The Minimum Forcing and Anti-Forcing Numbers of Convex Hexagonal Systems*

Yaxian Zhang, Heping Zhang ${ }^{\dagger}$

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
yxzhang2016@lzu.edu.cn, zhanghp@lzu.edu.cn
(Received August 7, 2020)

Abstract

A convex hexagonal system (CHS) is a hexagonal system whose inner dual has the convex polygonal boundary. The minimum forcing number of a graph G is the smallest cardinality of a matching of G contained in a unique perfect matching. The minimum anti-forcing number of G is the smallest cardinality of an edge subset of G whose deletion results in a graph with exactly one perfect matching. In this paper, we proved that for any convex hexagonal system $H\left(a_{1}, a_{2}, a_{3}\right)$ with a perfect matching, its minimum forcing and anti-forcing numbers are both equal to $\min \left\{a_{1}, a_{2}, a_{3}\right\}$ by applying perfect path systems.

1 Introduction

A hexagonal system, also called benzenoid system, is a 2 -connected plane bipartite graph so that every interior face is a regular hexagon. A perfect matching of a graph is a set of disjoint edges covering all vertices of it. This concept coincides with that of a Kekulé structure in organic chemistry. The carbon-skeleton of a benzenoid hydrocarbon may be represented by a hexagonal system with a perfect matching. Kekulé structures of hexagonal systems have been extensively investigated; for example, see [5, 7].

[^0]For a perfect matching M in a graph G, an edge subset $S \subseteq M$ is called a forcing set of M in G if $G-V(S)$ contains exactly one perfect matching. The smallest cardinality over all forcing sets of M is the forcing number of M, denoted by $f(G, M)$. The minimum and maximum values of forcing numbers of all perfect matchings of G are called the minimum and maximum forcing number of G, respectively, denoted by $f(G)$ and $F(G)$. The concept of "forcing number" in perfect matchings was first introduced by Randić and Klein [9] under name "innate degree of freedom", and then renamed by Harary et al. [8].

Forcing number of a Kekulé structure of a benzenoid system is related closely to resonance theory. According to Clar's aromatic sextet theory [4], for any two isometric benzenoid hydrocarbons, the one with larger Clar number is more stable. Xu et al. [19] showed that the maximum forcing number of a hexagonal system H is equal to its Clar number (or resonant number). Further Zhou and Zhang [27] showed that for each perfect matching M of H with the maximum forcing number, the maximum set of disjoint M-alternating hexagons has the size equal to the Clar number. For polyomino graphs and (4,6)-fullerenes, the former assertion also holds (cf. [16, 28]). Zhang and Li [21] characterized a hexagonal system with a forcing edge. Wang et al. [18] gave a linear algorithm to compute the minimum forcing number of a toroidal polyhex. Recently, Diwan [6] proved that for a hypercube $Q_{n}, f\left(Q_{n}\right)=2^{n-2}$, which was ever conjectured by Pachter and Kim [14]. Afshani et al. [2] proved that determining the minimum forcing number is NP-complete for bipartite graphs with maximum degree 4.

As early as 1997, Li [12] characterized hexagonal systems with a forcing single edge (i.e. anti-forcing edge). In 2007, Vukičević and Trinajstić [17] proposed the anti-forcing number of a graph. Lei et al. [11] and Klein and Rosenfeld [10] independently generalized the idea of "anti-forcing" to every perfect matching. For a perfect matching M in a graph G, a set S of edges of G not in M is called an anti-forcing set of M if $G-S$ has a unique perfect matching M. The cardinality of a smallest anti-forcing set of M is called the anti-forcing number of M, denoted by $a f(G, M)$. The minimum (resp. maximum) anti-forcing number of G is denoted by $a f(G)$ (resp. $A f(G)$). Lei et al. [11] and Shi et al. [16] respectively proved that the maximum anti-forcing numbers of hexagonal systems and $(4,6)$-fullerenes are equal to their Fries numbers. The previous paper also characterized the hexagonal systems H with $a f(H)=2$.

The inner dual graph $T(H)$ of a hexagonal system H is the plane graph whose vertices
consist of the centers of all hexagons of H, and two centers are joined by a segment as an edge of $T(H)$ if and only if the corresponding two hexagons have a common edge in H. Obviously, $T(H)$ is a triangulation graph.

