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Abstract

The Merrifield–Simmons index of a graph is defined to be the number of inde-
pendent sets in this graph. The Wiener index of a connected graph is the total
distance of this graph. These two indices are well-studied in chemical graph theory.
The peripheral Wiener index and Steiner k-Wiener index are two variants of the
Wiener index. In this paper, we consider the relationships between the Merrifield–
Simmons index and the above-mentioned Wiener-type indices. First, we prove that
the Merrifield–Simmons index is greater than peripheral Wiener index for each tree.
Second, we give several sufficient conditions such that the Merrifield–Simmons index
is greater than peripheral Wiener index for general connected graphs. Third, we
determine sharp upper bound on the difference between the Merrifield–Simmons in-
dex and peripheral Wiener index among all trees. Finally, we establish an inequality
involving the Merrifield–Simmons index, k-Steiner Wiener index and Wiener index
for general connected graphs under given constraints.

1 Introduction

Throughout this paper we consider only simple connected graphs. For a graph G = (V, E)

with vertex set V = V (G) and edge set E = E(G), the degree of a vertex v in G, denoted

by dG(v), is the number of edges incident with v. Denote by dG(u, v) the distance between

vertices u and v in G. The eccentricity of a vertex v in a graph G is defined to be

εG(v) = max{dG(u, v)|u ∈ V (G)}. The diameter of a connected graph G, denoted by

d(G), is equal to max{εG(v)|v ∈ V (G)}. Let v be a vertex in G, if εG(v) = d, then v is

said to be a peripheral vertex of G. The periphery of G, denoted by P(G), is the set of all

peripheral vertices in G. Let Pn, K1, n−1 and Kn be the path, star and complete graph of

order n, respectively. The double-star, denoted by Sa, b (1 ≤ a, b ≤ n− 3, a+ b = n− 2),
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is obtained by connecting an edge between centers of two stars Sa and Sb. For other

notation and terminology not defined here, the readers are referred to [3].

Let G be a graph. A subset S of V (G) is called an independent set of G if the subgraph

induced by S contains no edges. The well-studied Merrifield–Simmons index (MSI) of G

is defined as

i(G) =
∑
k≥0

i(G; k),

where i(G; k) denotes the number of k-membered independent sets of G for k ≥ 1 and

i(G; 0) = 1. For results on the Merrifield–Simmons index, see e.g., [14, 15, 24–26, 29] and

the references cited therein.

One of the oldest and well-studied distance-based graph invariants associated with a

connected graph G is the Wiener index, denoted by W (G), which is defined [32] as the

sum of distances over all unordered vertex pairs in G, namely,

W (G) =
∑

{u, v}⊆V (G)

dG(u, v).

For results on the Wiener index, see e.g., [9, 22,23,30], and so on.

As a variant of Wiener index, the peripheral Wiener index (PWI) was introduced

in [31], and is defined for a connected graph G as

PW (G) =
∑

{u, v}⊆P(G)

dG(u, v).

For further results on the peripheral Wiener index, see [5, 20].

The Steiner distance d(S) of a vertex subset S, which can be seen as a natural gen-

eralization of the distance between two vertices, is defined to be the minimum size of a

connected subgraph whose vertex set contains S. The sum of the Steiner distances (or

equivalently, the average Steiner distance) was studied earlier in [6], and was recently

proposed independently as the generalization of the Wiener index [27]. For 2 ≤ k ≤ n,

the Steiner k-Wiener index SWk(G) of G is defined as

SWk(G) =
∑

S⊆V (G), |S|=k

dG(S),

where dG(S) is defined as above. For recent results on the Steiner k-Wiener index, see

[28,33].

Comparing various graph invariants have gained much popularity over the past few

decades, see e.g., [7,16,18,19,21–23]. Some of these researches were motivated by Grafitti
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conjectures [4, 8, 10] or AutoGraphiX conjectures [1, 2, 17, 18]. As a solution to a Grafitti

conjecture, Chung [4] proved that the independence number is greater than or equal to

average distance. Motivated by Chung’s result, we naturally ask the problem: how about

the relationship between the total number of independent subsets (MSI) and the total

sum of peripheral distances (PWI)? Also, we consider another problem: how about the

relationship between the Merrifield–Simmons index and Wiener index and Steiner Wiener

index?

