On the Maximal General $A B C$ Index of Graphs with Fixed Maximum Degree

Xuegong Tan ${ }^{1}$, Muhuo Liu ${ }^{2}$, Jianping Liu ${ }^{3}$
${ }^{1}$ The College of Chinese Language and Culture, Jinan University, Guangzhou, 510610, China
tanxuegong@hwy.jnu.edu.cn
${ }^{2}$ Department of Mathematics, South China Agricultural University, Guangzhou, 510642, China
liumuhuo@163.com (Corresponding author)
${ }^{3}$ College of Mathematics and Computer Science,
Fuzhou University, Fuzhou 350108, P.R. China
ljping010@163.com

(Received June 10, 2020)

Abstract

As a generalization of the famous atom-bond connectivity index $A B C(G)$, the general atom-bound connectivity index of a graph $G, A B C_{\alpha}(G)$, is denoted by $$
A B C_{\alpha}(G)=\sum_{u v \in E(G)}\left(\frac{d_{G}(u)+d_{G}(v)-2}{d_{G}(u) d_{G}(v)}\right)^{\alpha} \text { for any } \alpha \in \mathbb{R} \backslash\{0\} .
$$

The (general) atom-bound connectivity index has been shown to be a useful topological index and has received more and more attention recently. In this paper, we show that $A B C_{\alpha}(G+u v)>A B C_{\alpha}(G)$ holds for any two non-adjacent vertices u and v of a graph G with $d_{G}(u)+d_{G}(v) \geq 1$ for $0<\alpha \leq \frac{1}{2}$. Moreover, by applying this new property, we determine the maximum value of $A B C_{\alpha}$ together with the corresponding extremal graphs in the class of graphs with n vertices and maximum degree Δ for $0<\alpha \leq \frac{1}{2}$.

1 Introduction

Throughout this paper, we only consider undirected simple graphs, and $G=(V, E)$ is a simple graph. Let $d_{G}(u)$ and $N_{G}(x)$, respectively, be the degree and neighbor set of vertex u in G. Specially, $\Delta=\Delta(G)$ and $\delta=\delta(G)$, respectively, denotes the maximum
and minimum degree of G. If $\Delta=\delta$, then G is called a regular graph. As in [3], if $\delta<\Delta$ and G contains exactly $|V(G)|-1$ vertices of degree Δ and one vertex of degree δ, then G is called a (Δ, δ)-quasi-regular graph.

To study the strain energy of cycloalkanes and the stability of alkanes, E. Estrada et al. [4] put forward the notation of atom-bond connectivity index, $A B C(G)$ for a graph G, where

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{G}(u)+d_{G}(v)-2}{d_{G}(u) d_{G}(v)}} .
$$

Later, to better understand the correlation properties of the atom-bond connectivity index for the heat of formation of alkanes, B. Furtula et al. [7] generalized the atom-bond connectivity index to the general atom-bond connectivity index $A B C_{\alpha}(G)$, where

$$
\begin{equation*}
A B C_{\alpha}(G)=\sum_{u v \in E(G)}\left(\frac{d_{G}(u)+d_{G}(v)-2}{d_{G}(u) d_{G}(v)}\right)^{\alpha} \text { for any } \alpha \in \mathbb{R} \backslash\{0\} \tag{1}
\end{equation*}
$$

It is easily checked that $A B C(G)=A B C_{\frac{1}{2}}(G)$.
Throughout this paper, denote by

$$
\alpha_{1}=\frac{\log \left(\frac{2 \Delta-2}{2 \Delta-3}\right)}{\log \left(\frac{\Delta^{2}}{4 \Delta-4}\right)}, \alpha_{2}=\frac{\log \left(\frac{4 \Delta-5}{4 \Delta-6}\right)}{\log \left(\frac{\Delta^{2}}{4 \Delta-4}\right)}, \text { and } \alpha_{3}=\frac{\log (\Delta-1)}{\log \left(\frac{\Delta(2 \Delta-3)}{2(\Delta-1)^{2}}\right)} .
$$

Let $\mathcal{S}(n, \Delta)$ be the set of graphs with n vertices and maximum degree Δ. Recently, the research on extremal problem of (general) atom-bond connectivity index has received much attention $[2,3,5,6,8,9]$. In this line, Chen et al. [2] showed the following useful property of $A B C_{\alpha}$ for connected graphs.