Figure 1. A general CHS $H\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$.
A hexagonal systems is called convex if the boundary of its inner dual graph bounds a convex point set in the plane (see Fig. 1). Next a convex hexagonal systems will be abbreviated as CHS. Cyvin [5] showed that a CHS has a perfect matching if and only if it has equal opposite sides, that is, $a_{1}=a_{4}, a_{2}=a_{5}$ and $a_{3}=a_{6}$. Such a CHS can be represented by $H\left(a_{1}, a_{2}, a_{3}\right)$. For example, see Fig. 2; some special cases are linear hexagonal chain $H\left(1,1, a_{3}\right)$ and parallelogram HS $H\left(1, a_{2}, a_{3}\right)$ (see Fig. 2(a) and 2(b)).

(a) $H(1,1,7)$

(c) $H(3,3,3)$

(b) $H(1,4,6)$

(d) $H(3,5,7)$

Figure 2. Various examples for CHS $H\left(a_{1}, a_{2}, a_{3}\right)$.

In the following, we will discuss those CHS with at least one perfect matching. For $H\left(a_{1}, a_{2}, a_{3}\right)$, Cyvin [5] and Bodroža et al. [3] gave and proved a formula for the number of Kekulé structures. Zhang [22] got an expression of the Clar number, thus the maximum forcing number. For benzenoid parallelogram $H\left(1, a_{2}, a_{3}\right)$, Zhang and Li [21] and Li [12] showed that its minimum forcing numer and anti-forcing number are both equal to 1 respectively, and Zhao and Zhang [25, 26] derived explicit expressions of its forcing polynomial and anti-forcing polynomials by generating functions. For the definition of the forcing polynomial of a graph, see [24]. Zhu [29] showed that $f(H(2,2, n))=2$ for all $n \geq 2$, and $f(H(3,3, n))=3$ for all $n \geq 3$.

In this paper, we obtain the minimum forcing and anti-forcing numbers of $H\left(a_{1}, a_{2}, a_{3}\right)$ by applying the perfect path systems.

Theorem 1.1. Let $H\left(a_{1}, a_{2}, a_{3}\right)$ be a CHS. Then $f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right)=a f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right)=$ $\min \left\{a_{1}, a_{2}, a_{3}\right\}$.

2 Preliminary

In this section, we will introduce some notations and definitions. Let H be a hexagonal system embedded in the plane with some edges vertical. A peak (valley) of H is a vertex, all neighbors of which are below (above) it. Surely, all peaks and valleys have degree 2 . Since H is a bipartite graph, its vertices can be colored white and black so that each pair of adjacent vertices receives distinct colors. We make a convention that all peaks (resp. valleys) are black (resp. white).

A monotone path system of H is a set of disjoint down paths of H, in which each path issues from a peak and ends at a valley. A perfect path system of H is a monotone path system covering all peaks and valleys of H.

Let M be a perfect matching of a graph G. We call a cycle (or path) of G is M alternating, if its edges appear alternately in M or not. Sachs [15] gave a one-to-one correspondence between the perfect matchings and the perfect path systems of a hexagonal system.

Theorem 2.1. [15] Let H be a hexagonal system. Then H has a perfect matching if and only if it has a perfect path system. Further their one-to-one correspondence is given as follows (see Fig. 3).
(i) For a perfect path system \mathcal{P}, all non-vertical edges in and vertical edges not in the paths of \mathcal{P} form a perfect matching of H.
(ii) If a perfect matching M is given, then we can delete all oblique edges not in M and all vertical edges in M together with their end vertices to obtain a perfect path system, where every path is an M-alternating path.

Figure 3. A perfect path system of H corresponding to a perfect matching and consisting of monotone paths from p_{i} to $v_{i}, 1 \leq i \leq 4$.

Let M be a perfect matching of an HS H. Let $D(H, M)$ be a digraph obtained from H by directing every edge of M from black to white end-vertices, and directing each edge in $E(H) \backslash M$ from white to black end-vertices. Then there is a natural one-to-one corresponding between the directed cycles (resp. paths) and M-alternating cycles (resp. paths). Obviously, all arcs (directed edges) in $D(H, M)$ can be divided into six directions as shown in Fig. 4.

