maximum distance among all distances from the vertex v to any
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other vertex of G. If εG(v) = k for any vertex v ∈ V (G), then G is k-self-centered. The

complement of G is denoted with G. We denote by Sn, Pn and Kn the star, the path and

the complete graph on n vertices, respectively, throughout this paper. Other undefined

notations and terminology on the graph theory can be found in [1].

A graph invariant is a function from the set of graphs to the reals which is invariant

under graph automorphisms, which is known as topological index in chemical graph the-

ory. The Merrifield–Simmons index of a graph G, denoted by i(G) and introduced in [19],

is defined as the total number of independent vertex sets, including the empty vertex set

of G .

i(G) =

α(G)∑
i=0

i(G, k)

where i(G, k) with k ∈ {0, 1, 2, . . . , α(G)} denotes the number of k-independent sets in G

and α(G) is the independence number of G.

Let Fn be the nth Fibonacci number, that is, F0 = 0, F1 = 1 and Fn = Fn−1 +Fn−2 for

n ≥ 2. The Merrifield–Simmons index is also called Fibonacci number of a graph mainly

for the reason that i(Pn) = Fn+2. For some more results on the Merrifield–Simmons index,

see [4, 5, 28,33] and a survey [26] with references therein.

The oldest topological index in chemical graph theory is the Wiener index [27] (with

the multiplicative version of it, see [3, 13]). It is still attracting the interest of scientists,

cf. [6, 16–18,30,32] and is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) .

As a variant of Wiener index, the peripheral Wiener index introduced in [20] is just

PW (G) =
∑

{u,v}⊆P(G)

dG(u, v) for a connected graph G where P(G) denotes the periphery,

that is, the set of vertices with maximum eccentricity, of G.

Throughout this paper we use the notation [k] = {1, 2, . . . , k} for any positive integer

k. The join of two vertex–disjoint graphs G and H, denoted by G ⊕H, is a graph with

vertex set V (G)
⋃
V (H) and edge set {uv|u ∈ V (G), v ∈ V (H)}

⋃
E(G)

⋃
E(H). The

Cartesian product G�H of vertex–disjoint graphs G and H is the graph with V (G�H) =

V (G)× V (H) and (g, h) is adjacent to (g′, h′) if either gg′ ∈ E(G) and h = h′, or g = g′

and hh′ ∈ E(H). Some mathematical properties of the Cartesian products of two graphs

can be found in [22].
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Recently the comparative study between two invariants of graphs has attracted the

attention of some chemical and mathematical researchers. Furtula, et al. [9] reported

some comparison results between vertex–degree–based invariants of (molecular) graphs.

Hua, et al. [14, 15] compared the Merrifield–Simmons index with some distance–based

invariants of graphs. Some other results of this type can be seen in [29–31].

In this paper we continue the research in this direction by comparing the Merrifield–

Simmons index with the Wiener index of connected graphs. In the next section we list or

prove some preliminary results for the use in subsequent proofs. Results on the comparison

of the Merrifield–Simmons and Wiener indices for the sparse graphs and graphs with

diameter 2 are given in in Section 3. In Section 4 we construct some more graphs with

property i(G) > W (G) , by using the tool of Cartesian products of graphs. Moreover,

several related open problems are proposed in Section 5 to the comparison between i and

W .

2 Preliminaries

To obtain our main results, we first give some lemmas as necessary preliminaries.

Lemma 2.1. ( [26]) Let G be a graph. Then

(i) i(G) = i(G− v) + i(G−NG[v]) for v ∈ V (G);

(ii) i(G) =
t∏

k=1

i(Gk) if G1, G2, · · · , Gt are the components of graph G.

Denote by Ck(n
l1
1 , n

l2
2 , ..., n

lm
m ) the unicyclic graph obtained by attaching l1 paths of

length n1, l2 paths of length n2, ..., lm paths of length nk, respectively, to one vertices of

Ck, where n1 > n2 > · · · > nm. Below we characterize the extremal sparse graphs of order

n and the size m with respect to the Merrifield–Simmons index where m ∈ {n−1, n, n+1}.

Lemma 2.2. ( [4, 5, 23]) Let G be a connected graph of order n > 3 with m edges.