Theorem 1.1. [2] Let G be a connected graph with two non-adjacent vertices u and v. If $\alpha \leq 1 / 2$ and $\alpha \neq 0$, then $A B C_{\alpha}(G+u v)>A B C_{\alpha}(G)$.

In this paper, we will extent Theorem 1.1 to general graphs for $0<\alpha \leq 1 / 2$.
Theorem 1.2. Let G be a graph with two non-adjacent vertices u and v. If $0<\alpha \leq 1 / 2$, then $A B C_{\alpha}(G+u v) \geq A B C_{\alpha}(G)$, where the equality holds if and only if u and v are two isolated vertices of G.

Except for this, we shall consider the maximum general atom-bond connectivity index in the class of $\mathcal{S}(n, \Delta)$. If $\Delta=1$, then $\mathcal{S}(n, \Delta)$ is the set of graphs with each component being either an edge or an isolated vertex. If $\Delta=2$, then $\mathcal{S}(n, \Delta)$ is the set of graphs with each component being either a cycle or a path or an isolated vertex. Thus, we always suppose that $\Delta \geq 3$ in the following.

Theorem 1.3. [3] Let G be a graph of $\mathcal{S}(n, \Delta)$, where $3 \leq \Delta \leq n-1$.
(i) If Δn is even and $\alpha<\alpha_{1}$, then

$$
A B C_{\alpha}(G) \leq \frac{n \Delta}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}
$$

with equality if and only if G is regular.
(ii) If Δn is odd and $0<\alpha \leq \alpha_{2}$, then

$$
A B C_{\alpha}(G) \leq \frac{\Delta n-2 \Delta+1}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}+(\Delta-1)\left(\frac{2 \Delta-3}{\Delta(\Delta-1)}\right)^{\alpha}
$$

with equality if and only if G is $(\Delta, \Delta-1)$-quasi-regular.
(iii) If Δn is odd and $\alpha<0$, then

$$
A B C_{\alpha}(G) \leq \max \left\{\frac{\Delta(n-1)-2 d}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}+2 d\left(\frac{\Delta+2 d-2}{2 d \Delta}\right)^{\alpha}: 1 \leq d \leq \frac{\Delta-1}{2}\right\} .
$$

(iv) If Δn is odd and $\alpha \leq-\alpha_{3}$, then

$$
A B C_{\alpha}(G) \leq \frac{\Delta(n-1)-2}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}+2^{1-\alpha}
$$

with equality if and only if G is $(\Delta, 2)$-quasi-regular.
A chemical graph is a connected graph with maximum degree $\Delta \leq 4$. Let $\mathcal{C}(n, \Delta)$ be the class of connected chemical graphs with n vertices and maximum degree Δ. Except for Theorem 1.3 (which is not necessary connected), Das et al. [3] also determined the extremal maximum graphs in the class of $\mathcal{C}(n, \Delta)$, that is,

Theorem 1.4. [3] Suppose that $3 \leq \Delta \leq 4$ and $\alpha \leq \frac{1}{2}$ with $\alpha \neq 0$.
(i) If Δn is even, then the graphs in $\mathcal{C}(n, \Delta)$ that maximize the $A B C_{\alpha}$ index are exactly the connected regular graphs.
(ii) If Δn is odd, then the graphs in $\mathcal{C}(n, \Delta)$ that maximize the $A B C_{\alpha}$ index are exactly the connected $(\Delta, \Delta-1)$-quasi-regular graphs.