Figure 4. Six edge directions of a hexagonal system H.
An HS H has three plane drawings H_{1} (the same as H), H_{2} and H_{3} such that they always have vertical edges and all peaks and valleys are black and white respectively. More precisely, rotating $H 120$ degrees counterclockwise and clockwise, we get H_{2} and H_{3} respectively. By Theorem 2.1, H_{i} has a perfect path system $\mathcal{P}_{i}(M)$ corresponding to M
for each $i \in\{1,2,3\}$. When H_{2} and H_{3} are returned to H, perfect path systems $\mathcal{P}_{i}(M)$ for $i=2$ and 3 are imposed into H. In this point of view, H has three perfect path systems $\mathcal{P}_{i}(M)$ for $i=1,2$ and 3 . For each path Q_{i} in $\mathcal{P}_{i}(M)$, its orientaion in $D(H, M)$ is a directed path. For convenience, we also use Q_{i} to represent its orientation; for an edge $e=x y$ in H, we also use $e=x y$ to represent an arc (i.e. directed edge) in $D(H, M)$ such that x and y are tail and head respectively.

In reference to the same H, we have the following three simple observations about each (directed or M-alternating) path in $\mathcal{P}_{i}(M)$ for $i=1,2$ and 3.

Observation 2.2. For each directed path $Q_{1} \in \mathcal{P}_{1}(M)$, all arcs of Q_{1} have directions \vec{i}, \vec{k} and $-\vec{j}$, and Q_{1} is a down path.

Observation 2.3. For each directed path $Q_{2} \in \mathcal{P}_{2}(M)$, all arcs of Q_{2} have directions \vec{i}, \vec{j} and $-\vec{k}$. So all vertices of Q_{2} are from right to left and the black (resp. white) vertices are from bottom to top along Q_{2}.

Observation 2.4. For each directed path $Q_{3} \in \mathcal{P}_{3}(M)$, all arcs of Q_{3} have directions \vec{j}, \vec{k} and $-\vec{i}$. So all vertices of Q_{3} are from left to right and the black (resp. white) vertices are from bottom to top along Q_{3}.

To prove our Theorem 1.1 we present some basic results on general graphs and topology. The following well-known Jordan curve theorem in the plane will be used repeatedly.

Theorem 2.5. [13] (Jordan curve theorem) Any simple closed curve D divides the points of the plane not on D into two distinct domains (with no points in common) of which D is the common boundary.

Equivalent definitions for a forcing set and an anti-forcing set of a perfect matching of a graph are described as follows.

Lemma 2.6. [1] Let M be a perfect matching of a graph G. Then an edge subset of M is a forcing set of M if and only if each M-alternating cycle intersects S.

Lemma 2.7. [11] Let G be a graph with a perfect matching M. Then $S \subseteq E(G) \backslash M$ is an anti-forcing set of M if and only if every M-alternating cycle intersects S.

The following gives relations between forcing and anti-forcing numbers of a graph.
Lemma 2.8. [11] Let G be a graph with a perfect matching M. Then $f(G, M) \leq$ $a f(G, M) \leq(\Delta-1) f(G, M)$, and thus $f(G) \leq a f(G)$.

3 Proof of Theorem 1.1

Our proof to Theorem 1.1 will be divided into three steps in this section. First we apply the three perfect path systems of $H\left(a_{1}, a_{2}, a_{3}\right)$ to get that the minimum forcing number of $H\left(a_{1}, a_{2}, a_{3}\right)$ has at least $\min \left\{a_{1}, a_{2}, a_{3}\right\}$. Then, by constructing a 3 -coordinate system of $H\left(a_{1}, a_{2}, a_{3}\right)$, we can find a special perfect matching M of it such that $a f\left(H\left(a_{1}, a_{2}, a_{3}\right), M\right)$ $\leq \min \left\{a_{1}, a_{2}, a_{3}\right\}$. That implies that $H\left(a_{1}, a_{2}, a_{3}\right)$ has the minimum anti-forcing number at most $\min \left\{a_{1}, a_{2}, a_{3}\right\}$. Finally, by combining a known result [11] stating that the minimum forcing number of a graph is equal to or less than its minimum anti-forcing number (see also Lemma 2.8) with the previous facts, we can directly get that the minimum forcing and anti-forcing numbers of $H\left(a_{1}, a_{2}, a_{3}\right)$ are both equal to $\min \left\{a_{1}, a_{2}, a_{3}\right\}$.