(i) If m = n− 1, then Fn+2 = i(Pn) ≤ i(G) ≤ i(Sn) = 2n−1 + 1 with left (resp. right )

equality holding if and only if G ∼= Pn (resp. G ∼= Sn);

(ii) If m = n, then Fn+1 + Fn−1 ≤ i(G) ≤ 3 · 2n−3 + 1 with left (resp. right ) equality

holding if and only if G ∼= C3(1
n−3) or G ∼= Cn (resp. G ∼= C3((n− 3)1));
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(iii) If m = n+ 1, then i(G) ≥ 5Fn−2 with equality holding if and only if G ∼= B∗n where

B∗n is a graph consisting of two triangles that are connected by a path of length n−5.

Proposition 2.3. Let Fn be nth Fibonacci number. Then Fn+2 >
(
n+1
3

)
for n ≥ 11.

Proof . We prove the result by induction on n. For the initial cases n ∈ {11, 12}, we

have Fn+2 >
(
n+1
3

)
. The result holds trivially. Next we assume that n ≥ 13 and the result

holds for all positive integers fewer than n. Then, by the induction, we have

Fn+2 = Fn+1 + Fn >

(
n

3

)
+

(
n− 1

3

)

=
(n− 1)(n− 2)(2n− 3)

6
>

(
n+ 1

3

)
.

Note that the last inequality holds since n2 − 8n + 6 > 0 when n ≥ 13. This completes

the proof of the result.

Lemma 2.4. ( [8,10,11,25,32]) Let G be a connected graph of order n > 3 with m edges.

(i) If m = n− 1, then (n− 1)2 ≤ W (G) ≤
(
n+1
3

)
with left (resp. right ) equality holding

if and only if G ∼= Sn (resp. G ∼= Pn);

(ii) If m = n, then n2 − 2n ≤ W (G) ≤ n3−7n+12
6

with left (resp. right ) equality holding

if and only if G ∼= C3(1
n−3) (resp. G ∼= C3((n− 3)1));

(iii) If m = n + 1, then W (G) ≤ n3−13n+30
6

with equality holding if and only if G ∼= Bn

where Bn is a graph obtained by inserting two edges between an isolated vertex with

two vertices of degrees 2 in C3((n− 2)1).

Combining Lemma 2.4 (i) with the fact that the removal of any edge will increase the

value of Wiener index of a connected graph, we arrive at the following result.

Lemma 2.5. ( [7]) For any connected graph G with n(G) ≥ 3, we have W (G) ≤
(
n+1
3

)
with equality holding if and only if G ∼= Pn.

Lemma 2.6. ( [28]) For any graph Gk with k ∈ [t], we have

i(G1 ⊕G2 ⊕ · · · ⊕Gt) =
t∑

k=1

i(Gk)− t+ 1 .
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3 Sparse graphs and graphs with diameter 2

In this section we focus on the comparison results between i and W for the sparse

graphs and the graphs with diameter 2. First we deal with the sparse graphs in the

following theorem.

Theorem 3.1. Let G be a connected graph of order n ≥ 11 with m edges. Then we have

i(G) > W (G) for m ∈ {n− 1, n, n+ 1}.

Proof . For m = n− 1, by Lemmas 2.4 (i), 2.2 (i) and Proposition 2.3, we have

i(G) ≥ i(Pn) = Fn+2 >

(
n+ 1

3

)
= W (Pn) ≥ W (G)

for any graph G of order n ≥ 11 with m edges. For any graph G of order n ≥ 11 with

m = n edges, by Lemmas 2.4 (ii), 2.2 (ii) and Proposition 2.3, we have

i(G) ≥ Fn+1 +Fn−1 >

(
n

3

)
+

(
n− 2

3

)
=
n3 − 6n2 + 14n− 12

3
>
n3 − 7n+ 12

6
≥ W (G).

For the case m = n+ 1 and n ≥ 11, based on Lemmas 2.4 (iii), 2.2 (iii) and Proposition

2.3, we have

i(G) ≥ 5Fn−2 > 5

(
n− 3

3

)
=

5(n3 − 12n2 + 47n− 60)

6
>
n3 − 13n+ 30

6
≥ W (G),

completing the proof.

From Theorem 3.1, the following result is obvious, which extends the result of trees [15]

into the cases with n− 1 ≤ m ≤ n+ 1 .

Corollary 3.2. Let G be a connected graph of order n ≥ 11 with m edges. Then we have

i(G) > PW (G) for m ∈ {n− 1, n, n+ 1}.