Note that

$$
\lim _{\Delta \rightarrow+\infty} \alpha_{1}=\lim _{\Delta \rightarrow+\infty} \alpha_{2}=0, \text { and } \lim _{\Delta \rightarrow+\infty} \alpha_{3}=+\infty
$$

By comparing the results of Theorems 1.3 and 1.4 and since $A B C(G)=A B C_{\frac{1}{2}}(G)$, we will consider the similar problem for $A B C_{\alpha}$ in the case $0<\alpha \leq 1 / 2$, that is,

Theorem 1.5. Let $G \in \mathcal{S}(n, \Delta)$, where $3 \leq \Delta \leq n-1$, and providing that $0<\alpha \leq 1 / 2$.
(i) If Δn is even, then

$$
A B C_{\alpha}(G) \leq \frac{n \Delta}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{2}
$$

where the equality holds if and only if G is regular.
(ii) If Δn is odd, then

$$
A B C_{\alpha}(G) \leq \frac{\Delta(n-2)+1}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}+(\Delta-1)\left(\frac{2 \Delta-3}{\Delta(\Delta-1)}\right)^{\alpha}
$$

where the equality holds if and only if G is $(\Delta, \Delta-1)$-quasi-regular.
The extremal graphs of Theorem 1.5 must exist, as we have
Proposition 1.6. [1] Suppose that $2 \leq k \leq n-1$.
(i) If $k n$ is even, then there is a connected k-regular graph with n vertices.
(ii) If $k n$ is odd, then there is a connected ($k, k-1$)-quasi-regular graph with n vertices.

2 The proof of Theorem 1.2

This section is dedicated to the proof of Theorem 1.2. Hereafter, denote by

$$
\Psi(x, y)=\left(\frac{x+y-1}{(x+1) y}\right)^{\alpha}-\left(\frac{x+y-2}{x y}\right)^{\alpha} .
$$

Lemma 2.1. Let x, y and α be three real numbers. If $x \geq 1, y>0$ and $0<\alpha<1$, then

$$
\begin{equation*}
\Psi(x, y)>\frac{-\alpha}{x(x+1)^{\alpha}} . \tag{2}
\end{equation*}
$$

Proof. If $y=2$, then $\Psi(x, y)=0$, and so (2) holds. Next, we suppose that $y \neq 2$. To show (2), we define $\Phi(z)=z^{\alpha}$, let $z_{1}=\frac{x+y-1}{(x+1) y}$ and $z_{2}=\frac{x+y-2}{x y}$.

By the Lagrange Mean Value Theorem and since

$$
z_{1}-z_{2}=\frac{x+y-1}{(x+1) y}-\frac{x+y-2}{x y}=\frac{2-y}{x y(x+1)},
$$

we have

$$
\begin{equation*}
\Psi(x, y)=\Phi\left(z_{1}\right)-\Phi\left(z_{2}\right)=\alpha\left(z_{1}-z_{2}\right) \xi^{\alpha-1}=\frac{\alpha(2-y)}{x y(x+1)} \xi^{\alpha-1} \tag{3}
\end{equation*}
$$

where $\xi \in\left(z_{2}, z_{1}\right)$ if $0<y<2$, and $\xi \in\left(z_{1}, z_{2}\right)$ if $y>2$.
If $0<y<2$, then $\Phi\left(z_{1}\right)-\Phi\left(z_{2}\right)>0$ by (3), and thus (3) implies that (2) holds.

If $y>2$, then (3) implies that

$$
\begin{aligned}
\Phi\left(z_{1}\right)-\Phi\left(z_{2}\right) & >\frac{\alpha(2-y)}{x y(x+1)}\left(\frac{x+y-1}{(x+1) y}\right)^{\alpha-1} \\
& =\frac{\alpha(2-y)}{x(x+y-1)(x+1)^{\alpha}}\left(\frac{x+y-1}{y}\right)^{\alpha} \geq \frac{\alpha(2-y)}{x y(x+1)^{\alpha}}>\frac{-\alpha}{x(x+1)^{\alpha}}
\end{aligned}
$$

and thus (3) implies that (2) holds.
Lemma 2.2. Let x and α be two real numbers. If $x \geq 3$ and $0<\alpha \leq \frac{1}{2}$, then

$$
\frac{3}{2}\left(\frac{1}{2}\right)^{\alpha}>\left(\frac{x-1}{x}\right)^{\alpha}
$$

