Relations between Merrifield-Simmons and Wiener Indices

Kexiang Xu, Menglu Wang, Jing Tian
College of Science, Nanjing University of Aeronautics ${ }^{8}$ Astronautics, Nanjing, Jiangsu 210016, P. R. China
kexxu1221@126.com, 503955867@qq.com, jingtian526@126.com

(Received on May 26, 2020)

Abstract

The Merrifield-Simmons index $i(G)$ of a graph G is defined as the total number of the independent vertex sets (including the empty vertex set) in G and the Wiener index $W(G)$ is the sum of the distances in all unordered pairs of vertices of G. Motivated by the recent work [H. Hua, M. Wang, On the Merrifield-Simmons index and some Wiener-type indices, MATCH Commun. Math. Comput. Chem. 85 (2021) in press], we characterize some relations between $i(G)$ and $W(G)$ for connected graphs. It is shown that $i(G)>W(G)$ for any graph G of order $n \geq 11$ with m edges where $n-1 \leq m \leq n+1$. Moreover, some relations between $i(G)$ and $W(G)$ are obtained for graphs with diameter 2 and Cartesian products of graphs. In particular, we prove that $i\left(G \square P_{2}\right)>W\left(G \square P_{2}\right)$ for any connected bipartite graph G of order at least 54 and $i\left(G \square S_{n}\right)>W\left(G \square S_{n}\right)$ for any connected graph G and star S_{n} with $n \geq 6$.

1 Introduction

All graphs considered in this paper are finite, undirected and simple. If $G=(V(G), E(G))$ is a graph, we will use $n(G)=|V(G)|$ for its order and $m(G)=|E(G)|$ for its size. The degree $\operatorname{deg}_{G}(v)$ of $v \in V(G)$ is the number of vertices in G adjacent to v. We denote by $N_{G}(v)$ the open neighborhood of vertex v in G. For two vertices $u, v \in V(G)$, we use $d_{G}(u, v)$ to denote the distance between u and v in the graph G. The eccentricity $\varepsilon_{G}(v)$ of a vertex $v \in V(G)$ is the maximum distance among all distances from the vertex v to any
other vertex of G. If $\varepsilon_{G}(v)=k$ for any vertex $v \in V(G)$, then G is k-self-centered. The complement of G is denoted with \bar{G}. We denote by S_{n}, P_{n} and K_{n} the star, the path and the complete graph on n vertices, respectively, throughout this paper. Other undefined notations and terminology on the graph theory can be found in [1].

A graph invariant is a function from the set of graphs to the reals which is invariant under graph automorphisms, which is known as topological index in chemical graph theory. The Merrifield-Simmons index of a graph G, denoted by $i(G)$ and introduced in [19], is defined as the total number of independent vertex sets, including the empty vertex set of G.

$$
i(G)=\sum_{i=0}^{\alpha(G)} i(G, k)
$$

where $i(G, k)$ with $k \in\{0,1,2, \ldots, \alpha(G)\}$ denotes the number of k-independent sets in G and $\alpha(G)$ is the independence number of G.

Let F_{n} be the nth Fibonacci number, that is, $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. The Merrifield-Simmons index is also called Fibonacci number of a graph mainly for the reason that $i\left(P_{n}\right)=F_{n+2}$. For some more results on the Merrifield-Simmons index, see $[4,5,28,33]$ and a survey [26] with references therein.

The oldest topological index in chemical graph theory is the Wiener index [27] (with the multiplicative version of it, see $[3,13])$. It is still attracting the interest of scientists, cf. $[6,16-18,30,32]$ and is defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v) .
$$

As a variant of Wiener index, the peripheral Wiener index introduced in [20] is just $P W(G)=\sum_{\{u, v\} \subseteq \mathcal{P}(G)} d_{G}(u, v)$ for a connected graph G where $\mathcal{P}(G)$ denotes the periphery, that is, the set of vertices with maximum eccentricity, of G.

Throughout this paper we use the notation $[k]=\{1,2, \ldots, k\}$ for any positive integer k. The join of two vertex-disjoint graphs G and H, denoted by $G \oplus H$, is a graph with vertex set $V(G) \bigcup V(H)$ and edge set $\{u v \mid u \in V(G), v \in V(H)\} \bigcup E(G) \bigcup E(H)$. The Cartesian product $G \square H$ of vertex-disjoint graphs G and H is the graph with $V(G \square H)=$ $V(G) \times V(H)$ and (g, h) is adjacent to $\left(g^{\prime}, h^{\prime}\right)$ if either $g g^{\prime} \in E(G)$ and $h=h^{\prime}$, or $g=g^{\prime}$ and $h h^{\prime} \in E(H)$. Some mathematical properties of the Cartesian products of two graphs can be found in [22].

Recently the comparative study between two invariants of graphs has attracted the attention of some chemical and mathematical researchers. Furtula, et al. [9] reported some comparison results between vertex-degree-based invariants of (molecular) graphs. Hua, et al. $[14,15]$ compared the Merrifield-Simmons index with some distance-based invariants of graphs. Some other results of this type can be seen in [29-31].