Clearly, we have W (Kn) =
(
n
2

)
> n + 1 = i(Kn) for any n ≥ 4. In the following we

consider the graphs with diameter at least 2. Denote by G2n the set of graphs of order

n ≥ 3 with diameter 2.

Lemma 3.3. ( [34]) Let G be a connected graph with diameter d and a connected com-

plement.

(i) If d > 3, then G has diameter d = 2;

(ii) If d = 3, then G has a spanning subgraph which is a double star.
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Lemma 3.4. ( [2]) Let G be a 2-self-centered graph of order n ≥ 5 and with m edges.

Then m ≥ 2n− 5.

Lemma 3.5. ( [30]) If G ∈ G2n has m edges, then W (G) = n(n− 1)−m.

Theorem 3.6. Let G be a connected graph of order n ≥ 8 with m ≤ n + 2 edges and a

connected complement. Then W (G) > i(G).

Proof . Since G is connected, we have n − 1 ≤ m ≤ n + 2. Note that there exists a

bijection between E(G) and the set of all 2-independent sets in G. Moreover, there is

at most a maximum clique K4 in G since m ≤ n + 2, which implies that i(G, 3) ≤ 4,

i(G, 4) ≤ 1 and i(G, k) = 0 for any k ≥ 5. Then

i(G) ≤ 1 + n+m+ 4 + 1 ≤ 2n+ 8 .

Note that G is connected with radius r ≥ 2. Let d be the diameter of G. Combining the

assumption m ≤ n+ 2 where n ≥ 8 with Lemma 3.4, we have d ≥ 3. If d = 3, by Lemma

3.3, we have

W (G) ≥
(
n

2

)
−m+ 2× 2 + 3 ≥

(
n

2

)
− (n+ 2) + 7 =

n(n− 3)

2
+ 5 .

Then W (G)− i(G) ≥ (n−8)(n+1)
2

+ 1 > 0. While d > 3, in view of Lemmas 3.3 and 3.5, we

have

W (G) =

(
n

2

)
+m ≥

(
n

2

)
+ n− 1 =

(n+ 2)(n− 1)

2
,

which implies that W (G) − i(G) ≥ n(n−3)−18
2

> 0 for n ≥ 8, completing the proof of the

theorem.

Denote by Kn1,n2,··· ,nt the complete t-partite graph whose partition sets are of size

n1, n2, · · · , nt, respectively, where n1 ≤ n2 ≤ · · · ≤ nt. If ni appears ki > 1 times

in Kn1,n2,··· ,nt , then we write as n
(ki)
i in it. The generalized cocktail party graph [29]

GCP (n, k) of order n is a graph obtained from Kn by deleting k independent edges with

k ≤ n
2
, that is, GCP (n, k) = K2(k),1(n−2k) . In particular, GCP (n, n

2
) is just the ordinary

cocktail party graph with GCP (n, n
2
) = K

2(
n
2 ) .

Lemma 3.7. Let G = Kn1,n2,··· ,nt be a complete t-partite graph of order n. Then we have

i(G)−W (G) = 1
2

t∑
i=1

[
2ki+1 − (ki − 1)2 − 1

]
− n2

2
+ 1.
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Proof . Note that G ∈ G2n with n =
t∑
i=1

ki. Then

m(G) =
1

2

t∑
i=1

ki(n− ki) =
1

2

(
n2 −

t∑
i=1

k2i

)
.

By Lemma 3.5, we have W (G) = n(n − 1) − 1
2

(
n2 −

t∑
i=1

k2i

)
. Combining the fact that

Kn1,n2,··· ,nt = Kn1⊕Kn2⊕· · ·⊕Kn2 with Lemma 2.6, we have i(G) =
t∑
i=1

2ki− t+ 1. Then

our result holds from some elementary calculations.

Theorem 3.8. Let G = Kn1,n2,··· ,nt be a complete t-partite graph of order n ≥ 8. If

nt ≤ 4, then W (G) > i(G).

Proof . Observe that 2x+1 ≤
2∑

k=0

(
x+1
k

)
+

x+1∑
k=x−1

(
x+1
k

)
= x2 + 3x+ 4 for any positive integer

x ≤ 4. Combining this fact with Lemma 3.7, we have

W (G)− i(G) =
n2

2
− 1 +

1

2

t∑
i=1

[
(ki − 1)2 + 1− 2ki+1

]
≥ n2

2
− 1− 1

2

t∑
i=1

(5ki + 2) =
n2 − 7n

2
+ n− t− 1 > 0,

completing the proof.