In this paper, our motivation is to investigate the above problems, that is, we inves-

tigate the relationships between the Merrifield–Simmons index and the above-mentioned

Wiener-type indices. First, we prove that the Merrifield–Simmons index is greater than

peripheral Wiener index for each tree. Second, we give several sufficient conditions such

that the Merrifield–Simmons index is greater than peripheral Wiener index for general

connected graphs. Third, we determine sharp upper bound on the difference between the

Merrifield–Simmons index and peripheral Wiener index for each tree. Finally, we estab-

lish an inequality involving the Merrifield–Simmons index, k-Steiner Wiener index and

Wiener index.

2 Main results

In this section, we investigate the relationship between the Merrifield–Simmons index

and peripheral Wiener index for trees and special connected graphs. Also, we establish

an inequality relating the Merrifield–Simmons index, k-Steiner Wiener index and Wiener

index for general connected graphs under given constraints.

First, we find the relationship between the Merrifield–Simmons index and peripheral

Wiener index. Before proceeding, we consider the following two examples.

Example 2.1. For the complete graph Kn, we have PW (Kn) = n(n−1)
2

> n + 1 = i(Kn)

for n ≥ 4.

Example 2.2. For the path Pn, we have PW (Pn) = n− 1 < n+ 1 ≤ i(Pn) for n ≥ 1.

Let P 3
5 be the unicyclic graph obtained by adding an edge between one vertex of C3

and one end-vertex of P2.

Example 2.3. (Unicyclic graphs) For the unicyclic graph P 3
5 , we have PW (P 3

5 ) = 7 <

11 = i(P 3
5 ); For the cycle C5, we have PW (C5) = 15 > 12 = i(C5).
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Example 2.4. (Graphs of diameter two) For G1 = K1 ⊕ P5, we have PW (G1) = 16 >

14 = i(G1); For star K1, 5, we have PW (K1, 5) = 20 < 33 = i(K1, 5).

It can be seen from the Examples 2.1-2.4 that the Merrifield–Simmons index and

peripheral Wiener index are incomparable in the case of general connected graphs, even

for unicyclic graphs and graphs of diameter two. So, it is natural for us to seek an explicit

relationship between the the Merrifield–Simmons index and peripheral Wiener index for

special connected graphs. More specially, we restrict our attention to trees and special

connected graphs with given constraints.

Our first result deals with trees.

Theorem 2.1. Let T be a tree. Then

i(T ) > PW (T ).

Apart from trees, we also consider several special connected graph families introduced

as below.

Theorem 2.2. Let G be a graph with p peripheral vertices, diameter d and independence

number α. If α ≥
√
2
2
pd, then

i(G) > PW (G).

Theorem 2.3. Let G be a graph of diameter d and p peripheral vertices. If p ≤
√

2(d+1)

2
,

then

i(G) > PW (G).

Theorem 2.4. Let G be a graph of diameter two with independence number α and p

peripheral vertices. If α ≥ p, then

i(G) > PW (G).

From Theorem 2.1 it follows that i(T )−PW (T ) > 0 for any tree T . A natural problem

arising at this moment is: How large is the gap between i(G) and PW (G) for a connected

graph G?

In the following, we give a partial answer to this problem by establishing sharp upper

bound on i(T )− PW (T ) for all trees T .

Suppose that T is a tree of order n. If n = 2, then T ∼= P2. If n = 3, then T ∼= P3.

So, we assume that n ≥ 4. Our result reads as follows.
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Theorem 2.5. Let T be a tree of order n ≥ 4.

(1) If n = 4, then

i(T )− PW (T ) ≤ 5

with equality if and only if T ∼= P4;

(2) If 5 ≤ n ≤ 7, then

i(T )− PW (T ) ≤ 9 · 2n−5

with equality if and only if T ∼= T ∗, where T ∗ is the tree obtained by attaching n− 5

pendent edges to the middle-point of the path P5;

(3) If n ≥ 8, then

i(T )− PW (T ) ≤ 2n−1 − n2 + 3n− 1

with equality if and only if T ∼= K1, n−1.

Besides Theorems 2.1-2.5, we also establish an inequality involving the Merrifield–

Simmons index, k-Steiner Wiener index and Wiener index. This result is stated as follows.

Theorem 2.6. Let G be a connected graph of order n and size m. For each positive

integer 3 ≤ k ≤ n− 1, if m ≤ n2+n+2
2
− 2(n−1)(n−2)···(n−k+1)

k!
, then

i(G) >
SWk(G)

W (G)
.