In this paper we continue the research in this direction by comparing the MerrifieldSimmons index with the Wiener index of connected graphs. In the next section we list or prove some preliminary results for the use in subsequent proofs. Results on the comparison of the Merrifield-Simmons and Wiener indices for the sparse graphs and graphs with diameter 2 are given in in Section 3. In Section 4 we construct some more graphs with property $i(G)>W(G)$, by using the tool of Cartesian products of graphs. Moreover, several related open problems are proposed in Section 5 to the comparison between i and W.

2 Preliminaries

To obtain our main results, we first give some lemmas as necessary preliminaries.
Lemma 2.1. ([26]) Let G be a graph. Then
(i) $i(G)=i(G-v)+i\left(G-N_{G}[v]\right)$ for $v \in V(G)$;
(ii) $i(G)=\prod_{k=1}^{t} i\left(G_{k}\right)$ if $G_{1}, G_{2}, \cdots, G_{t}$ are the components of graph G.

Denote by $C_{k}\left(n_{1}^{l_{1}}, n_{2}^{l_{2}}, \ldots, n_{m}^{l_{m}}\right)$ the unicyclic graph obtained by attaching l_{1} paths of length n_{1}, l_{2} paths of length n_{2}, \ldots, l_{m} paths of length n_{k}, respectively, to one vertices of C_{k}, where $n_{1}>n_{2}>\cdots>n_{m}$. Below we characterize the extremal sparse graphs of order n and the size m with respect to the Merrifield-Simmons index where $m \in\{n-1, n, n+1\}$.

Lemma 2.2. ($[4,5,23])$ Let G be a connected graph of order $n>3$ with m edges.
(i) If $m=n-1$, then $F_{n+2}=i\left(P_{n}\right) \leq i(G) \leq i\left(S_{n}\right)=2^{n-1}+1$ with left (resp. right) equality holding if and only if $G \cong P_{n}\left(\right.$ resp. $\left.G \cong S_{n}\right)$;
(ii) If $m=n$, then $F_{n+1}+F_{n-1} \leq i(G) \leq 3 \cdot 2^{n-3}+1$ with left (resp. right) equality holding if and only if $G \cong C_{3}\left(1^{n-3}\right)$ or $G \cong C_{n}\left(\right.$ resp. $\left.G \cong C_{3}\left((n-3)^{1}\right)\right)$;
(iii) If $m=n+1$, then $i(G) \geq 5 F_{n-2}$ with equality holding if and only if $G \cong B_{n}^{*}$ where B_{n}^{*} is a graph consisting of two triangles that are connected by a path of length $n-5$.

Proposition 2.3. Let F_{n} be nth Fibonacci number. Then $F_{n+2}>\binom{n+1}{3}$ for $n \geq 11$.
Proof. We prove the result by induction on n. For the initial cases $n \in\{11,12\}$, we have $F_{n+2}>\binom{n+1}{3}$. The result holds trivially. Next we assume that $n \geq 13$ and the result holds for all positive integers fewer than n. Then, by the induction, we have

$$
\begin{aligned}
F_{n+2} & =F_{n+1}+F_{n}>\binom{n}{3}+\binom{n-1}{3} \\
& =\frac{(n-1)(n-2)(2 n-3)}{6}>\binom{n+1}{3} .
\end{aligned}
$$

Note that the last inequality holds since $n^{2}-8 n+6>0$ when $n \geq 13$. This completes the proof of the result.

Lemma 2.4. ($[8,10,11,25,32])$ Let G be a connected graph of order $n>3$ with m edges.
(i) If $m=n-1$, then $(n-1)^{2} \leq W(G) \leq\binom{ n+1}{3}$ with left (resp. right) equality holding if and only if $G \cong S_{n}$ (resp. $G \cong P_{n}$);
(ii) If $m=n$, then $n^{2}-2 n \leq W(G) \leq \frac{n^{3}-7 n+12}{6}$ with left (resp. right) equality holding if and only if $G \cong C_{3}\left(1^{n-3}\right)$ (resp. $\left.G \cong C_{3}\left((n-3)^{1}\right)\right)$;
(iii) If $m=n+1$, then $W(G) \leq \frac{n^{3}-13 n+30}{6}$ with equality holding if and only if $G \cong B_{n}$ where B_{n} is a graph obtained by inserting two edges between an isolated vertex with two vertices of degrees 2 in $C_{3}\left((n-2)^{1}\right)$.

Combining Lemma 2.4 (i) with the fact that the removal of any edge will increase the value of Wiener index of a connected graph, we arrive at the following result.

Lemma 2.5. ([7]) For any connected graph G with $n(G) \geq 3$, we have $W(G) \leq\binom{ n+1}{3}$ with equality holding if and only if $G \cong P_{n}$.