Lemma 3.1. Let M be a perfect matching of a hexagonal system H. If three paths $Q_{i} \in \mathcal{P}_{i}(M), i \in\{1,2,3\}$, pairwise intersect, then there is an M-alternating cycle of H formed by three subpaths on the three paths Q_{i}.

Proof. Since Q_{i} and Q_{j} are both M-alternating paths, $1 \leq i<j \leq 3$, they have at least one common edge belonging to M. Let $e_{1}=u_{1} v_{1}$ be a common edge of Q_{1} and Q_{2} so that $e_{1} \in M$. By Observations 2.2 and 2.3, e_{1} is of direction \vec{i}.

Claim 1. Any pair of Q_{1}, Q_{2} and Q_{3} contains a unique common edge.
Proof. We only consider Q_{1} and Q_{2}. The other cases are similar. Let $e=w u_{1}$ and $e^{\prime}=v_{1} w^{\prime}$ be two edges of Q_{1} adjacent to e_{1}, if they exist. Then e and e^{\prime} are both with direction $-\vec{j}$ and do not belong to Q_{2} by Observation 2.2, which implies that w and w^{\prime} lie on the right and on the left sides along the direction of Q_{2}, respectively. We can deduce that Q_{1} goes through Q_{2} always from the right to the left of Q_{2} as shown in Fig. 5(a). That implies that the subpath of Q_{1} from the peak to u_{1} lies entirely on the right side of Q_{2} and the subpath of Q_{1} from the v_{1} to the valley lies entirely on the left side of Q_{2}. Otherwise, we only need to consider the case that the latter does not holds. That is, the directed subpath Q_{1}^{\prime} of Q_{1} from w^{\prime} to the end enters in the right side of Q_{2}. By the Jordan curve theorem, Q_{1}^{\prime} intersects Q_{2} at least one point, and Q_{1}^{\prime} goes through Q_{2} from the left to the right of Q_{2}, a contradiction. So Q_{1} and Q_{2} have exactly one common edge.

(a) The proof of Claim 1.

(c) Case 2.

(b) Case 1 .

(d) An M-alternating cycle bounded by Q_{1}, Q_{2} and Q_{3}.

Figure 5. Illustration for the proof of Lemma 3.1.
By Claim 1, e_{1} is the common edge of Q_{1} and Q_{2}, and let $e_{2}=u_{2} v_{2}$ (resp. $e_{3}=u_{3} v_{3}$) be the common edge of Q_{2} and Q_{3} (resp. Q_{1} and Q_{3}). By Observations 2.2 to 2.4, e_{2} is of direction \vec{j}, and e_{3} is of direction \vec{k}. So e_{1}, e_{2} and e_{3} are pairwise different edges in M. So we know that the u_{i} and v_{i} receive black and white, $1 \leq i \leq 3$, respectively.

Since e_{i} and e_{i-1} are both in Q_{i}, we can get a directed sub-path $Q_{i}^{\prime \prime}$ of Q_{i}, connecting but not containing e_{i} and e_{i-1}, where $i=1,2,3$, and $e_{0}=e_{3}$. Then each $Q_{i}^{\prime \prime}$ is an M alternating path whose both end edges are not in M. So the first and final vertices of $Q_{i}^{\prime \prime}$ respectively belong to $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}\right\}$. By Claim 1, any pair of $Q_{1}^{\prime \prime}, Q_{2}^{\prime \prime}$ and $Q_{3}^{\prime \prime}$ has no common edges. Further we have the following claim.

Claim 2. Any pair of $Q_{1}^{\prime \prime}, Q_{2}^{\prime \prime}$ and $Q_{3}^{\prime \prime}$ has no common vertices.
Proof. For two vertices x and y in Q_{i} such that x appears before y along Q_{i}, let $Q_{i}[x, y]$ denote the (directed) subpath of Q_{i} from x to y. There are two cases to distinguish.