In particular, when k = 3, by Theorem 2.6, we obtain the following result.

Corollary 2.7. Let G be a connected graph of order n ≥ 4 and size m. If m ≤ n2+9n+2
6

,

then

i(G) >
SW3(G)

W (G)
.

Let G be a connected graph of order n and size m. If G is a tree, then m = n− 1; if

G is a unicyclic graph, then m = n; and if G is a bicyclic graph, then m = n+ 1. So, by

Corollary 2.7, we have the following results.

Corollary 2.8. Let T be a tree of order n ≥ 4. Then

i(T ) >
SW3(T )

W (T )
.

Corollary 2.9. Let G be a unicyclic graph of order n ≥ 4. Then

i(G) >
SW3(G)

W (G)
.

Corollary 2.10. Let G be a bicyclic graph of order n ≥ 4. Then

i(G) >
SW3(G)

W (G)
.
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3 Proofs of Theorems 2.1–2.6

In this section, we give the proofs of Theorems 2.1–2.6.

First, we prove Theorem 2.1. Before proceeding, we introduce some preliminary re-

sults.

Lemma 3.1. Suppose that T is a tree of diameter d and p peripheral vertices with inde-

pendence number α. Then

α ≥
⌈
d+ 1

2

⌉
+ (p− 2). (1)

Moreover, the lower bound is sharp as shown by the star, double-star, and the path.

Proof. If d = 2, then p = n − 1, α = n − 1 = dd+1
2
e + (p − 2). If d = 3, then T is a

double-star, and p = n − 2, α = n − 2 = dd+1
2
e + (p − 2). If d = n − 1, then p = 2,

α = dn
2
e = dd+1

2
e+ (p− 2). So, we assume that 4 ≤ d ≤ n− 2.

Let Pd+1 = v1v2 . . . vdvd+1 be a diametrical path in T . First, we take a maximum

independent set S of Pd+1 as follows:

• If d is odd, then we let S = {v1, v3, v5, . . . , vd−2, vd+1};

• If d is even, then we let S = {v1, v3, v5, . . . , vd−1, vd+1}.

If p = 2, then α = α(G) ≥ α(Pd+1) = dd+1
2
e = dd+1

2
e + (p − 2), as desired. So, we

suppose that p ≥ 3. Let P(T ) = {v1, vd+1, u1, . . . , up−2}. Clearly, us ∈ V (T ) \ V (Pd+1)

and dT (us) = 1 for each s = 1, . . . , p − 2. According to the definition of peripheral

vertex, we have: if d is odd, then usvt 6∈ E(T ) for each s = 1, . . . , p − 2 and t =

1, 3, 5, . . . , d − 2, d + 1; if d is even, then usvt 6∈ E(T ) for each s = 1, . . . , p − 2 and

t = 1, 3, 5, . . . , d− 1, d+ 1. Thus, by the above chosen S, we construct an independent

set S
′

of T as follows:

• If d is odd, then we let S
′
= {v1, v3, . . . , vd−2, vd+1, u1, . . . , up−2};

• If d is even, then we let S
′
= {v1, v3, . . . , vd−1, vd+1, u1, . . . , up−2}.

So, according to the definition of independence number, when d is odd, we have

α ≥ |S ′| = d+ 1

2
+ (p− 2) =

⌈
d+ 1

2

⌉
+ (p− 2),
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when d is even, we have

α ≥ |S ′| = d

2
+ 1 + (p− 2) =

⌈
d+ 1

2

⌉
+ (p− 2).

It is easy to check that the star, double-star, and the path attain the lower bound in (1).

This completes the proof.

Lemma 3.2. Suppose that G is a connected graph of order n with independence number

α. Then

i(G) > 2α .

Proof. Let S be an independent set of G with |S| = α. Clearly α ≥ 1. If G − S = K1,

then G ∼= K1, n−1, as G is connected. It is easy to check that i(G) = 2n−1 +1 > 2n−1 = 2α.

So, we assume that |G− S| ≥ 2. Note that adding edges into G− S will strictly decrease

the Merrifield–Simmons index of G. Then i(G) ≥ i(αK1 ⊕Kn−α) = 2α + n− α > 2α.

By means of Lemmas 3.1 and 3.2, we obtain a lower bound on the Merrifield–Simmons

index of trees.