Lemma 2.6. ([28]) For any graph G_{k} with $k \in[t]$, we have

$$
i\left(G_{1} \oplus G_{2} \oplus \cdots \oplus G_{t}\right)=\sum_{k=1}^{t} i\left(G_{k}\right)-t+1
$$

3 Sparse graphs and graphs with diameter 2

In this section we focus on the comparison results between i and W for the sparse graphs and the graphs with diameter 2. First we deal with the sparse graphs in the following theorem.

Theorem 3.1. Let G be a connected graph of order $n \geq 11$ with m edges. Then we have $i(G)>W(G)$ for $m \in\{n-1, n, n+1\}$.

Proof. For $m=n-1$, by Lemmas $2.4(i), 2.2(i)$ and Proposition 2.3, we have

$$
i(G) \geq i\left(P_{n}\right)=F_{n+2}>\binom{n+1}{3}=W\left(P_{n}\right) \geq W(G)
$$

for any graph G of order $n \geq 11$ with m edges. For any graph G of order $n \geq 11$ with $m=n$ edges, by Lemmas 2.4 (ii), 2.2 (ii) and Proposition 2.3, we have
$i(G) \geq F_{n+1}+F_{n-1}>\binom{n}{3}+\binom{n-2}{3}=\frac{n^{3}-6 n^{2}+14 n-12}{3}>\frac{n^{3}-7 n+12}{6} \geq W(G)$.
For the case $m=n+1$ and $n \geq 11$, based on Lemmas 2.4 (iii), 2.2 (iii) and Proposition 2.3, we have

$$
i(G) \geq 5 F_{n-2}>5\binom{n-3}{3}=\frac{5\left(n^{3}-12 n^{2}+47 n-60\right)}{6}>\frac{n^{3}-13 n+30}{6} \geq W(G)
$$

completing the proof.
From Theorem 3.1, the following result is obvious, which extends the result of trees [15] into the cases with $n-1 \leq m \leq n+1$.

Corollary 3.2. Let G be a connected graph of order $n \geq 11$ with m edges. Then we have $i(G)>P W(G)$ for $m \in\{n-1, n, n+1\}$.

Clearly, we have $W\left(K_{n}\right)=\binom{n}{2}>n+1=i\left(K_{n}\right)$ for any $n \geq 4$. In the following we consider the graphs with diameter at least 2 . Denote by \mathcal{G}_{n}^{2} the set of graphs of order $n \geq 3$ with diameter 2 .

Lemma 3.3. ([34]) Let G be a connected graph with diameter d and a connected complement.
(i) If $d>3$, then \bar{G} has diameter $\bar{d}=2$;
(ii) If $d=3$, then \bar{G} has a spanning subgraph which is a double star.

Lemma 3.4. ([2]) Let G be a 2-self-centered graph of order $n \geq 5$ and with m edges. Then $m \geq 2 n-5$.

Lemma 3.5. ([30]) If $G \in \mathcal{G}_{n}^{2}$ has m edges, then $W(G)=n(n-1)-m$.
Theorem 3.6. Let G be a connected graph of order $n \geq 8$ with $m \leq n+2$ edges and a connected complement. Then $W(\bar{G})>i(\bar{G})$.

Proof. Since G is connected, we have $n-1 \leq m \leq n+2$. Note that there exists a bijection between $E(G)$ and the set of all 2-independent sets in \bar{G}. Moreover, there is at most a maximum clique K_{4} in G since $m \leq n+2$, which implies that $i(\bar{G}, 3) \leq 4$, $i(\bar{G}, 4) \leq 1$ and $i(\bar{G}, k)=0$ for any $k \geq 5$. Then

$$
i(\bar{G}) \leq 1+n+m+4+1 \leq 2 n+8
$$

Note that \bar{G} is connected with radius $r \geq 2$. Let d be the diameter of G. Combining the assumption $m \leq n+2$ where $n \geq 8$ with Lemma 3.4 , we have $d \geq 3$. If $d=3$, by Lemma 3.3, we have

$$
W(\bar{G}) \geq\binom{ n}{2}-m+2 \times 2+3 \geq\binom{ n}{2}-(n+2)+7=\frac{n(n-3)}{2}+5 .
$$

Then $W(\bar{G})-i(\bar{G}) \geq \frac{(n-8)(n+1)}{2}+1>0$. While $d>3$, in view of Lemmas 3.3 and 3.5 , we have

$$
W(\bar{G})=\binom{n}{2}+m \geq\binom{ n}{2}+n-1=\frac{(n+2)(n-1)}{2},
$$

which implies that $W(\bar{G})-i(\bar{G}) \geq \frac{n(n-3)-18}{2}>0$ for $n \geq 8$, completing the proof of the theorem.