Proof. Since $\frac{4}{3} \leq \frac{2(x-1)}{x}<2$ and $0<\alpha \leq \frac{1}{2}$,

$$
\left(\frac{2(x-1)}{x}\right)^{\alpha}<2^{\alpha} \leq \sqrt{2}<\frac{3}{2}
$$

and thus the result holds.
Proof of Theorem 1.2: Throughout this proof, we simplify write $d_{G}(x)$ and $N_{G}(x)$ as $d(x)$ and $N(x)$, respectively. Without loss of generality, we suppose that $d(u) \geq d(v)$.
Case 1. $d(v)=0$.
If $d(u)=0$, then $A B C_{\alpha}(G+u v)=A B C_{\alpha}(G)$ by (1).
If $d(u)=1$, then suppose that $N(u)=w$, and thus $d(w) \geq 1$. By (1), we have

$$
\begin{equation*}
A B C_{\alpha}(G+u v)-A B C_{\alpha}(G)=2\left(\frac{1}{2}\right)^{\alpha}-\left(\frac{d(w)-1}{d(w)}\right)^{\alpha} \tag{4}
\end{equation*}
$$

which implies that $A B C_{\alpha}(G+u v)>A B C_{\alpha}(G)$ for $1 \leq d(w) \leq 2$. Thus, we suppose that $d(w) \geq 3$ and then $A B C_{\alpha}(G+u v)>A B C_{\alpha}(G)$ follows from (4) and Lemma 2.2.

Next, we suppose that $d(u) \geq 2$. In this case, by (1) and Lemma 2.1, we have

$$
\begin{align*}
A B C_{\alpha}(G+u v)-A B C_{\alpha}(G) & =\sum_{x \in N(u)} \Psi(d(u), d(x))+\left(\frac{d(u)}{d(u)+1}\right)^{\alpha} \\
& >-\alpha\left(\frac{1}{d(u)+1}\right)^{\alpha}+\left(\frac{d(u)}{d(u)+1}\right)^{\alpha} \tag{5}
\end{align*}
$$

Since $d(u)^{\alpha}-\alpha \geq 2^{\alpha}-\alpha>1-\alpha>0$, it follows from (5) that

$$
A B C_{\alpha}(G+u v)-A B C_{\alpha}(G)>\frac{d(u)^{\alpha}-\alpha}{(d(u)+1)^{\alpha}}>0
$$

as desired.

Case 2. $d(v) \geq 1$. By (1) and Lemma 2.1, we have

$$
\begin{aligned}
& A B C_{\alpha}(G+u v)-A B C_{\alpha}(G) \\
= & \sum_{x \in N(u)} \Psi(d(u), d(x))+\sum_{y \in N(v)} \Psi(d(v), d(y))+\left(\frac{d(u)+d(v)}{(d(u)+1)(d(v)+1)}\right)^{\alpha} \\
> & \frac{-\alpha}{(d(u)+1)^{\alpha}}+\frac{-\alpha}{(d(v)+1)^{\alpha}}+\left(\frac{d(u)+d(v)}{(d(u)+1)(d(v)+1)}\right)^{\alpha} \\
\geq & \frac{-2 \alpha}{(d(v)+1)^{\alpha}}+\frac{1}{(d(v)+1)^{\alpha}}\left(\frac{d(u)+d(v)}{d(u)+1}\right)^{\alpha}
\end{aligned}
$$

Since $0<\alpha \leq \frac{1}{2}$ and $d(u) \geq d(v) \geq 1$, we have

$$
\left(\frac{d(u)+d(v)}{d(u)+1}\right)^{\alpha} \geq 1 \geq 2 \alpha
$$

Thus, $A B C_{\alpha}(G+u v)>A B C_{\alpha}(G)$, as desired.

3 The Proof of Theorem 1.5

Let $H(p)$ be a graph with $n-1$ vertices of degree Δ and one vertex of degree p, where $0 \leq p \leq \Delta$. From the definition, $H(\Delta)$ is a regular graph.