Proposition 3.3. Suppose that T is a tree of diameter d and p peripheral vertices. Then

i(T ) > 2d
d+1
2
e+(p−2) . (2)

Next, we give an upper bound for peripheral Wiener index of general connected graphs.

Lemma 3.4. Suppose that G is a connected graph of diameter d and p peripheral vertices.

Then

PW (G) ≤
(
p

2

)
d . (3)

Moreover, the upper bound is sharp as shown by the star and the path.

Proof. Since dG(x, y) ≤ d holds for any one pair of peripheral vertices x and y in G, we

have

PW (G) ≤
(
p

2

)
d .

It is easy to check that the star and the path attain the upper bound in (3).

The following result is easy to obtain, and its proof is omitted here.
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Lemma 3.5. For any positive real number x > 4, it holds that

2x > x2 .

Now, we are in a position to prove Theorem 2.1.

The proof of Theorem 2.1

Proof. Let n and d be the order and diameter of T , respectively. Denote by P(T ) the set

of peripheral vertices in T and let |P(T )| = p. Obviously p ≥ 2. If n = 2, then T ∼= P2,

and i(P2) = 3 > 1 = PW (P2). So, we assume that n ≥ 3.

When d = 2, we have T ∼= K1, n−1. When d = 3, we have T ∼= Sa, b (1 ≤ a, b ≤ n− 3,

a+ b = n− 2). An elementary calculation gives i(K1, n−1) = 2n−1 + 1 > (n− 1)(n− 2) =

PW (K1, n−1), i(Sa, b) = 2a+b + 2a + 2b > (a+ b)2 + (a− 1)(b− 1)− 1 = PW (Sa, b) for each

1 ≤ a, b ≤ n− 3 and a+ b = n− 2.

Because for any connected graph G, we have i(G) ≥ n + 1 = i(Kn) with equality if

and only if G ∼= Kn. So, for a tree T , i(T ) > n + 1. If p = 2, then PW (T ) = d ≤ n− 1.

So, i(T ) > PW (T ).

Now, we assume that d ≥ 4 and p ≥ 3. By (2) and (3), we have

i(T )− PW (T ) > 2d
d+1
2
e+(p−2) −

(
p

2

)
d . (4)

Note that 2d
d+1
2
e ≥ d for any positive integer d. Moreover, when p ≥ 6, by Lemma 3.5,

we have 2(p−2) −
(
p
2

)
≥ (p− 2)2 − p(p−1)

2
= 1

2
(p2 − 7p+ 8) > 0. So, by (4), i(T ) > PW (T )

holds for p ≥ 6.

In the following, we consider the remaining case of 3 ≤ p ≤ 5. Let f(d, p) =

2d
d+1
2
e+(p−2) −

(
p
2

)
d.

When p = 3, we have f(d, 3) = 2d
d+1
2
e+1 − 3d. By our assumption that d ≥ 4, we

have dd+1
2
e ≥ 3, and thus, dd+1

2
e + 1 ≥ 4. According to Lemma 3.5, we have f(d, 3) =

2d
d+1
2
e+1 − 3d ≥

(
dd+1

2
e+ 1

)2
− 3d ≥

(
d+1
2

+ 1
)2
− 3d = 1

4
(d2 − 6d+ 9) > 0.

When p = 4, we have f(d, 4) = 2d
d+1
2
e+2 − 6d = 2f(d, 3) > 0.

When p = 5, we have f(d, 5) = 2d
d+1
2
e+3−10d = 4

(
2d

d+1
2
e+1−3d

)
+2d = 4f(d, 3)+2d >

0.

So, by (4), i(T ) > PW (T ) holds for 3 ≤ p ≤ 5. Summarizing above, we have

completed the proof.
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The proof of Theorem 2.2

Proof. Let n be the order of G. Then n ≥ p ≥ 2. If α = 1, then G ∼= Kn and
√
2
2
pd =

√
2
2
n > 1 = α, a contradiction to our assumption. If α = 2, noting that p ≥ 2

and α ≥
√
2
2
pd, we have d = 1, thus G ∼= Kn, a contradiction. If α = 3, noting that

p ≥ 2 and α ≥
√
2
2
pd, we have d ≤ 2. Since α = 3, we also have d ≥ 2. So, d = 2.