Denote by $K_{n_{1}, n_{2}, \cdots, n_{t}}$ the complete t-partite graph whose partition sets are of size $n_{1}, n_{2}, \cdots, n_{t}$, respectively, where $n_{1} \leq n_{2} \leq \cdots \leq n_{t}$. If n_{i} appears $k_{i}>1$ times in $K_{n_{1}, n_{2}, \cdots, n_{t}}$, then we write as $n_{i}^{\left(k_{i}\right)}$ in it. The generalized cocktail party graph [29] $G C P(n, k)$ of order n is a graph obtained from K_{n} by deleting k independent edges with $k \leq \frac{n}{2}$, that is, $G C P(n, k)=K_{2^{(k)}, 1^{(n-2 k)}}$. In particular, $G C P\left(n, \frac{n}{2}\right)$ is just the ordinary cocktail party graph with $G C P\left(n, \frac{n}{2}\right)=K_{2\left(\frac{n}{2}\right)}$.

Lemma 3.7. Let $G=K_{n_{1}, n_{2}, \cdots, n_{t}}$ be a complete t-partite graph of order n. Then we have $i(G)-W(G)=\frac{1}{2} \sum_{i=1}^{t}\left[2^{k_{i}+1}-\left(k_{i}-1\right)^{2}-1\right]-\frac{n^{2}}{2}+1$.

Proof. Note that $G \in \mathcal{G}_{n}^{2}$ with $n=\sum_{i=1}^{t} k_{i}$. Then

$$
m(G)=\frac{1}{2} \sum_{i=1}^{t} k_{i}\left(n-k_{i}\right)=\frac{1}{2}\left(n^{2}-\sum_{i=1}^{t} k_{i}^{2}\right) .
$$

By Lemma 3.5, we have $W(G)=n(n-1)-\frac{1}{2}\left(n^{2}-\sum_{i=1}^{t} k_{i}^{2}\right)$. Combining the fact that $K_{n_{1}, n_{2}, \cdots, n_{t}}=\overline{K_{n_{1}}} \oplus \overline{K_{n_{2}}} \oplus \cdots \oplus \overline{K_{n_{2}}}$ with Lemma 2.6, we have $i(G)=\sum_{i=1}^{t} 2^{k_{i}}-t+1$. Then our result holds from some elementary calculations.

Theorem 3.8. Let $G=K_{n_{1}, n_{2}, \cdots, n_{t}}$ be a complete t-partite graph of order $n \geq 8$. If $n_{t} \leq 4$, then $W(G)>i(G)$.
Proof. Observe that $2^{x+1} \leq \sum_{k=0}^{2}\binom{x+1}{k}+\sum_{k=x-1}^{x+1}\binom{x+1}{k}=x^{2}+3 x+4$ for any positive integer $x \leq 4$. Combining this fact with Lemma 3.7, we have

$$
\begin{aligned}
W(G)-i(G) & =\frac{n^{2}}{2}-1+\frac{1}{2} \sum_{i=1}^{t}\left[\left(k_{i}-1\right)^{2}+1-2^{k_{i}+1}\right] \\
& \geq \frac{n^{2}}{2}-1-\frac{1}{2} \sum_{i=1}^{t}\left(5 k_{i}+2\right)=\frac{n^{2}-7 n}{2}+n-t-1>0
\end{aligned}
$$

completing the proof.
From Theorem 3.8, we get $W(G)>i(G)$ for any graph $G \in\left\{G C P(n, k): 1 \leq k \leq \frac{n}{2}\right\}$. The friendship graph $F G_{n}$ of odd order $n \geq 5$ is a graph obtained from a star S_{n} by inserting $\frac{n-1}{2}$ independent edges among all leaves of S_{n}. The fan graph of order n is $F A_{n}=K_{1} \oplus P_{n-1}$ and the wheel graph of order n is $W_{n}=K_{1} \oplus C_{n-1}$.

Based on Lemmas 2.1, 3.5 and Proposition 2.3, we have the following comparison result for the graphs from \mathcal{G}_{n}^{2}.

Proposition 3.9. $i(G)>W(G)$ for any graph $G \in\left\{F A_{n}, W_{n}: n \geq 10\right\} \cup\left\{F G_{n}: n \geq 9\right\}$.
For convenience, we set $\binom{n}{m}=0$ if $m>n$. Next we provide a method for constructing more graphs $G \in \mathcal{G}_{n}^{2}$ with $W(G)>i(G)$.

Theorem 3.10. Let $G_{0} \in \mathcal{G}_{n_{0}}^{2}$ with $W\left(G_{0}\right)>i\left(G_{0}\right)$ and $G=K_{x} \oplus G_{0}$. Then we have $W(G)>i(G)$.

Proof. Let $m\left(G_{0}\right)=m_{0}$. Since $G_{0} \in \mathcal{G}_{n_{0}}^{2}$, then, by Lemma 3.5, we have $W\left(G_{0}\right)=$ $n_{0}\left(n_{0}-1\right)-m_{0}$. By the structure of graph G, we have $i(G)=i\left(G_{0}\right)+x$. Note that $G \in \mathcal{G}_{n_{0}+x}^{2}$ with $m(G)=m_{0}+x n_{0}+\binom{x}{2}$. From Lemma 3.5, it follows that

$$
\begin{aligned}
W(G) & =\left(n_{0}+x\right)\left(n_{0}+x-1\right)-m(G) \\
& =\left(n_{0}+x\right)\left(n_{0}+x-1\right)-x n_{0}-m_{0}-\binom{x}{2} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
W(G)-W\left(G_{0}\right)= & \left(n_{0}+x\right)\left(n_{0}+x-1\right)-x n_{0}-m_{0}-\binom{x}{2} \\
& -\left[n_{0}\left(n_{0}-1\right)-m_{0}\right] \\
= & \left(n_{0}+x\right)\left(n_{0}+x-1\right)-n_{0}\left(n_{0}-1\right)-x n_{0}-\binom{x}{2} \\
= & x n_{0}+\binom{x}{2} .
\end{aligned}
$$

Therefore we have $W(G)-i(G)>\binom{x}{2}+x\left(n_{0}-1\right)>0$.

