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Abstract

A convex hexagonal system (CHS) is a hexagonal system whose inner dual has

the convex polygonal boundary. The minimum forcing number of a graph G is the

smallest cardinality of a matching of G contained in a unique perfect matching.

The minimum anti-forcing number of G is the smallest cardinality of an edge sub-

set of G whose deletion results in a graph with exactly one perfect matching. In

this paper, we proved that for any convex hexagonal system H(a1, a2, a3) with a

perfect matching, its minimum forcing and anti-forcing numbers are both equal to

min{a1, a2, a3} by applying perfect path systems.

1 Introduction

A hexagonal system, also called benzenoid system, is a 2-connected plane bipartite

graph so that every interior face is a regular hexagon. A perfect matching of a graph is

a set of disjoint edges covering all vertices of it. This concept coincides with that of a

Kekulé structure in organic chemistry. The carbon-skeleton of a benzenoid hydrocarbon

may be represented by a hexagonal system with a perfect matching. Kekulé structures of

hexagonal systems have been extensively investigated; for example, see [5, 7].
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For a perfect matching M in a graph G, an edge subset S ⊆M is called a forcing set of

M in G if G−V (S) contains exactly one perfect matching. The smallest cardinality over

all forcing sets of M is the forcing number of M , denoted by f(G,M). The minimum and

maximum values of forcing numbers of all perfect matchings of G are called the minimum

and maximum forcing number of G, respectively, denoted by f(G) and F (G). The concept

of “forcing number ” in perfect matchings was first introduced by Randić and Klein [9]

under name “innate degree of freedom”, and then renamed by Harary et al. [8].

Forcing number of a Kekulé structure of a benzenoid system is related closely to

resonance theory. According to Clar’s aromatic sextet theory [4], for any two isometric

benzenoid hydrocarbons, the one with larger Clar number is more stable. Xu et al.

[19] showed that the maximum forcing number of a hexagonal system H is equal to its

Clar number (or resonant number). Further Zhou and Zhang [27] showed that for each

perfect matching M of H with the maximum forcing number, the maximum set of disjoint

M -alternating hexagons has the size equal to the Clar number. For polyomino graphs

and (4,6)-fullerenes, the former assertion also holds (cf. [16, 28]). Zhang and Li [21]

characterized a hexagonal system with a forcing edge. Wang et al. [18] gave a linear

algorithm to compute the minimum forcing number of a toroidal polyhex. Recently,

Diwan [6] proved that for a hypercube Qn, f(Qn) = 2n−2, which was ever conjectured by

Pachter and Kim [14]. Afshani et al. [2] proved that determining the minimum forcing

number is NP-complete for bipartite graphs with maximum degree 4.

As early as 1997, Li [12] characterized hexagonal systems with a forcing single edge

(i.e. anti-forcing edge). In 2007, Vukičević and Trinajstić [17] proposed the anti-forcing

number of a graph. Lei et al. [11] and Klein and Rosenfeld [10] independently generalized

the idea of “anti-forcing” to every perfect matching. For a perfect matching M in a graph

G, a set S of edges of G not in M is called an anti-forcing set of M if G − S has a

unique perfect matching M . The cardinality of a smallest anti-forcing set of M is called

the anti-forcing number of M , denoted by af(G,M). The minimum (resp. maximum)

anti-forcing number of G is denoted by af(G) (resp. Af(G)). Lei et al. [11] and Shi et al.

[16] respectively proved that the maximum anti-forcing numbers of hexagonal systems and

(4,6)-fullerenes are equal to their Fries numbers. The previous paper also characterized

the hexagonal systems H with af(H) = 2.

The inner dual graph T (H) of a hexagonal system H is the plane graph whose vertices
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consist of the centers of all hexagons of H, and two centers are joined by a segment as an

edge of T (H) if and only if the corresponding two hexagons have a common edge in H.

Obviously, T (H) is a triangulation graph.
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Figure 1. A general CHS H(a1, a2, a3, a4, a5, a6).