Also, we have p = 2, for otherwise,
√
2
2
pd > α, a contradiction. Let x be a vertex in G

such that εG(x) = 2, and y be the unique vertex in G such that dG(x, y) = εG(x). Set

Vx(i) = {v ∈ V (G)|dG(x, v) = i}, i = 1, 2. Then |Vx(2)| = |{y}| = 1, and |Vx(1)| = n−2.

Since p = 2, we have εG(v) = 1 for each v ∈ Vx(1). So, dG(v) = n− 1 for each v ∈ Vx(1).

Thus, α = 2, a contradiction. Now, we assume that α ≥ 4. By Lemmas 3.2, 3.4, 3.5 and

our assumption that α ≥
√
2
2
pd, we have

i(G)− PW (G) > 2α −
(
p

2

)
d ≥ α2 − p(p− 1)

2
d ≥ p2d2

2
− p(p− 1)

2
d > 0 .

This completes the proof.

The proof of Theorem 2.3

Proof. Let Pd+1 be a diametrical path in G. Clearly, we have α = α(G) ≥ α(Pd+1) ≥

dd+1
2
e.

Since 2 ≤ p ≤
√

2(d+1)

2
, we have d + 1 ≥ 8, that is, d+1

2
≥ 4. So, by Lemmas 3.2, 3.4,

3.5 and our assumption that p ≤
√

2(d+1)

2
, we have

i(G)− PW (G) > 2α −
(
p

2

)
d ≥ 2d

d+1
2
e − p(p− 1)

2
d ≥ 2

d+1
2 − p(p− 1)

2
d

> 2
d+1
2 − p2

2
d ≥

(
d+ 1

2

)2

−

(√
2(d+1)

2

)2

2
d > 0 .

This completes the proof.

The proof of Theorem 2.4

Proof. Let n and d be the order and diameter of G, respectively. Obviously p ≥ 2. If

n = 2, then by Lemmas 3.2 and 3.4 and our assumption that α(G) ≥ p and d = 2, we

have

i(G)− PW (G) > 2α −
(
p

2

)
d ≥ 2p − p2 + p. (5)
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Let f(p) = 2p − p2 + p. If p = 2 or p = 3, by (5), we have i(G)− PW (G) > f(p) > 0.

Now, we assume that p ≥ 4. It is easy to obtain that df(p)
dp

= 2p ln 2−2p+1 > 2p−1−2p+1

and thatd
2f(p)
dp2

= 2p(ln 2)2 − 2 = 2p−2(2 ln 2)2 − 2 > 2p−2 − 2. When p ≥ 3, we have

d2f(p)
dp2

> 0. So, df(p)
dp

is a strictly increasing function on the interval [3, +∞]. Note that

df(p)
dp
|p=4 = 1 > 0. So, f(p) is a strictly increasing function on the interval [4, +∞]. Thus,

by (5), we have i(G)− PW (G) > f(p) > f(4) = 4 > 0. This completes the proof.

The proof of Theorem 2.5

We first give some preliminary results.

Lemma 3.6 ( [13]). Let G be a graph. If x is a vertex in G, then i(G) = i(G−x)+ i(G−

NG[x]).

Figure 1: Trees Ti (1 ≤ i ≤ 8) occurred in the proof of Theorem 2.5.

Table 1

T i(T )− PW (T )
P5 11
P6 19
P7 32
T1 13
T2 18
T3 25
T4 28
T5 21
T6 36
T7 31
T8 25

The values of i(T )− PW (T ) for trees of small order n (5 ≤ n ≤ 7).
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Let Fn be the nth Fibonacci number, i.e., F0 = F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2. In

2007, Liu et al. obtained a result on the Merrifield–Simmons index for trees with given

diameter.

Theorem 3.7 ( [29]). Let T be a tree on n vertices with diameter d. Then

i(T ) ≤ Fd+2 + (2n−d−1 − 1)F2Fd

with equality if and only if G ∼= Wn, d, 1, where Wn, d, 1 is the tree of diameter d obtained

by attaching n− d− 1 pendent vertices to v1 (or vd−1) of the path Pd+1 = v0v1 · · · vd−1vd.

By the definition of Wn, d, 1 and properties of Fibonacci number, we obtain the following

result.

Lemma 3.8. For d ≥ 4, we have i(Wn, d, 1) ≤ i(Wn, 4, 1) with equality if and only if d = 4.

By Theorem 3.7 and Lemma 3.8, we get sharp upper bound on the Merrifield–Simmons

index for trees of diameter no less than four.