From Theorem 3.8, we get W (G) > i(G) for any graph G ∈ {GCP (n, k) : 1 ≤ k ≤ n
2
}.

The friendship graph FGn of odd order n ≥ 5 is a graph obtained from a star Sn by

inserting n−1
2

independent edges among all leaves of Sn. The fan graph of order n is

FAn = K1 ⊕ Pn−1 and the wheel graph of order n is Wn = K1 ⊕ Cn−1.

Based on Lemmas 2.1, 3.5 and Proposition 2.3, we have the following comparison

result for the graphs from G2n.

Proposition 3.9. i(G) > W (G) for any graph G ∈ {FAn,Wn : n ≥ 10}∪{FGn : n ≥ 9}.

For convenience, we set
(
n
m

)
= 0 if m > n. Next we provide a method for constructing

more graphs G ∈ G2n with W (G) > i(G).

Theorem 3.10. Let G0 ∈ G2n0
with W (G0) > i(G0) and G = Kx ⊕ G0. Then we have

W (G) > i(G).
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Proof . Let m(G0) = m0. Since G0 ∈ G2n0
, then, by Lemma 3.5, we have W (G0) =

n0(n0 − 1) − m0. By the structure of graph G, we have i(G) = i(G0) + x. Note that

G ∈ G2n0+x
with m(G) = m0 + xn0 +

(
x
2

)
. From Lemma 3.5, it follows that

W (G) = (n0 + x)(n0 + x− 1)−m(G)

= (n0 + x)(n0 + x− 1)− xn0 −m0 −
(
x

2

)
.

Then we have

W (G)−W (G0) = (n0 + x)(n0 + x− 1)− xn0 −m0 −
(
x

2

)
−[n0(n0 − 1)−m0]

= (n0 + x)(n0 + x− 1)− n0(n0 − 1)− xn0 −
(
x

2

)
= xn0 +

(
x

2

)
.

Therefore we have W (G)− i(G) >
(
x
2

)
+ x(n0 − 1) > 0.

4 Cartesian products

In this section we will present some relations between i and W in terms of Cartesian

products of graphs. Below we present the formula of Wiener index of Cartesian products

of two graphs.

Lemma 4.1. ( [12]) Let G and H be two connected graphs. Then

W (G�H) = n(H)2W (G) + n(G)2W (H).

Next, we firstly consider the Cartesian product G�P2 for any connected graph G.

Note that G�P2 is also called the prism [24] of graph G. From the structure of G�P2,

in the several results below we always assume that V (G�P2) = V (G) ∪ V (G′) where

G′ ∼= G and vv′ ∈ E(G�P2) where v ∈ V (G) and v′ ∈ V (G′) is the corresponding vertex

to v.

Lemma 4.2. Let G be a connected graph with n(G) = n ≥ 2. Then we have

i(G�P2) ≥ 2i(G) + n(n− 1)− 1

with equality holding if and only if G ∼= Kn.
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Proof . Note that any vertex v ∈ V (G) and any different vertex in V (G′) from corre-

sponding vertex to it form a 2-independent set in G�P2. Then i(G�P2, 2) = n(n− 1).

So the result holds with equality holding if and only if α(G) = 1, that is, G ∼= Kn,

completing the proof.

By Lemmas 4.1 and 4.2, we have W (Kn�P2) = 4W (Kn) + n2 = 3n2 − 2n and

i(Kn�P2) = 2(n+ 1)− 1 + n(n− 1) = n2 + n+ 1. Therefore W (Kn�P2) > i(Kn�P2).

We only need to consider the Cartesian products of non-complete graphs with P2. For

two positive integers n1 ≤ n2, we denote by BCn1,n2 a graph obtained by connecting an

isolated vertex with any vertices from complete graphs Kn1 and Kn2 , respectively, that

is, BCn1,n2
∼= K1⊕ (Kn1 ∪Kn2). Clearly, BCn1,n2 ∈ G2n1+n2+1. Note that BC1,1 = P3 with

i(BC1,1) = 5 > 4 = W (BC1,1). In the following we focus on the comparison between i

and W for the graphs BCn1,n2 and its Cartesian products with P2.

Proposition 4.3. Let G = BCn1,n2 defined as above. Then we have W (G) > i(G)

for n1 + n2 ≥ 3. Moreover, we have W (G�P2) > i(G�P2) if and only if n1 = 1 or

(n1, n2) ∈ {(2, 2), (2, 3)}.