A hexagonal systems is called convex if the boundary of its inner dual graph bounds

a convex point set in the plane (see Fig. 1). Next a convex hexagonal systems will be

abbreviated as CHS. Cyvin [5] showed that a CHS has a perfect matching if and only

if it has equal opposite sides, that is, a1 = a4, a2 = a5 and a3 = a6. Such a CHS can

be represented by H(a1, a2, a3). For example, see Fig. 2; some special cases are linear

hexagonal chain H(1, 1, a3) and parallelogram HS H(1, a2, a3) (see Fig. 2(a) and 2(b)).
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(d) H(3, 5, 7)

Figure 2. Various examples for CHS H(a1, a2, a3).
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In the following, we will discuss those CHS with at least one perfect matching. For

H(a1, a2, a3), Cyvin [5] and Bodroža et al. [3] gave and proved a formula for the number of

Kekulé structures. Zhang [22] got an expression of the Clar number, thus the maximum

forcing number. For benzenoid parallelogram H(1, a2, a3), Zhang and Li [21] and Li

[12] showed that its minimum forcing numer and anti-forcing number are both equal to

1 respectively, and Zhao and Zhang [25, 26] derived explicit expressions of its forcing

polynomial and anti-forcing polynomials by generating functions. For the definition of

the forcing polynomial of a graph, see [24]. Zhu [29] showed that f(H(2, 2, n)) = 2 for all

n ≥ 2, and f(H(3, 3, n)) = 3 for all n ≥ 3.

In this paper, we obtain the minimum forcing and anti-forcing numbers of H(a1, a2, a3)

by applying the perfect path systems.

Theorem 1.1. Let H(a1, a2, a3) be a CHS. Then f(H(a1, a2, a3)) = af(H(a1, a2, a3)) =

min{a1, a2, a3}.

2 Preliminary

In this section, we will introduce some notations and definitions. Let H be a hexagonal

system embedded in the plane with some edges vertical. A peak (valley) of H is a vertex,

all neighbors of which are below (above) it. Surely, all peaks and valleys have degree 2.

Since H is a bipartite graph, its vertices can be colored white and black so that each pair

of adjacent vertices receives distinct colors. We make a convention that all peaks (resp.

valleys) are black (resp. white).

A monotone path system of H is a set of disjoint down paths of H, in which each path

issues from a peak and ends at a valley. A perfect path system of H is a monotone path

system covering all peaks and valleys of H.

Let M be a perfect matching of a graph G. We call a cycle (or path) of G is M-

alternating, if its edges appear alternately in M or not. Sachs [15] gave a one-to-one

correspondence between the perfect matchings and the perfect path systems of a hexagonal

system.

Theorem 2.1. [15] Let H be a hexagonal system. Then H has a perfect matching if and

only if it has a perfect path system. Further their one-to-one correspondence is given as

follows (see Fig. 3).
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(i) For a perfect path system P , all non-vertical edges in and vertical edges not in the

paths of P form a perfect matching of H.

(ii) If a perfect matching M is given, then we can delete all oblique edges not in M

and all vertical edges in M together with their end vertices to obtain a perfect path

system, where every path is an M -alternating path.

1
p

2
p

3
p

4
p

1
v

2
v

3
v

4
v

Figure 3. A perfect path system of H corresponding to a perfect matching and

consisting of monotone paths from pi to vi, 1 ≤ i ≤ 4.

Let M be a perfect matching of an HS H. Let D(H,M) be a digraph obtained from

H by directing every edge of M from black to white end-vertices, and directing each

edge in E(H)\M from white to black end-vertices. Then there is a natural one-to-one

corresponding between the directed cycles (resp. paths) and M -alternating cycles (resp.

paths). Obviously, all arcs (directed edges) in D(H,M) can be divided into six directions

as shown in Fig. 4.
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Figure 4. Six edge directions of a hexagonal system H.

An HS H has three plane drawings H1 (the same as H), H2 and H3 such that they

always have vertical edges and all peaks and valleys are black and white respectively.