Case 1. e_{1} comes before e_{3} along the path Q_{1} (see Fig. 5(b)).
Then v_{1} lies above u_{3} and $Q_{1}^{\prime \prime}=Q_{1}\left[v_{1}, u_{3}\right]$. It suffices to prove that e_{i} is before e_{i-1} along the path Q_{i} for $i=2,3$, that is, $Q_{2}^{\prime \prime}=Q_{1}\left[v_{2}, u_{1}\right]$ and $Q_{3}^{\prime \prime}=Q_{3}\left[v_{3}, u_{2}\right]$. Since $e_{1}=u_{1} v_{1}$ is of direction \vec{i}, u_{1} is above v_{1}. The entire subpath of Q_{2} from v_{1} lies on the right of Q_{1} by Claim 1 and above v_{1} by Observation 2.3. Since $e_{3}=u_{3} v_{3}$ is of direction \vec{k}, u_{3} is above v_{3}. By Claim 1 and Observation 2.4, the entire subpath of Q_{3} to u_{3} lies on the right of Q_{1} and below u_{3}. So the subpath of Q_{2} from v_{1} and the subpath of Q_{3} to u_{3} are disjoint. Further, since Q_{2} and Q_{3} intersect at edge e_{2}, e_{2} is the common edge of the subpath of Q_{2} from the initial vertex to u_{1} and the subpath of Q_{3} from v_{3} to the final vertex. That implies that e_{3} appears before e_{2} along the path Q_{3} and Q_{2} first passes through e_{2} before e_{1}.

Case 2. e_{3} comes before e_{1} along the path Q_{1} (see Fig. 5(c)).
Then v_{3} is above u_{1} and $Q_{1}^{\prime \prime}=Q_{1}\left[v_{3}, u_{1}\right]$. Similar to Case 1, we just need to show that $Q_{2}^{\prime \prime}=Q_{2}\left[v_{1}, u_{2}\right]$ and $Q_{3}^{\prime \prime}=Q_{3}\left[v_{2}, u_{3}\right]$. Since u_{1} is above v_{1}. By Claim 1 and Observation 2.3, the entire subpath of Q_{2} to u_{1} lies on the left of Q_{1} and below u_{1}. Since u_{3} is above v_{3}. The entire subpath of Q_{3} from v_{3} lies on the left of Q_{1} and above v_{3} by Claim 1 and Observation 2.4. Thus, the subpath of Q_{2} to u_{1} and the subpath of Q_{3} from v_{3} are disjoint. That is, e_{2} is the common edge of the subpath of Q_{2} from v_{1} to the final vertex and the subpath of Q_{3} from the initial vertex to u_{3}. That implies that $Q_{2}^{\prime \prime}=Q_{2}\left[v_{1}, u_{2}\right]$ and $Q_{3}^{\prime \prime}=Q_{3}\left[v_{2}, u_{3}\right]$.

From Claim 2, we know that the end vertices of $Q_{1}^{\prime \prime}, Q_{2}^{\prime \prime}$ and $Q_{3}^{\prime \prime}$ are different. So we can find a directed cycle $e_{1} \cup Q_{1}^{\prime \prime} \cup e_{3} \cup Q_{3}^{\prime \prime} \cup e_{2} \cup Q_{2}^{\prime \prime}$, also an M-alternating cycle.

Let $H\left(a_{1}, a_{2}, a_{3}\right)$ be a CHS with a perfect matching M. Without loss of generality, we can assume that the number of peaks and valleys of H_{i} are both a_{i} for $i=1,2,3$. By Theorem 2.1 the number of paths in a perfect path system of H_{i} is a_{i}, that is $\left|\mathcal{P}_{i}(M)\right|=a_{i}$.

Lemma 3.2. Let $H\left(a_{1}, a_{2}, a_{3}\right)$ be a CHS with a perfect matching and $a_{1} \leq a_{2} \leq a_{3}$. Then $f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right) \geq a_{1}$.