Lemma 3.1. If $0 \leq p<q \leq \Delta, \Delta \geq 2$ and $0<\alpha \leq \frac{1}{2}$, then

$$
A B C_{\alpha}(H(p))<A B C_{\alpha}(H(q))
$$

Proof. We first suppose that $p=0$. Since $0<q \leq \Delta$, we have

$$
\frac{\Delta+q-2}{q \Delta} \geq \frac{2 \Delta-2}{\Delta^{2}} \text { and thus }\left(\frac{\Delta+q-2}{q \Delta}\right)^{\alpha} \geq\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}
$$

From (1), it follows that

$$
\begin{aligned}
& A B C_{\alpha}(H(q))-A B C_{\alpha}(H(0)) \\
= & \frac{\Delta(n-1)-q}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}+q\left(\frac{\Delta+q-2}{q \Delta}\right)^{\alpha}-\frac{\Delta(n-1)}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha} \\
\geq & \frac{\Delta(n-1)+q}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}-\frac{\Delta(n-1)}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}>0,
\end{aligned}
$$

as desired.
Next we suppose that $p \geq 1$. By (1), it suffices to show that

$$
\begin{aligned}
\frac{\Delta(n-1)-q}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha}+q\left(\frac{\Delta+q-2}{q \Delta}\right)^{\alpha} & >\frac{\Delta(n-1)-p}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha} \\
& +p\left(\frac{\Delta+p-2}{p \Delta}\right)^{\alpha}
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
q\left(\frac{\Delta+q-2}{q \Delta}\right)^{\alpha}-p\left(\frac{\Delta+p-2}{p \Delta}\right)^{\alpha}>\frac{q-p}{2}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha} \tag{6}
\end{equation*}
$$

Denote by $f(x)=x\left(\frac{\Delta+x-2}{x \Delta}\right)^{\alpha}$, where $x \geq 1$. By the Lagrange Mean Value Theorem, there exists θ with $p<\theta<q$ such that

$$
\begin{align*}
& (q-p) f^{\prime}(\theta)=f(q)-f(p)=q\left(\frac{\Delta+q-2}{q \Delta}\right)^{\alpha}-p\left(\frac{\Delta+p-2}{p \Delta}\right)^{\alpha} \\
= & (q-p)\left(\frac{\theta+(1-\alpha)(\Delta-2)}{\Delta+\theta-2}\right)\left(\frac{\Delta+\theta-2}{\theta \Delta}\right)^{\alpha} . \tag{7}
\end{align*}
$$

Since $p<\theta<q \leq \Delta$ and $\Delta \geq 2$,

$$
\frac{\Delta+\theta-2}{\theta \Delta} \geq \frac{\Delta+q-2}{q \Delta} \geq \frac{2 \Delta-2}{\Delta^{2}} .
$$

and thus $0<\alpha \leq \frac{1}{2}$ implies that

$$
\begin{equation*}
\left(\frac{\Delta+\theta-2}{\theta \Delta}\right)^{\alpha} \geq\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\alpha} \tag{8}
\end{equation*}
$$

By Combining with (7) and (8), to show (6), it suffices to show that

$$
\begin{equation*}
\frac{\theta+(1-\alpha)(\Delta-2)}{\Delta+\theta-2}>\frac{1}{2}, \text { that is } 2(\theta+(1-\alpha)(\Delta-2))-(\Delta+\theta-2)>0 . \tag{9}
\end{equation*}
$$

Since $1 \leq p<\theta<q \leq \Delta, \Delta \geq 2$ and $0<\alpha \leq \frac{1}{2}$, we have $2(\theta+(1-\alpha)(\Delta-2))-$ $(\Delta+\theta-2)=\theta+(\Delta-2)(1-2 \alpha) \geq \theta>0$, and so (9) holds.