More precisely, rotating H 120 degrees counterclockwise and clockwise, we get H2 and H3

respectively. By Theorem 2.1, Hi has a perfect path system Pi(M) corresponding to M
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for each i ∈ {1, 2, 3}. When H2 and H3 are returned to H, perfect path systems Pi(M)

for i = 2 and 3 are imposed into H. In this point of view, H has three perfect path

systems Pi(M) for i = 1, 2 and 3. For each path Qi in Pi(M), its orientaion in D(H,M)

is a directed path. For convenience, we also use Qi to represent its orientation; for an

edge e = xy in H, we also use e = xy to represent an arc (i.e. directed edge) in D(H,M)

such that x and y are tail and head respectively.

In reference to the same H, we have the following three simple observations about

each (directed or M -alternating) path in Pi(M) for i = 1, 2 and 3.

Observation 2.2. For each directed path Q1 ∈ P1(M), all arcs of Q1 have directions ~i,

~k and −~j, and Q1 is a down path.

Observation 2.3. For each directed path Q2 ∈ P2(M), all arcs of Q2 have directions ~i,

~j and −~k. So all vertices of Q2 are from right to left and the black (resp. white) vertices

are from bottom to top along Q2.

Observation 2.4. For each directed path Q3 ∈ P3(M), all arcs of Q3 have directions ~j,

~k and −~i. So all vertices of Q3 are from left to right and the black (resp. white) vertices

are from bottom to top along Q3.

To prove our Theorem 1.1 we present some basic results on general graphs and topol-

ogy. The following well-known Jordan curve theorem in the plane will be used repeatedly.

Theorem 2.5. [13] (Jordan curve theorem) Any simple closed curve D divides the points

of the plane not on D into two distinct domains (with no points in common) of which D

is the common boundary.

Equivalent definitions for a forcing set and an anti-forcing set of a perfect matching

of a graph are described as follows.

Lemma 2.6. [1] Let M be a perfect matching of a graph G. Then an edge subset of M

is a forcing set of M if and only if each M -alternating cycle intersects S.

Lemma 2.7. [11] Let G be a graph with a perfect matching M . Then S ⊆ E(G)\M is

an anti-forcing set of M if and only if every M -alternating cycle intersects S.

The following gives relations between forcing and anti-forcing numbers of a graph.

Lemma 2.8. [11] Let G be a graph with a perfect matching M . Then f(G,M) ≤

af(G,M) ≤ (∆− 1)f(G,M), and thus f(G) ≤ af(G).
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3 Proof of Theorem 1.1

Our proof to Theorem 1.1 will be divided into three steps in this section. First we apply

the three perfect path systems of H(a1, a2, a3) to get that the minimum forcing number of

H(a1, a2, a3) has at least min{a1, a2, a3}. Then, by constructing a 3-coordinate system of

H(a1, a2, a3), we can find a special perfect matching M of it such that af(H(a1, a2, a3),M)

≤min{a1, a2, a3}. That implies that H(a1, a2, a3) has the minimum anti-forcing number at

most min{a1, a2, a3}. Finally, by combining a known result [11] stating that the minimum

forcing number of a graph is equal to or less than its minimum anti-forcing number (see

also Lemma 2.8) with the previous facts, we can directly get that the minimum forcing

and anti-forcing numbers of H(a1, a2, a3) are both equal to min{a1, a2, a3}.

Lemma 3.1. Let M be a perfect matching of a hexagonal system H. If three paths

Qi ∈ Pi(M), i ∈ {1, 2, 3}, pairwise intersect, then there is an M -alternating cycle of H

formed by three subpaths on the three paths Qi.

Proof. Since Qi and Qj are both M -alternating paths, 1 ≤ i < j ≤ 3, they have at least

one common edge belonging to M . Let e1 = u1v1 be a common edge of Q1 and Q2 so

that e1 ∈M . By Observations 2.2 and 2.3, e1 is of direction ~i.

Claim 1. Any pair of Q1, Q2 and Q3 contains a unique common edge.

Proof. We only consider Q1 and Q2. The other cases are similar. Let e = wu1 and

e′ = v1w
′ be two edges of Q1 adjacent to e1, if they exist. Then e and e′ are both with

direction −~j and do not belong to Q2 by Observation 2.2, which implies that w and w′ lie

on the right and on the left sides along the direction of Q2, respectively. We can deduce

that Q1 goes through Q2 always from the right to the left of Q2 as shown in Fig. 5(a).