Proof. Assume to the contrary that $f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right)<a_{1}$. Let M be a perfect matching of $H\left(a_{1}, a_{2}, a_{3}\right)$ with the minimum forcing number. Then M has a forcing set S with cardinality smaller than a_{1}. By Theorem 2.1 (ii), for each $i \in\{1,2,3\}, \mathcal{P}_{i}(M)$ consists
of a_{i} disjoint directed paths of $D(H, M)$. So there are three directed paths $Q_{1} \in \mathcal{P}_{1}(M)$, $Q_{2} \in \mathcal{P}_{2}(M)$ and $Q_{3} \in \mathcal{P}_{3}(M)$ which each contains no edges of S.

For each pair $\{i, j\} \subseteq\{1,2,3\}$, since both Q_{i} and Q_{j} are inside the boundary of H (a closed polygon), and their end vertices cross along the boundary, by Jordan curve theorem, Q_{i} and Q_{j} intersect at least one point. By Lemma 3.1, Q_{1}, Q_{2} and Q_{3} form an M-alternating cycle containing no edges of S, contradicting that S is a forcing set of M by Lemma 2.6. Thus, we have $f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right) \geq a_{1}$.

For any edge e of a graph G, we call it a 2-2 edge, if both end vertices of e have degree 2 in G. Obviously, $H\left(a_{1}, a_{2}, a_{3}\right)$ has exactly six 2-2 edges, and they are all on the border of $H\left(a_{1}, a_{2}, a_{3}\right)$. We label the six 2-2 edges by $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ in clockwise order along the border of $H\left(a_{1}, a_{2}, a_{3}\right)$. Moreover, e_{i} and e_{i+3} are parallel, where $i=1,2,3$.

Figure 6. Illustration for the proof of Lemma 3.4: three anti-forcing sets of a perfect matching of $H\left(a_{1}, a_{2}, a_{3}\right)$, where $a_{1}=2, a_{2}=4$ and $a_{3}=6$.

Lemma 3.3. [20, 23] Let H be a hexagonal system with a perfect matching M. Then for any M-alternating cycle C of H, there is an M-alternating hexagon in C with its interior.

Lemma 3.4. Let $H\left(a_{1}, a_{2}, a_{3}\right)$ be a CHS with a perfect matching and $a_{1} \leq a_{2} \leq a_{3}$. Then $a f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right) \leq a_{1}$.

Proof. Take rays $O A, O B$ and $O C$ that are perpendicular bisectors of 2-2 edges e_{1}, e_{3} and e_{5} respectively so that they intersect at the center O of some hexagon h (see Fig. 6). Then $O-A B C$ can be seen as a 3 -coordinate system of H, which divides the plane into three areas $A O B, B O C$ and $C O A$. Let $L_{A}\left(\right.$ resp. L_{B} and $\left.L_{C}\right)$ be the set of edges
of H intersecting $O A$ (resp. $O B$ and $O C$). Then the cardinalities of L_{A}, L_{B} and L_{C} respectively are a_{1}, a_{2} and a_{3}.

Let M be a perfect matching of H such that M does not contain an edge of L_{A}, L_{B} and L_{C}, and all edges of M in anyone of the three areas are parallel to each other, see Fig. 6. Then H contains exactly one M-alternating hexagon h whose center is O. For any M-alternating cycle C of H, by Lemma 3.3, h lies in the C with its interior, so O is a point in the interior of C. So each one of L_{A}, L_{B} and L_{C} intersects C. In addition, L_{A}, L_{B} and L_{C} are subsets of $E(H) \backslash M$. By Lemma 2.7, L_{A}, L_{B} and L_{C} are all anti-forcing sets of M. Hence we have that $a f(H) \leq a f(H, M) \leq a_{1}$.

Proof of Theorem 1.1. Without loss of generality, suppose that $a_{1}=\min \left\{a_{1}, a_{2}, a_{3}\right\}$. Combining Lemmas 3.2, 3.4 and 2.8, we have the following inequalities.

$$
a_{1} \leq f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right) \leq a f\left(H\left(a_{1}, a_{2}, a_{3}\right)\right) \leq a_{1},
$$

which implies that all the above equalities hold.