4 Cartesian products

In this section we will present some relations between i and W in terms of Cartesian products of graphs. Below we present the formula of Wiener index of Cartesian products of two graphs.

Lemma 4.1. ([12]) Let G and H be two connected graphs. Then

$$
W(G \square H)=n(H)^{2} W(G)+n(G)^{2} W(H)
$$

Next, we firstly consider the Cartesian product $G \square P_{2}$ for any connected graph G. Note that $G \square P_{2}$ is also called the prism [24] of graph G. From the structure of $G \square P_{2}$, in the several results below we always assume that $V\left(G \square P_{2}\right)=V(G) \cup V\left(G^{\prime}\right)$ where $G^{\prime} \cong G$ and $v v^{\prime} \in E\left(G \square P_{2}\right)$ where $v \in V(G)$ and $v^{\prime} \in V\left(G^{\prime}\right)$ is the corresponding vertex to v.

Lemma 4.2. Let G be a connected graph with $n(G)=n \geq 2$. Then we have

$$
i\left(G \square P_{2}\right) \geq 2 i(G)+n(n-1)-1
$$

with equality holding if and only if $G \cong K_{n}$.

Proof. Note that any vertex $v \in V(G)$ and any different vertex in $V\left(G^{\prime}\right)$ from corresponding vertex to it form a 2-independent set in $G \square P_{2}$. Then $i\left(G \square P_{2}, 2\right)=n(n-1)$. So the result holds with equality holding if and only if $\alpha(G)=1$, that is, $G \cong K_{n}$, completing the proof.

By Lemmas 4.1 and 4.2 , we have $W\left(K_{n} \square P_{2}\right)=4 W\left(K_{n}\right)+n^{2}=3 n^{2}-2 n$ and $i\left(K_{n} \square P_{2}\right)=2(n+1)-1+n(n-1)=n^{2}+n+1$. Therefore $W\left(K_{n} \square P_{2}\right)>i\left(K_{n} \square P_{2}\right)$. We only need to consider the Cartesian products of non-complete graphs with P_{2}. For two positive integers $n_{1} \leq n_{2}$, we denote by $B C_{n_{1}, n_{2}}$ a graph obtained by connecting an isolated vertex with any vertices from complete graphs $K_{n_{1}}$ and $K_{n_{2}}$, respectively, that is, $B C_{n_{1}, n_{2}} \cong K_{1} \oplus\left(K_{n_{1}} \cup K_{n_{2}}\right)$. Clearly, $B C_{n_{1}, n_{2}} \in \mathcal{G}_{n_{1}+n_{2}+1}^{2}$. Note that $B C_{1,1}=P_{3}$ with $i\left(B C_{1,1}\right)=5>4=W\left(B C_{1,1}\right)$. In the following we focus on the comparison between i and W for the graphs $B C_{n_{1}, n_{2}}$ and its Cartesian products with P_{2}.

Proposition 4.3. Let $G=B C_{n_{1}, n_{2}}$ defined as above. Then we have $W(G)>i(G)$ for $n_{1}+n_{2} \geq 3$. Moreover, we have $W\left(G \square P_{2}\right)>i\left(G \square P_{2}\right)$ if and only if $n_{1}=1$ or $\left(n_{1}, n_{2}\right) \in\{(2,2),(2,3)\}$.

Proof. Note that $B C_{n_{1}, n_{2}}$ has diameter 2. In view of Lemma 3.5, we have

$$
W(G)=\left(n_{1}+n_{2}+1\right)\left(n_{1}+n_{2}\right)-\binom{n_{1}}{2}-\binom{n_{2}}{2}-n_{1}-n_{2}=\binom{n_{1}+n_{2}+1}{2}+n_{1} n_{2} .
$$

By Lemma 2.1 (ii), we have $i(G)=n_{1} n_{2}+n_{1}+n_{2}+2$. It follows that

$$
W(G)-i(G)=\frac{\left(n_{1}+n_{2}\right)^{2}}{2}-\frac{n_{1}+n_{2}}{2}-2=\binom{n_{1}+n_{2}}{2}-2>0 .
$$