Lemma 3.2. Let G be a graph with two edges $\{u v, w z\} \subseteq E(G)$, where $d_{G}(v)>d_{G}(w) \geq$ $d_{G}(z)$ and $d_{G}(u)=d_{G}(v) \geq 2$. If $0<\alpha<1$ and $\{u w, v z\} \nsubseteq E(G)$, then $A B C_{\alpha}\left(G_{1}\right)>$ $A B C_{\alpha}(G)$, where $G_{1}=G+u w+v z-u v-w z$.

Proof. For simplification, we rewrite $d_{G}(v), d_{G}(w)$, and $d_{G}(z)$ as d, d_{1} and d_{2}, respectively. By the hypothesis, we have $d>d_{1} \geq d_{2}$. To show that $A B C_{\alpha}\left(G_{1}\right)>A B C_{\alpha}(G)$, from (1) it suffices to show that

$$
\begin{equation*}
\left(\frac{d+d_{1}-2}{d d_{1}}\right)^{\alpha}+\left(\frac{d+d_{2}-2}{d d_{2}}\right)^{\alpha}>\left(\frac{2 d-2}{d^{2}}\right)^{\alpha}+\left(\frac{d_{1}+d_{2}-2}{d_{1} d_{2}}\right)^{\alpha} \tag{10}
\end{equation*}
$$

If $d_{2}=1$, since

$$
\frac{d+d_{1}-2}{d d_{1}} \geq \frac{2 d-2}{d^{2}}, \frac{d-1}{d}>\frac{d_{1}-1}{d_{1}}, \text { and } 0<\alpha<1,
$$

it is easily checked that (10) already holds. Thus, we may suppose that $d_{2} \geq 2$ and $d \geq 3$ in what follows. Now, to show (10), it suffices to show that

$$
\int_{\frac{1}{d}\left(1-\frac{2}{d}\right)+\frac{1}{d}}^{\frac{1}{d_{1}}\left(1-\frac{2}{d}\right)+\frac{1}{d}} \alpha t^{\alpha-1} d t>\int_{\frac{1}{d}\left(1-\frac{2}{d_{2}}\right)+\frac{1}{d_{2}}}^{\frac{1}{d_{1}}\left(1-\frac{2}{d_{2}}\right)+\frac{1}{d_{2}}} \alpha t^{\alpha-1} d t,
$$

which is equivalent to

$$
\begin{equation*}
\int_{\frac{1}{d}\left(1-\frac{2}{d}\right)}^{\frac{1}{d_{1}}\left(1-\frac{2}{d}\right)} \alpha\left(t+\frac{1}{d}\right)^{\alpha-1} d t>\int_{\frac{1}{d}\left(1-\frac{2}{d_{2}}\right)}^{\frac{1}{d_{1}}\left(1-\frac{2}{d_{2}}\right)} \alpha\left(t+\frac{1}{d_{2}}\right)^{\alpha-1} d t . \tag{11}
\end{equation*}
$$

By Mean Value Theorem of Integrals, $\frac{1}{d_{1}}>\frac{1}{d}$ and $0<\alpha<1$, (11) is equivalent to

$$
\begin{equation*}
\left(1-\frac{2}{d}\right)\left(\theta_{1}+\frac{1}{d}\right)^{\alpha-1}>\left(1-\frac{2}{d_{2}}\right)\left(\theta_{2}+\frac{1}{d_{2}}\right)^{\alpha-1} \tag{12}
\end{equation*}
$$

where $\frac{1}{d}\left(1-\frac{2}{d}\right) \leq \theta_{1} \leq \frac{1}{d_{1}}\left(1-\frac{2}{d}\right)$ and $\frac{1}{d}\left(1-\frac{2}{d_{2}}\right) \leq \theta_{2} \leq \frac{1}{d_{1}}\left(1-\frac{2}{d_{2}}\right)$.
Once again, since $0<\alpha<1$ and $1-\frac{2}{d_{2}}<1-\frac{2}{d}$, to prove (12), it suffices to show that

$$
\begin{equation*}
0<\theta_{1}+\frac{1}{d} \leq \theta_{2}+\frac{1}{d_{2}} \tag{13}
\end{equation*}
$$