References

[1] P. Adams, M. Mahdian, E. S. Mahmoodian, On the forced matching numbers of bipartite graphs, Discr. Math. 281 (2004) 1-12.
[2] P. Afshani, H. Hatami, E. S. Mahmoodian, On the spectrum of the forcing matching number of graphs, Australas. J. Comb. 30 (2004) 147-160.
[3] O. Bodroža, I. Gutman, S. J. Cyvin, R. Tošić, Number of Kekulé structures of hexagon-shaped benzenoids, J. Math. Chem. 2 (1988) 287-298.
[4] E. Clar, The Aromatic Sextet, Wiley, London, 1972.
[5] S. J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, SpringerVerlag, Berlin, 1988.
[6] A. A. Diwan, The minimum forcing number of perfect matchings in the hypercube, Discr. Math. 342 (2019) 1060-1062.
[7] I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
[8] F. Harary, D. J. Klein, T. P. Živković, Graphical properties of polyhexes: perfect matching vector and forcing, J. Math. Chem. 6 (1991) 295-306.
[9] D. J. Klein, M. Randić, Innate degree of freedom of a graph, J. Comput. Chem. 8 (1987) 516-521.
[10] D. J. Klein, V. Rosenfeld, Forcing, freedom, and uniqueness in graph theory and chemistry, Croat. Chem. Acta 87 (2014) 49-59.
[11] H. Lei, Y. Yeh, H. Zhang, Anti-forcing numbers of perfect matchings of graphs, Discr. Appl. Math. 202 (2016) 95-105.
[12] X. Li, Hexagonal systems with forcing single edges, Discr. Appl. Math. 72 (1997) 295-301.
[13] E. E. Moise, Geometric Topology in Dimensions 2 and 3, Springer, New York, 1977, pp. 31-41.
[14] L. Pachter, P. Kim, Forcing matchings on square grids, Discr. Math. 190 (1998) 287-294.
[15] H. Sachs, Perfect matchings in hexagonal systems, Combinatorica 4 (1984) 89-99.
[16] L. Shi, H. Wang, H. Zhang, On the maximum forcing and anti-forcing numbers of (4, 6)-fullerenes, Discr. Appl. Math. 233 (2017) 187-194.
[17] D. Vukičević, N. Trinajstić, On the anti-forcing number of benzenoids, J. Math. Chem. 42 (2007) 575-583.
[18] H. Wang, D. Ye, H. Zhang, The forcing number of toroidal polyhexes, J. Math. Chem. 43 (2008) 457-475.
[19] L. Xu, H. Bian, F. Zhang, Maximum forcing number of hexagonal systems, MATCH Commun. Math. Comput. Chem. 70 (2013) 493-500.
[20] F. Zhang, X.Guo, R. Chen, Z-transformation graphs of perfect matchings of hexagonal systems, Discr. Math. 72 (1988) 405-415.
[21] F. Zhang, X. Li, Hexagonal systems with forcing edges, Discr. Math. 140 (1995) 253-263.
[22] H. Zhang, The Clar formula of hexagonal polyhexes, J. Xinjiang Univ. Natur. Sci. 12 (1995) 1-9.
[23] H. Zhang, F. Zhang, Plane elementary bipartite graphs, Discr. Appl. Math. 105 (2000) 473-490.
[24] H. Zhang, S. Zhao, R. Lin, The forcing polynomial of catacondensed hexagonal systems, MATCH Commun. Math. Comput. Chem. 73 (2015) 473-490.
[25] S. Zhao, H. Zhang, Forcing polynomials of benzenoid parallelogram and its related benzenoids, Appl. Math. Comput. 284 (2016) 209-218.
[26] S. Zhao, H. Zhang, Anti-forcing polynomials for benzenoid systems with forcing edges, Discr. Appl. Math. 250 (2018) 342-356.
[27] X. Zhou, H. Zhang, Clar sets and maximum forcing numbers of hexagonal systems, MATCH Commun. Math. Comput. Chem. 74 (2015) 161-174.
[28] X. Zhou, H. Zhang, A minmax result for perfect matchins of a polyomino graph, Discr. Appl. Math. 206 (2016) 165-171.
[29] H. Zhu, The Minimum Forcing Number of Convex Hexagonal Systems, (in Chinese with an English summary), Bachelor thesis, Lanzhou Univ., 2017.

[^0]: *This work is supported by NSFC (Grant No. 11871256)
 ${ }^{\dagger}$ Corresponding author.