Next we consider the graph $G \square P_{2}$. Note that $\alpha\left(G \square P_{2}\right)=4$. From the structure of $G \square P_{2}$, we have $i\left(G \square P_{2}, 2\right)=\left(n_{1}+n_{2}+1\right)\left(n_{1}+n_{2}\right), i\left(G \square P_{2}, 3\right)=2 n_{1} n_{2}\left(n_{1}+n_{2}-1\right)$ and $i\left(G \square P_{2}, 4\right)=n_{1} n_{2}\left(n_{1}-1\right)\left(n_{2}-1\right)$. Therefore we have

$$
\begin{aligned}
i\left(G \square P_{2}\right)= & 2 i(G)-1+\left(n_{1}+n_{2}+1\right)\left(n_{1}+n_{2}\right)+2 n_{1} n_{2}\left(n_{1}+n_{2}-1\right) \\
& +n_{1} n_{2}\left(n_{1}-1\right)\left(n_{2}-1\right) \\
= & \left(n_{1}+n_{2}+3\right)\left(n_{1}+n_{2}\right)+\left(n_{1} n_{2}+1\right)^{2}+n_{1} n_{2}\left(n_{1}+n_{2}-1\right)+2
\end{aligned}
$$

Let $\Delta=W\left(G \square P_{2}\right)-i\left(G \square P_{2}\right)$. From Lemma 4.1, it follows that

$$
\begin{align*}
\Delta= & 4 W(G)+\left(n_{1}+n_{2}+1\right)^{2}-\left(n_{1}+n_{2}+3\right)\left(n_{1}+n_{2}\right) \\
& -\left(n_{1} n_{2}+1\right)^{2}-n_{1} n_{2}\left(n_{1}+n_{2}-1\right)-2 \\
= & \left(n_{1}+n_{2}\right)\left(2 n_{1}+2 n_{2}-n_{1} n_{2}+1\right)-n_{1} n_{2}\left(n_{1} n_{2}-3\right)-2 \\
= & \left(n_{1}+n_{2}\right)\left(2 n_{1}+2 n_{2}+1\right)-n_{1} n_{2}\left(n_{1}+1\right)\left(n_{2}+1\right)+4 n_{1} n_{2}-2 . \tag{1}
\end{align*}
$$

From Equality (1) and some elementary calculations, our comparison result between $i\left(G \square P_{2}\right)$ and $W\left(G \square P_{2}\right)$ follows immediately.

Theorem 4.4. Let G be a connected graph with $\alpha(G) \geq \frac{n(G)}{2} \geq 27$. Then we have $i\left(G \square P_{2}\right)>W\left(G \square P_{2}\right)$.
Proof. Let $n(G)=n$ and $\alpha(G)=\alpha$. Then $\alpha \geq \frac{n}{2}$ with $n \geq 54$. Let S be a maximum independent set in G, that is, $|S|=\alpha$. Then $i(G) \geq n+1+\sum_{k=2}^{\alpha}\binom{\alpha}{k}$. From the structure of $G \square P_{2}$, any $k \geq 2$ vertices $v_{1}, v_{2}, \ldots, v_{k}$ from S of G and any vertex in G^{\prime} not corresponding to any vertex in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ induce a $(k+1)$-independent set in $G \square P_{2}$. Then

$$
\begin{align*}
i\left(G \square P_{2}\right) & \geq 2 i(G)-1+n(n-1)+\sum_{k=2}^{\alpha}\binom{\alpha}{k}(n-k) \\
& \geq 2\left(n+1+\sum_{k=2}^{\alpha}\binom{\alpha}{k}\right)+(n-\alpha) \sum_{k=2}^{\alpha}\binom{\alpha}{k}+n(n-1)-1 \\
& =n^{2}+n+1+(n-\alpha+2)\left(2^{\alpha}-\alpha-1\right) \tag{2}
\end{align*}
$$

Define a function $f(x)=(n-x+2)\left(2^{x}-x-1\right)$ with $1 \leq x \leq n-1$. Take the differential of $f(x)$, we have $f^{\prime}(x)=2^{x}[(n-x) \ln 2+\ln 4-1]+2 x-1-n>0$ for any $x \geq \frac{n}{2}$, that is, $f(x)$ is strictly increasing for $1 \leq x \leq n-1$. Note that

$$
2^{\alpha}-\alpha-1=\sum_{k=2}^{\alpha}\binom{\alpha}{k}>\binom{\alpha}{2}+\binom{\alpha}{3}+\binom{\alpha}{\alpha-2}+\binom{\alpha}{\alpha-1}=\frac{\alpha(\alpha+1)(\alpha+2)}{6} .
$$

Combining Inequality (2), Lemma 4.1 with the assumption $\alpha \geq \frac{n}{2}$, we have

$$
\begin{aligned}
i\left(G \square P_{2}\right)-W\left(G \square P_{2}\right) & >n^{2}+n+1+\frac{n+4}{2} \frac{n(n+2)(n+4)}{48}-n^{2}-4 W(G) \\
& \geq n+1+\frac{n(n+2)(n+4)^{2}}{96}-\frac{2 n\left(n^{2}-1\right)}{3} \\
& >\frac{(n+2)(n+4)^{2}+96-64\left(n^{2}-1\right)}{96} \\
& =\frac{n^{2}(n-54)+32 n+192}{96}>0
\end{aligned}
$$

for any $n \geq 54$. This completes the proof of the theorem.
Let $\beta(G)$ be the matching number of a graph G. Note that $[1] \alpha(G)+\beta(G)=n$ for any connected bipartite graph G of order n. Since $\beta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ for any connected bipartite graph G of order $n \geq 2$, we have $\alpha(G) \geq\left\lceil\frac{n}{2}\right\rceil$. From Theorem 4.4, we deduce the following result.