Proof . Note that BCn1,n2 has diameter 2. In view of Lemma 3.5, we have

W (G) = (n1 + n2 + 1)(n1 + n2)−
(
n1

2

)
−
(
n2

2

)
− n1 − n2 =

(
n1 + n2 + 1

2

)
+ n1n2 .

By Lemma 2.1 (ii), we have i(G) = n1n2 + n1 + n2 + 2. It follows that

W (G)− i(G) =
(n1 + n2)

2

2
− n1 + n2

2
− 2 =

(
n1 + n2

2

)
− 2 > 0 .

Next we consider the graph G�P2. Note that α(G�P2) = 4. From the structure of

G�P2, we have i(G�P2, 2) = (n1 + n2 + 1)(n1 + n2), i(G�P2, 3) = 2n1n2(n1 + n2 − 1)

and i(G�P2, 4) = n1n2(n1 − 1)(n2 − 1). Therefore we have

i(G�P2) = 2i(G)− 1 + (n1 + n2 + 1)(n1 + n2) + 2n1n2(n1 + n2 − 1)

+n1n2(n1 − 1)(n2 − 1)

= (n1 + n2 + 3)(n1 + n2) + (n1n2 + 1)2 + n1n2(n1 + n2 − 1) + 2 .
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Let ∆ = W (G�P2)− i(G�P2). From Lemma 4.1, it follows that

∆ = 4W (G) + (n1 + n2 + 1)2 − (n1 + n2 + 3)(n1 + n2)

−(n1n2 + 1)2 − n1n2(n1 + n2 − 1)− 2

= (n1 + n2)(2n1 + 2n2 − n1n2 + 1)− n1n2(n1n2 − 3)− 2

= (n1 + n2)(2n1 + 2n2 + 1)− n1n2(n1 + 1)(n2 + 1) + 4n1n2 − 2 . (1)

From Equality (1) and some elementary calculations, our comparison result between

i(G�P2) and W (G�P2) follows immediately.

Theorem 4.4. Let G be a connected graph with α(G) ≥ n(G)
2
≥ 27. Then we have

i(G�P2) > W (G�P2).

Proof . Let n(G) = n and α(G) = α. Then α ≥ n
2

with n ≥ 54. Let S be a maximum

independent set in G, that is, |S| = α. Then i(G) ≥ n + 1 +
α∑
k=2

(
α
k

)
. From the structure

of G�P2, any k ≥ 2 vertices v1, v2, . . . , vk from S of G and any vertex in G′ not cor-

responding to any vertex in {v1, v2, . . . , vk} induce a (k + 1)-independent set in G�P2.

Then

i(G�P2) ≥ 2i(G)− 1 + n(n− 1) +
α∑
k=2

(
α

k

)
(n− k)

≥ 2

(
n+ 1 +

α∑
k=2

(
α

k

))
+ (n− α)

α∑
k=2

(
α

k

)
+ n(n− 1)− 1

= n2 + n+ 1 + (n− α + 2)(2α − α− 1) . (2)

Define a function f(x) = (n−x+ 2)(2x−x− 1) with 1 ≤ x ≤ n− 1. Take the differential

of f(x), we have f ′(x) = 2x[(n− x)ln2 + ln4− 1] + 2x− 1− n > 0 for any x ≥ n
2
, that is,

f(x) is strictly increasing for 1 ≤ x ≤ n− 1. Note that

2α − α− 1 =
α∑
k=2

(
α

k

)
>

(
α

2

)
+

(
α

3

)
+

(
α

α− 2

)
+

(
α

α− 1

)
=
α(α + 1)(α + 2)

6
.

Combining Inequality (2), Lemma 4.1 with the assumption α ≥ n
2
, we have

i(G�P2)−W (G�P2) > n2 + n+ 1 +
n+ 4

2

n(n+ 2)(n+ 4)

48
− n2 − 4W (G)

≥ n+ 1 +
n(n+ 2)(n+ 4)2

96
− 2n(n2 − 1)

3

>
(n+ 2)(n+ 4)2 + 96− 64(n2 − 1)

96

=
n2(n− 54) + 32n+ 192

96
> 0

-156-



for any n ≥ 54. This completes the proof of the theorem.

Let β(G) be the matching number of a graph G. Note that [1] α(G) + β(G) = n

for any connected bipartite graph G of order n. Since β(G) ≤ bn
2
c for any connected

bipartite graph G of order n ≥ 2, we have α(G) ≥ dn
2
e. From Theorem 4.4, we deduce

the following result.