Theorem 3.9. Let T be a tree of order n with diameter d ≥ 4. Then

i(T ) ≤ 5 · 2n−4 + 3

with equality if and only if T ∼= Wn, 4, 1.

Now, we give the proof of Theorem 2.5.

Proof. When n = 4, we have T ∼= P4 or K1, 3. It is easy to obtain that i(P4)−PW (P4) =

5 > 3 = i(K1, 3)− PW (K1, 3). Therefore, (1) holds. So, we assume that n ≥ 5.

Let d be the diameter of T . If d = 2, then T ∼= K1, n−1. Clearly, i(K1, 4)−PW (K1, 4) =

5, i(K1, 5)− PW (K1, 5) = 13, i(K1, 6)− PW (K1, 6) = 35. From Table 1, we conclude that

for 5 ≤ n ≤ 7, we have i(K1, n−1)− PW (K1, n−1) < i(T ∗)− PW (T ∗). So, we assume that

n ≥ 8.

Since i(K1, n−1)− PW (K1, n−1) = 2n−1 − n2 + 3n− 1 and i(T ∗)− PW (T ∗) = 9 · 2n−5,

we have (i(K1, n−1) − PW (K1, n−1)) − (i(T ∗) − PW (T ∗)) = 7 · 2n−5 − n2 + 3n − 1. Let

f(x) = 7·2x−5−x2+3x−1. Then df(x)
dx

= 7 ln 2·2x−5−2x+3 > 2·2x−5−2x+3 = 2x−4−2x+3.

Let g(x) = 2x−4 − 2x + 3. Then dg(x)
dx

= 2 ln 2 · 2x−5 − 2 > 2x−5 − 2. For x ≥ 6, we

have dg(x)
dx

> 0. So, g(x) is a strictly increasing function on the interval [6, +∞). Then

g(x) ≥ g(8) = 3 > 0. Therefore, when x ≥ 8, we have df(x)
dx

> g(x) > 0, that is, f(x) is a
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strictly increasing function on the interval [8, +∞). Then f(x) > f(8) = 15 > 0. Now,

for n ≥ 8, we have (i(K1, n−1)− PW (K1, n−1))− (i(T ∗)− PW (T ∗)) ≥ f(n) > 0. That is,

i(K1, n−1)− PW (K1, n−1) > i(T ∗)− PW (T ∗) for n ≥ 8.

Next, we assume that d ≥ 3. We consider the following two cases.

Case 1. d = 3.

In this case, T is a double-star, that is, T ∼= Sa, b (1 ≤ a, b ≤ n− 3 and a+ b = n− 2).

By Lemma 3.6, we have i(T ) = 2a+b + 2a + 2b = 2n−2 + 2a + 2b and PW (T ) = a2 + b2 +

3ab−a−b = (a+b)2+(a−1)(b−1)−1 = (n−2)2+(a−1)(b−1)−1. When n = 5, we have

(i(S1, 2)−PW (S1, 2))− (i(T ∗)−PW (T ∗)) = (i(S1, 2)−PW (S1, 2))− (i(P5)−PW (P5)) =

8− 11 < 0, that is, i(S1, 2)− PW (S1, 2) < i(T ∗)− PW (T ∗).

Now, we assume that n ≥ 6. If min{a, b} = 1, then i(T )− PW (T ) = (2n−2 + 2n−3 +

2)−[(n−2)2−1] = 3·2n−3−n2+4n−1. So, (i(K1, n−1)−PW (K1, n−1))−(i(T )−PW (T )) =

2n−3−n > 0 as n ≥ 6. Thus, we may assume that min{a, b} ≥ 2. Then 2 ≤ a, b ≤ n− 4.

Therefore,

i(T )− PW (T ) = (2n−2 + 2a + 2b)− [(n− 2)2 + (a− 1)(b− 1)− 1]

< (2n−2 + 2a + 2b)− (n− 2)2 + 1 ≤ 2n−2 + 2 · 2n−4 − (n− 2)2 + 1

≤ 3 · 2n−3 − (n− 2)2 + 1 < 2n−1 − n2 + 3n− 1

= i(K1, n−1)− PW (K1, n−1).

So, for n ≥ 6, we have i(K1, n−1)− PW (K1, n−1) > i(T )− PW (T ). In particular, by our

previous proof, for 5 ≤ n ≤ 7, we have i(T ∗) − PW (T ∗) > i(K1, n−1) − PW (K1, n−1) >

i(T )− PW (T ).