That implies that the subpath of Q1 from the peak to u1 lies entirely on the right side

of Q2 and the subpath of Q1 from the v1 to the valley lies entirely on the left side of

Q2. Otherwise, we only need to consider the case that the latter does not holds. That is,

the directed subpath Q′1 of Q1 from w′ to the end enters in the right side of Q2. By the

Jordan curve theorem, Q′1 intersects Q2 at least one point, and Q′1 goes through Q2 from

the left to the right of Q2, a contradiction. So Q1 and Q2 have exactly one common edge.
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(d) An M -alternating cycle bounded by

Q1, Q2 and Q3.

Figure 5. Illustration for the proof of Lemma 3.1.

By Claim 1, e1 is the common edge of Q1 and Q2, and let e2 = u2v2 (resp. e3 = u3v3)

be the common edge of Q2 and Q3 (resp. Q1 and Q3). By Observations 2.2 to 2.4, e2 is

of direction ~j, and e3 is of direction ~k. So e1, e2 and e3 are pairwise different edges in M .

So we know that the ui and vi receive black and white, 1 ≤ i ≤ 3, respectively.

Since ei and ei−1 are both in Qi, we can get a directed sub-path Q′′i of Qi, connecting

but not containing ei and ei−1, where i = 1, 2, 3, and e0 = e3. Then each Q′′i is an M -

alternating path whose both end edges are not in M . So the first and final vertices of Q′′i

respectively belong to {v1, v2, v3} and {u1, u2, u3}. By Claim 1, any pair of Q′′1, Q′′2 and

Q′′3 has no common edges. Further we have the following claim.

Claim 2. Any pair of Q′′1, Q′′2 and Q′′3 has no common vertices.

Proof. For two vertices x and y in Qi such that x appears before y along Qi, let Qi[x, y]

denote the (directed) subpath of Qi from x to y. There are two cases to distinguish.
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Case 1. e1 comes before e3 along the path Q1 (see Fig. 5(b)).

Then v1 lies above u3 and Q′′1 = Q1[v1, u3]. It suffices to prove that ei is before ei−1

along the path Qi for i = 2, 3, that is, Q′′2 = Q1[v2, u1] and Q′′3 = Q3[v3, u2]. Since

e1 = u1v1 is of direction ~i, u1 is above v1. The entire subpath of Q2 from v1 lies on the

right of Q1 by Claim 1 and above v1 by Observation 2.3. Since e3 = u3v3 is of direction

~k, u3 is above v3. By Claim 1 and Observation 2.4, the entire subpath of Q3 to u3 lies

on the right of Q1 and below u3. So the subpath of Q2 from v1 and the subpath of Q3

to u3 are disjoint. Further, since Q2 and Q3 intersect at edge e2, e2 is the common edge

of the subpath of Q2 from the initial vertex to u1 and the subpath of Q3 from v3 to the

final vertex. That implies that e3 appears before e2 along the path Q3 and Q2 first passes

through e2 before e1.

Case 2. e3 comes before e1 along the path Q1 (see Fig. 5(c)).

Then v3 is above u1 and Q′′1 = Q1[v3, u1]. Similar to Case 1, we just need to show that

Q′′2 = Q2[v1, u2] and Q′′3 = Q3[v2, u3]. Since u1 is above v1. By Claim 1 and Observation

2.3, the entire subpath of Q2 to u1 lies on the left of Q1 and below u1. Since u3 is above

v3. The entire subpath of Q3 from v3 lies on the left of Q1 and above v3 by Claim 1

and Observation 2.4. Thus, the subpath of Q2 to u1 and the subpath of Q3 from v3 are

disjoint. That is, e2 is the common edge of the subpath of Q2 from v1 to the final vertex

and the subpath of Q3 from the initial vertex to u3. That implies that Q′′2 = Q2[v1, u2]

and Q′′3 = Q3[v2, u3].