Corollary 4.5. Let G be a connected bipartite graph of order n ≥ 54. Then we have

i(G�P2) > W (G�P2).

Below we prove a stronger result on the comparison result between i and W for the

Cartesian products of graphs with stars Sn.

Theorem 4.6. Let G be a connected graph. Then i(G�Sn) > W (G�Sn) for any integer

n ≥ 6.

Proof . Note that i(G) ≥ n(G) + 1. Let V (Sn) = {v1, v2, . . . , vn} with v1 as its center.

From the structure of G�Sn, V (G�Sn) can be partitioned as V (G1)∪V (G2)∪· · ·∪V (Gn)

with V (Gi) = {vi} × V (G) for i ∈ [n]. Then the set of vertices from k distinct graphs

from
n⋃
p=2

Gp is just a k-independent set in G�Sn for k ∈ [n] \ {1}. Thus we have

i(G�Sn) ≥ ni(G)− (n− 1) + (n− 1)n(G)[n(G)− 1] +

(
n− 1

2

)
n(G)2

+

(
n− 1

3

)
n(G)3 +

3∑
k=0

(
n− 1

n− 1− k

)
n(G)n−1−k

>

[(
n

2

)
+

(
n− 1

n− 4

)]
n(G)2 +

(
n− 1

3

)
n(G)3 +

2∑
k=0

(
n− 1

n− 1− k

)
n(G)n−1−k

>
(n− 1)(n2 − 2n+ 6)

6
n(G)2 +

[(
n

3

)
+ n

]
n(G)3 ,

for any n ≥ 6. By Lemmas 2.5, 4.1, we have

i(G�Sn)−W (G�Sn) >
(n− 1)(n2 − 2n+ 6)

6
n(G)2 +

n(n2 − 3n+ 8)

6
n(G)3

− (n− 1)2n(G)2 − n2W (G)

≥ (n− 1)(n− 2)(n− 6)

6
n(G)2 +

n(n2 − 3n+ 8)

6
n(G)3

− n2

(
n(G) + 1

3

)
>
n(n2 − 4n+ 8)

6
n(G)3 > 0 ,

completing the proof.
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5 Concluding remarks

In this paper we report some relations between i(G) and W (G) for connected graphs

G, including sparse graphs of order n with m (n − 1 ≤ m ≤ n + 1) edges and their

complements, as well as for some graphs with diameter 2. Moreover, some relations

between these two invariants are established in terms of Cartesian products of graphs,

especially G�P2 and G�Sn.

By some elementary calculations, we get i(S4) = W (S4) = 9. But, except S4, do there

exist other graphs with i(G) = W (G)? Furthermore, determining all connected graphs

with i(G) = W (G) seems an unknown but challenging problem to us.

In Section 3, we provide some sufficient conditions of W (G) > i(G) (resp. i(G) >

WG)) for the graphs G with diameter 2. Here we propose the following problem for the

graphs with diameter 2.

Problem 5.1. How to characterize all the graphs G with diameter 2 satisfying different

comparison results between i(G) and W (G)?

Recall that i(BC1,1) = 5 > 4 = W (BC1,1) with i(P2) > W (P2). But, by Proposition

4.3, we have W (BC1,1�P2) > i(BC1,1�P2). Moreover, although from Proposition 4.3

W (BCn1,n2) > i(BCn1,n2) holds for any n1, n2 with n1 + n2 ≥ 3, we have

W (BCn1,n2 �P2)− i(BCn1,n2 �P2) =

{
5, (n1, n2) = (2, 3);

−12, (n1, n2) = (2, 4).

Based on the above fact, we would like to pose the following problem.

Problem 5.2. How to characterize the Cartesian products G of graphs G�H and H with

hereditary comparison property with respect to i and W , that is, i(G�H) ≷ W (G�H)

for graph G and H with i(G) ≷ W (H) and i(H) ≷ W (H)?

From Theorem 3.1, we find that i(G) > W (G) for some sparse connected graphs G

of order n ≥ 11 with m edges when n − 1 ≤ m ≤ n + 1. Now we would like to end this

paper with the following relevant problem.

Problem 5.3. Can we find a constant c(n) such that i(G) > W (G) for any connected

graphs G with n(G) = n and m edges where m ≤ c(n)?
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