Corollary 4.5. Let G be a connected bipartite graph of order $n \geq 54$. Then we have $i\left(G \square P_{2}\right)>W\left(G \square P_{2}\right)$.

Below we prove a stronger result on the comparison result between i and W for the Cartesian products of graphs with stars S_{n}.

Theorem 4.6. Let G be a connected graph. Then $i\left(G \square S_{n}\right)>W\left(G \square S_{n}\right)$ for any integer $n \geq 6$.

Proof. Note that $i(G) \geq n(G)+1$. Let $V\left(S_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with v_{1} as its center. From the structure of $G \square S_{n}, V\left(G \square S_{n}\right)$ can be partitioned as $V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup \cdots \cup V\left(G_{n}\right)$ with $V\left(G_{i}\right)=\left\{v_{i}\right\} \times V(G)$ for $i \in[n]$. Then the set of vertices from k distinct graphs from $\bigcup_{p=2}^{n} G_{p}$ is just a k-independent set in $G \square S_{n}$ for $k \in[n] \backslash\{1\}$. Thus we have

$$
\begin{aligned}
i\left(G \square S_{n}\right) \geq & n i(G)-(n-1)+(n-1) n(G)[n(G)-1]+\binom{n-1}{2} n(G)^{2} \\
& +\binom{n-1}{3} n(G)^{3}+\sum_{k=0}^{3}\binom{n-1}{n-1-k} n(G)^{n-1-k} \\
> & {\left[\binom{n}{2}+\binom{n-1}{n-4}\right] n(G)^{2}+\binom{n-1}{3} n(G)^{3}+\sum_{k=0}^{2}\binom{n-1}{n-1-k} n(G)^{n-1-k} } \\
> & \frac{(n-1)\left(n^{2}-2 n+6\right)}{6} n(G)^{2}+\left[\binom{n}{3}+n\right] n(G)^{3},
\end{aligned}
$$

for any $n \geq 6$. By Lemmas 2.5, 4.1, we have

$$
\begin{aligned}
i\left(G \square S_{n}\right)-W\left(G \square S_{n}\right) & >\frac{(n-1)\left(n^{2}-2 n+6\right)}{6} n(G)^{2}+\frac{n\left(n^{2}-3 n+8\right)}{6} n(G)^{3} \\
& -(n-1)^{2} n(G)^{2}-n^{2} W(G) \\
& \geq \frac{(n-1)(n-2)(n-6)}{6} n(G)^{2}+\frac{n\left(n^{2}-3 n+8\right)}{6} n(G)^{3} \\
& -n^{2}\binom{n(G)+1}{3}>\frac{n\left(n^{2}-4 n+8\right)}{6} n(G)^{3}>0,
\end{aligned}
$$

completing the proof.

5 Concluding remarks

In this paper we report some relations between $i(G)$ and $W(G)$ for connected graphs G, including sparse graphs of order n with $m(n-1 \leq m \leq n+1)$ edges and their complements, as well as for some graphs with diameter 2. Moreover, some relations between these two invariants are established in terms of Cartesian products of graphs, especially $G \square P_{2}$ and $G \square S_{n}$.

By some elementary calculations, we get $i\left(S_{4}\right)=W\left(S_{4}\right)=9$. But, except S_{4}, do there exist other graphs with $i(G)=W(G)$? Furthermore, determining all connected graphs with $i(G)=W(G)$ seems an unknown but challenging problem to us.

In Section 3, we provide some sufficient conditions of $W(G)>i(G)$ (resp. $i(G)>$ $W G)$) for the graphs G with diameter 2 . Here we propose the following problem for the graphs with diameter 2 .

Problem 5.1. How to characterize all the graphs G with diameter 2 satisfying different comparison results between $i(G)$ and $W(G)$?

Recall that $i\left(B C_{1,1}\right)=5>4=W\left(B C_{1,1}\right)$ with $i\left(P_{2}\right)>W\left(P_{2}\right)$. But, by Proposition 4.3, we have $W\left(B C_{1,1} \square P_{2}\right)>i\left(B C_{1,1} \square P_{2}\right)$. Moreover, although from Proposition 4.3 $W\left(B C_{n_{1}, n_{2}}\right)>i\left(B C_{n_{1}, n_{2}}\right)$ holds for any n_{1}, n_{2} with $n_{1}+n_{2} \geq 3$, we have

$$
W\left(B C_{n_{1}, n_{2}} \square P_{2}\right)-i\left(B C_{n_{1}, n_{2}} \square P_{2}\right)=\left\{\begin{array}{cl}
5, & \left(n_{1}, n_{2}\right)=(2,3) ; \\
-12, & \left(n_{1}, n_{2}\right)=(2,4) .
\end{array}\right.
$$

Based on the above fact, we would like to pose the following problem.
Problem 5.2. How to characterize the Cartesian products G of graphs $G \square H$ and H with hereditary comparison property with respect to i and W, that is, $i(G \square H) \gtrless W(G \square H)$ for graph G and H with $i(G) \gtrless W(H)$ and $i(H) \gtrless W(H)$?