From Claim 2, we know that the end vertices of Q′′1, Q′′2 and Q′′3 are different. So we

can find a directed cycle e1 ∪Q′′1 ∪ e3 ∪Q′′3 ∪ e2 ∪Q′′2, also an M -alternating cycle.

Let H(a1, a2, a3) be a CHS with a perfect matching M . Without loss of generality,

we can assume that the number of peaks and valleys of Hi are both ai for i = 1, 2, 3. By

Theorem 2.1 the number of paths in a perfect path system of Hi is ai, that is |Pi(M)| = ai.

Lemma 3.2. Let H(a1, a2, a3) be a CHS with a perfect matching and a1 ≤ a2 ≤ a3.

Then f(H(a1, a2, a3)) ≥ a1.

Proof. Assume to the contrary that f(H(a1, a2, a3)) < a1. Let M be a perfect matching

of H(a1, a2, a3) with the minimum forcing number. Then M has a forcing set S with

cardinality smaller than a1. By Theorem 2.1 (ii), for each i ∈ {1, 2, 3}, Pi(M) consists
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of ai disjoint directed paths of D(H,M). So there are three directed paths Q1 ∈ P1(M),

Q2 ∈ P2(M) and Q3 ∈ P3(M) which each contains no edges of S.

For each pair {i, j} ⊆ {1, 2, 3}, since both Qi and Qj are inside the boundary of H

(a closed polygon), and their end vertices cross along the boundary, by Jordan curve

theorem, Qi and Qj intersect at least one point. By Lemma 3.1, Q1, Q2 and Q3 form an

M -alternating cycle containing no edges of S, contradicting that S is a forcing set of M

by Lemma 2.6. Thus, we have f(H(a1, a2, a3)) ≥ a1.

For any edge e of a graph G, we call it a 2-2 edge, if both end vertices of e have degree

2 in G. Obviously, H(a1, a2, a3) has exactly six 2-2 edges, and they are all on the border

of H(a1, a2, a3). We label the six 2-2 edges by e1, e2, e3, e4, e5, e6 in clockwise order along

the border of H(a1, a2, a3). Moreover, ei and ei+3 are parallel, where i = 1, 2, 3.
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Figure 6. Illustration for the proof of Lemma 3.4: three anti-forcing sets of a perfect

matching of H(a1, a2, a3), where a1 = 2, a2 = 4 and a3 = 6.

Lemma 3.3. [20, 23] Let H be a hexagonal system with a perfect matching M . Then for

any M -alternating cycle C of H, there is an M -alternating hexagon in C with its interior.

Lemma 3.4. Let H(a1, a2, a3) be a CHS with a perfect matching and a1 ≤ a2 ≤ a3.

Then af(H(a1, a2, a3)) ≤ a1.

Proof. Take rays OA, OB and OC that are perpendicular bisectors of 2-2 edges e1, e3

and e5 respectively so that they intersect at the center O of some hexagon h (see Fig.

6). Then O − ABC can be seen as a 3-coordinate system of H, which divides the plane

into three areas AOB, BOC and COA. Let LA (resp. LB and LC) be the set of edges
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of H intersecting OA (resp. OB and OC). Then the cardinalities of LA, LB and LC

respectively are a1, a2 and a3.

Let M be a perfect matching of H such that M does not contain an edge of LA, LB

and LC , and all edges of M in anyone of the three areas are parallel to each other, see

Fig. 6. Then H contains exactly one M -alternating hexagon h whose center is O. For

any M -alternating cycle C of H, by Lemma 3.3, h lies in the C with its interior, so O is

a point in the interior of C. So each one of LA, LB and LC intersects C. In addition, LA,

LB and LC are subsets of E(H)\M . By Lemma 2.7, LA, LB and LC are all anti-forcing

sets of M . Hence we have that af(H) ≤ af(H,M) ≤ a1.

Proof of Theorem 1.1. Without loss of generality, suppose that a1 = min{a1, a2, a3}.

Combining Lemmas 3.2, 3.4 and 2.8, we have the following inequalities.

a1 ≤ f(H(a1, a2, a3)) ≤ af(H(a1, a2, a3)) ≤ a1,

which implies that all the above equalities hold.
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