Taking $\frac{1}{d}\left(1-\frac{2}{d}\right) \leq \theta_{1} \leq \frac{1}{d_{1}}\left(1-\frac{2}{d}\right), \theta_{2} \geq \frac{1}{d}\left(1-\frac{2}{d_{2}}\right)$ and $d \geq 2$ into consideration, it follows that

$$
0<\frac{1}{d}\left(2-\frac{2}{d}\right) \leq \theta_{1}+\frac{1}{d} \leq \frac{1}{d_{1}}\left(1-\frac{2}{d}\right)+\frac{1}{d} \leq \frac{1}{d}\left(1-\frac{2}{d_{2}}\right)+\frac{1}{d_{2}} \leq \theta_{2}+\frac{1}{d_{2}},
$$

and thus (13) holds.
Proof of Theorem 1.5: Let $G \in \mathcal{S}(n, \Delta)$ be a graph with maximal $A B C_{\alpha}(G)$. Denote by $V_{1}=\left\{v \in V(G): d_{G}(v)<\Delta\right\}$ and $V_{2}=\left\{u \in V(G): d_{G}(u)=\Delta\right\}$. Suppose that $\left|V_{1}\right|=k$. By Theorem 1.2, we can conclude that $G\left[V_{1}\right] \cong K_{k}$. Otherwise, if $G\left[V_{1}\right] \not \equiv K_{k}$, then we can add some edges to $G\left[V_{1}\right]$ so that the resultant graph has larger $A B C_{\alpha}$ index than G and also belongs to $\mathcal{S}(n, \Delta)$, contrary with the choice of G and Theorem 1.2.

By the definition of V_{1}, we have $0 \leq k=\left|V_{1}\right| \leq \Delta$. Now, we prove $\left|V_{1}\right| \leq 1$.
Claim 1. If $\left|V_{1}\right|=k \geq 1$, then $N_{G}(x) \cap V_{2} \neq \emptyset$ for some vertex x of V_{1}.
Proof of Claim 1. By contradiction, we assume that $G\left[V_{1}\right]=K_{k}$ is a component of G. If $k \geq 2$, then there exists one edge of $G\left[V_{1}\right]$. Note that $G\left[V_{2}\right]$ contains at least one edge. Thus, by the operation as defined in Lemma 3.2, it leads to a contradiction. Therefore, $k=1$. In this case, $G\left[V_{1}\right]$ is an isolated vertex. By Lemma 3.1, $A B C_{\alpha}(G)$ is not maximum, a contradiction. This completes the proof of Claim 1.

In what follows, by Claim 1 , if $\left|V_{1}\right|=k \geq 1$, then we always suppose that

$$
\begin{equation*}
x \text { is a vertex of } V_{1} \text { such that } N_{G}(x) \cap V_{2} \neq \emptyset \text { and } u \in N_{G}(x) \cap V_{2} . \tag{14}
\end{equation*}
$$

Claim 2. If $\left|V_{1}\right|=k \geq 2$, then u is adjacent to every vertex of V_{1}.
Proof of Claim 2. Let $N_{G}(x) \cap V_{2}=S$ and $V_{2}-S=T$. By (14), we have $|S|+\left|V_{1}\right|-1=$ $d_{G}(x) \leq \Delta-1<d_{G}(u)$, and $S \neq \emptyset$, which implies that $T \neq \emptyset$.

For any vertex u of S, since $d_{G}(u)=\Delta>d_{G}(x)=|S|+\left|V_{1}\right|-1$, we have $N_{G}(u) \cap T \neq \emptyset$, and thus we may suppose that $u v \in E(G)$, where $v \in T$. If there exists some vertex y of V_{1} such that $u y \notin E(G)$, then $x y \in E(G)$, as $G\left[V_{1}\right]=K_{k}$. Since $u \in S$ and $v \in T$, we can define $G_{1}=G+u y+v x-u v-x y$. In this case, $G_{1} \in \mathcal{S}(n, \Delta)$. However, Lemma 3.2 implies that $A B C_{\alpha}\left(G_{1}\right)>A B C_{\alpha}(G)$, a contradiction. Thus, u is adjacent to every vertex of V_{1}, and so Claim 2 holds.