From Theorem 3.1, we find that $i(G)>W(G)$ for some sparse connected graphs G of order $n \geq 11$ with m edges when $n-1 \leq m \leq n+1$. Now we would like to end this paper with the following relevant problem.

Problem 5.3. Can we find a constant $c(n)$ such that $i(G)>W(G)$ for any connected graphs G with $n(G)=n$ and m edges where $m \leq c(n)$?

Acknowledgments: Kexiang Xu is supported by NNSF of China (grant No. 11671202).

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
[2] F. Buckley, Self-centered graphs, Ann. New York Acad. Sci. 576 (1989) 71-78.
[3] K. C. Das, I. Gutman, On Wiener and multiplicative Wiener indices of graphs, Discr. Appl. Math. 206 (2016) 9-14.
[4] H. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008) 171190.
[5] H. Deng, S. Chen, J. Zhang, The Merrifield-Simmons index in $(n, n+1)$-graphs, J. Math. Chem. 43 (2008) 75-91.
[6] A. A. Dobrynin, The Szeged and Wiener indices of line graphs, MATCH Commun. Math. Comput. Chem. 79 (2018) 743-756.
[7] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czech. Math. J. 26 (1976) 283-296.
[8] L. Feng, W. Liu, K. Xu, The hyper-Wiener index of bicyclic graphs, Util. Math. 84 (2011) 97-104.
[9] B. Furtula, K. C. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, Int. J. Quantum Chem. 118 (2018) \#e25659.
[10] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.
[11] I. Gutman, W. Linert, I. Lukovits, A. A. Dobrynin, Trees with extremal hyperWiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997) 349-354.
[12] A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53-62.
[13] H. Hua, Comparing multiplicative Wiener index with other graph invariants, MATCH Commun. Math. Comput. Chem. 83 (2020) 95-107.
[14] H. Hua, X. Hua, H. Wang, Further results on the Merrifield-Simmons index, Discr. Appl. Math. 283 (2020) 231-241.
[15] H. Hua, M. Wang, On the Merrifield-Simmons index and some Wiener-type indices, MATCH Commun. Math. Comput. Chem. 85 (2021) 131-146.
[16] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp. 11 (2016) 327-352.
[17] M. Knor, R. Škrekovski, A. Tepeh, Chemical graphs with the minimum value of Wiener index, MATCH Commun. Math. Comput. Chem. 81 (2019) 119-132.
[18] H. Lin, Extremal Wiener index of trees with prescribed path factors, MATCH Commun. Math. Comput. Chem. 83 (2020) 85-94.
[19] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[20] K. Narayankar, L. S. B., Peripheral Wiener index of a graph, preprint.
[21] L. A. Dosal-Trujillo, H. Galeana-Sánchez, On the Fibonacci numbers of the composition of graphs, Discr. Appl. Math. 266 (2019) 213-218.
[22] W. Imrich, S. Klavžar, D. F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product, A. K. Peters, Wellesley, 2008.
[23] H. Prodinger, R. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16-21.
[24] G. Pruesse, F. Ruskey, The prism of the acyclic orientation graph is Hamiltonian, Elect. J. Comb. 2 (1995) \#R5.
[25] Z. Tang, H. Deng, The (n, n)-graphs with the first three extremal Wiener indices, J. Math. Chem. 43 (2008) 60-74.
[26] S. Wagner, Upper and lower bounds for Merrifield-Simmons index and Hosoya index, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory - Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 155187.
[27] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[28] K. Xu, On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number, Appl. Math. Lett. 23 (2010) 395-398.
[29] K. Xu, K. C. Das, X. Gu, Comparison and extremal results on three eccentricitybased invariants of graphs, Acta Math. Sin. 36 (2020) 40-54.
[30] K. Xu, K. C. Das, S. Klavžar, H. Liu, Comparison of Wiener index and Zagreb eccentricity indices, MATCH Commun. Math. Comput. Chem. 84 (2020) 595-610.
[31] K. Xu, X. Gu, I. Gutman, Relations between total irregularity and non-self-centrality of graphs, Appl. Math. Comput. 337 (2018) 461-468.
[32] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461-508.
[33] K. Xu, B. Xu, Some extremal unicyclic graphs with respect to Hosoya index and Merrified-Simmons index, MATCH Commun. Math. Comput. Chem. 62 (2009) 629648.
[34] L. Zhang, B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189-194.