Case 2. d ≥ 4.

If 5 ≤ n ≤ 7, then T must be isomorphic to P5, or P6, or P7, or Ti (1 ≤ i ≤ 8), see Fig.

1. It is easy to check from Table 1 that i(T )−PW (T ) < i(T ∗)−PW (T ∗) holds. Now, we

assume that n ≥ 8. By Theorem 3.9, we have i(T ) ≤ 5 · 2n−4 + 3. Also, PW (T ) ≥ 4. So,

i(T )−PW (T ) ≤ 5 ·2n−4−1. Let f(x) = 2x−1−x2+3x−1−5 ·2x−4+1 = 3 ·2x−4−x2+3x.

Then df(x)
dx

= 3 ln 2 ·2x−4−2x+3 > 2x−4−2x+3. Let g(x) = 2x−4−2x+3. Similar to the

case of d = 2, we can prove that (i(K1, n−1)−PW (K1, n−1))− (i(T )−PW (T )) ≥ f(n) > 0

for n ≥ 8, that is, i(K1, n−1)− PW (K1, n−1) > i(T )− PW (T ) for n ≥ 8.

Summarizing above, we have completed the proof.
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In the following, we prove Theorem 2.6. We first give a lower bound, in terms of order

and size, for the Merrifield–Simmons index of general graphs.

Theorem 3.10. Let G be a connected graph of order n and size m. Then

i(G) ≥ n2 + n+ 2

2
−m . (6)

Proof. Let α(G) be the independence number of G. If G ∼= Kn, then m = n(n−1)
2

and

i(Kn) = n+ 1, the equality (6) holds. Now, we assume that G � Kn.

Since G � Kn, we have α(G) ≥ 2. Let i(G;u; 2) be the number of 2-independent sets

containing u in G. Then i(G;u; 2) = n− dG(u)− 1. So,

i(G) ≥ 1 + n+ i(G; 2) = 1 + n+
1

2

∑
u∈V (G)

i(G;u; 2)

= 1 + n+
1

2

∑
u∈V (G)

(n− dG(u)− 1) =
n2 + n+ 2

2
−m,

as expected.

The proof of Theorem 2.6.

Proof. By the definition of k-Steiner Wiener index, we have

SWk(G) =
∑

S⊆V (G), |S|=k

dG(S) ≤ (n− 1)

(
n

k

)
=

(n− 1)n(n− 1) · · · (n− k + 1)

k!

=
n(n− 1)

2
· 2(n− 1) · · · (n− k + 1)

k!
≤ W (G) · 2(n− 1) · · · (n− k + 1)

k!

(as W (G) ≥ W (Kn) = n(n−1)
2

) (7)

By Theorem 3.10, (7) and our assumption that m ≤ n2+n+2
2
− 2(n−1)(n−2)···(n−k+1)

k!
, we have

i(G) ·W (G) ≥
[n2 + n+ 2

2
− n2 + n+ 2

2
+

2(n− 1)(n− 2) · · · (n− k + 1)

k!

]
·

k!

2(n− 1)(n− 2) · · · (n− k + 1)
SWk(G) = SWk(G),

that is, i(G) ≥ SWk(G)
W (G)

.

Note that k ≥ 3 and m ≤ n2+n+2
2
− 2(n−1)(n−2)···(n−k+1)

k!
. Thus, G � Kn. So, the

equality in (7) can not be attained, and then i(G) > SWk(G)
W (G)

.

This completes the proof.
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4 Concluding remarks

In this paper, we investigated the relationships between the Merrifield–Simmons index

some Wiener-type indices. We first proved that the Merrifield–Simmons index is greater

than the peripheral Wiener index for all trees. Also, we gave several sufficient conditions

such that the Merrifield–Simmons index is greater than peripheral Wiener index for gen-

eral connected graphs. Moreover, we determined sharp upper bound on the difference

between the Merrifield–Simmons index and peripheral Wiener index for all trees. Fur-

thermore, we established an inequality relating the Merrifield–Simmons index, k-Steiner

Wiener index and Wiener index. We end the paper by proposing the following problems.

Problem 4.1. Determine general connected graph or special connected graph G such that

the inequalities

i(G) > PW (G)

or

i(G) < PW (G)

hold.

Problem 4.2. Determine sharp lower and upper bounds on the difference i(G)−PW (G)

for general connected graph G.
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