By Claim 2, we can conclude that

$$
\begin{equation*}
N_{G}(x) \backslash\{y\}=N_{G}(y) \backslash\{x\} \text { holds for any two vertices }\{x, y\} \subseteq V_{1} . \tag{15}
\end{equation*}
$$

Claim 3. $\left|V_{1}\right|=k \leq 1$.
Proof of Claim 3. By contradiction, we assume that $\left|V_{1}\right|=k \geq 2$. Recall that $S=$ $N_{G}(x) \cap V_{2}$ and $T=V_{2} \backslash S$, where x is defined as in (14). As in the proof of Claim 2, if $\left|V_{1}\right| \geq 2$, then $S \neq \emptyset \neq T$.

If $E(G[T]) \neq \emptyset$, then we choose $u_{0} v_{0} \in E(G[T])$ and $x y \in E\left(G\left[V_{1}\right]\right)$ (as $k \geq 2$, such edge $x y$ must exist). By (15), $N_{G}(y) \cap T=\emptyset=N_{G}(x) \cap T$. Let $G_{2}=G+u_{0} x+v_{0} y-u_{0} v_{0}-$ $x y$. Then, $G_{2} \in \mathcal{S}(n, \Delta)$ and $A B C_{\alpha}\left(G_{2}\right)>A B C_{\alpha}(G)$ by Lemma 3.2. This contradiction shows that $G[T]$ is an independent set of G. We choose $w \in T$. Then, $N_{G}(w) \subseteq S$ by (15). This implies that $\Delta=d_{G}(w) \leq|S|<|S|+\left|V_{1}\right|-1=d_{G}(x)<\Delta$, a contradiction. Thus, Claim 3 holds.

In what follows, we divide the proof into two cases according to the parity of $n \Delta$.
Case 1. $n \Delta$ is even. In this case, to complete the proof of Theorem $1.5(i)$, it suffices to show that $\left|V_{1}\right|=k=0$. By contradiction and Claim 3, we assume that $\left|V_{1}\right|=1$, and suppose that $d_{G}(z)=\delta<\Delta$. Then, $G=H(\delta)$ and thus $A B C_{\alpha}(G)=A B C_{\alpha}(H(\delta))<$ $A B C_{\alpha}(H(\Delta))$ by Lemma 3.1 and Proposition 1.6 (i), a contradiction.

Case 2. $n \Delta$ is odd. Since $n \Delta$ is odd, by the Handshaking Lemma, G is not a regular graph, that is $\delta<\Delta$. By Claim 3, G is a (Δ, δ)-quasi-regular graph. To complete the proof of Theorem 1.5 (ii), it suffices to show that $\delta=\Delta-1$. By contradiction, if $\delta \leq \Delta-2$, then $A B C_{\alpha}(G)=A B C_{\alpha}(H(\delta))<A B C_{\alpha}(H(\Delta-1))$ by Lemma 3.1 and Proposition 1.6 (ii), a contradiction.

Acknowledgment: The third author is supported by the Natural Science Foundation of Fujian Province (2019J01643).

References

[1] W. Carballosa, J. M. Rodríguez, J. M. Sigarreta, Inequalities and several extremal problems on the variable sum exdeg index, submitted.
[2] X. Chen, G. Hao, Extremal graphs with respect to generalized $A B C$ index, Discr. Appl. Math. 243 (2018) 115-124.
[3] K. C. Das, J. M. Rodríguez, J. M. Sigarreta, On the maximal general $A B C$ index of graphs with given maximum degree, Appl. Math. Comput., to appear.
[4] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849855.
[5] I. Gutman, B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012) 131-136.
[6] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012) 467-482.
[7] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2009) 2828-2835.
[8] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discr. Appl. Math. 159 (2011) 1617-1630.
[9] X. M. Zhang, Y. Yang, H. Wang, X. D. Zhang, Maximum atom-bond connectivity index with given graph parameters, Discr. Appl. Math. 215 (2016) 208-217.

