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Abstract

As a generalization of the famous atom-bond connectivity index ABC(G), the
general atom-bound connectivity index of a graph G, ABC,(G), is denoted by

o dg(u) +da(v) — 2 @
ABC,(G) = WEZE(G) <W> for any o € R\ {0}.

The (general) atom-bound connectivity index has been shown to be a useful topo-
logical index and has received more and more attention recently. In this paper, we
show that ABC, (G + uv) > ABC,(G) holds for any two non-adjacent vertices u
and v of a graph G with dg(u) + dg(v) > 1 for 0 < a < 3. Moreover, by applying
this new property, we determine the maximum value of ABC, together with the
corresponding extremal graphs in the class of graphs with n vertices and maximum
degree A for 0 < a < %

1 Introduction

Throughout this paper, we only consider undirected simple graphs, and G = (V| E) is
a simple graph. Let dg(u) and Ng(z), respectively, be the degree and neighbor set of

vertex u in G. Specially, A = A(G) and § = §(G), respectively, denotes the maximum
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and minimum degree of G. If A = ¢, then G is called a regular graph. Asin [3],if § < A
and G contains exactly |[V(G)| — 1 vertices of degree A and one vertex of degree 4, then
G is called a (A, 0)-quasi-regular graph.

To study the strain energy of cycloalkanes and the stability of alkanes, E. Estrada
et al. [4] put forward the notation of atom-bond connectivity index, ABC(G) for a

graph G, where
dg(u) + dg(U) -2
da(u)da(v)

Later, to better understand the correlation properties of the atom-bond connectivity

ABC(G)= >

weEB(G)

index for the heat of formation of alkanes, B. Furtula et al. [7] generalized the atom-bond
connectivity index to the general atom-bond connectivity index ABC,(G), where
de(u) +dg(v) — 2\
ABC,(G) = ——————— | for e R\ {0}. 1
@)= % (U2 forany 0 e R\ ) )
weE(G)
It is easily checked that ABC(G) = ABC’%(G).
Throughout this paper, denote by
log (222 log (42=2 log (A —1
_ g(zAf(s) Q= g(4A76)7anda _ og ( )

- ) (2 g = —
log (727) log (727) log (?&Ajﬁ))

Let S(n, A) be the set of graphs with n vertices and maximum degree A. Recently,

aq

the research on extremal problem of (general) atom-bond connectivity index has received
much attention [2,3,5,6,8,9]. In this line, Chen et al. [2] showed the following useful
property of ABC,, for connected graphs.

Theorem 1.1. [2] Let G be a connected graph with two non-adjacent vertices u and v.
Ifa <1/2 and a # 0, then ABC,(G + uv) > ABC,(G).

In this paper, we will extent Theorem 1.1 to general graphs for 0 < o < 1/2.
Theorem 1.2. Let G be a graph with two non-adjacent vertices u and v. If0 < a < 1/2,
then ABCyo(G + uv) > ABC,(G), where the equality holds if and only if uw and v are two
isolated vertices of G.

Except for this, we shall consider the maximum general atom-bond connectivity index
in the class of S(n,A). If A =1, then S(n, A) is the set of graphs with each component
being either an edge or an isolated vertex. If A = 2, then S(n,A) is the set of graphs
with each component being either a cycle or a path or an isolated vertex. Thus, we always

suppose that A > 3 in the following.
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Theorem 1.3. [3] Let G be a graph of S(n,A), where 3 < A <n—1.

(1) If An is even and o < «y, then

ABCL(G) < % (2A*2) ,

A2
with equality if and only if G is regular.
(it) If An is odd and 0 < a < g, then

An—2A+1 (24 —2\° 2A -3 \“
< — -
ABC,(G) < : ( i ) +(A 1)(A(A71)) :

with equality if and only if G is (A, A — 1)-quasi-regular.
(173) If An is odd and o < 0, then

ABCQ(G)gmaX{A(n_l)_Qd<2A_2> +2d(w> :1§d§A_l}.

2 A2 2dA 2

() If An is odd and o < —az, then

An—1)—2 [2A—2\*
< (a3
ABC,(G) < 5 ( i ) +2l-e

with equality if and only if G is (A, 2)-quasi-reqular.

A chemical graph is a connected graph with maximum degree A < 4. Let C(n, A) be
the class of connected chemical graphs with n vertices and maximum degree A. Except
for Theorem 1.3 (which is not necessary connected), Das et al. [3] also determined the

extremal maximum graphs in the class of C(n, A), that is,

Theorem 1.4. [3] Suppose that 3 < A <4 and a < % with a # 0.

(2) If An is even, then the graphs in C(n,A) that mazimize the ABC, index are exactly
the connected regular graphs.

(1) If An is odd, then the graphs in C(n,A) that mazimize the ABC, index are exactly

the connected (A, A — 1)-quasi-reqular graphs.

Note that

lim ;= lim a; =0, and lim a3 = +o0.
A—+oo A—+oco A—+oo

By comparing the results of Theorems 1.3 and 1.4 and since ABC(G) = ABC% (@), we

will consider the similar problem for ABC,, in the case 0 < o < 1/2, that is,
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Theorem 1.5. Let G € S(n,A), where 3 < A <n—1, and providing that 0 < o < 1/2.
(1) If An is even, then

nA [2A —2\?
< —
ABC,(G) < 5 ( Az )

where the equality holds if and only if G is regqular.
(1) If An is odd, then

48y(@) < 2 722) = (QAA; 2)“ +(A-1) (%)a7

where the equality holds if and only if G is (A, A — 1)-quasi-regular.
The extremal graphs of Theorem 1.5 must exist, as we have

Proposition 1.6. [1] Suppose that 2 <k <n — 1.
(i) If kn is even, then there is a connected k-reqular graph with n vertices.

(1) If kn is odd, then there is a connected (k, k—1)-quasi-regular graph with n vertices.

2 The proof of Theorem 1.2

This section is dedicated to the proof of Theorem 1.2. Hereafter, denote by

Yoy = (j;f;)yl)“ (e

Lemma 2.1. Let z, y and « be three real numbers. If x > 1,y >0 and 0 < o < 1, then

—

U(z,y) > m

(2)

Proof. If y = 2, then \Il(x, y) =0, and so (2) holds. Next, we suppose that y # 2. To

show (2), we define ®(z2) = 2%, let 2 = z;ff)j and 2z = %‘;’2

By the Lagrange Mean Value Theorem and since

r+y—1 z4+y—2 2—y
21— 2y = — - 7
R xy xy(r +1)
we have
(2 —y)
U (x, =0 — ¢ = — a-1 _ T\% J) a—l7 3
() = @) = B(z) = ol — )¢ wy(z + l)é (3)

where § € (22,21) f 0 <y <2, and € € (21, 22) if y > 2.
If 0 <y <2, then ®(z;) — ®(z2) > 0 by (3), and thus (3) implies that (2) holds.
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If y > 2, then (3) implies that

B(e1) - B(zz) > 2C=Y) (Hy_lyl

zy(z+1) \ (z+1)y
_ a(2—y) <m+y—1>a> a(2—y) - —o
x(w—Q—y—l)(:ﬂ-ﬁ-l)(1 Y - ry(%—&-l)a z(m—&-l)m
and thus (3) implies that (2) holds. |

Lemma 2.2. Let z and a be two real numbers. If x > 3 and 0 < a < %, then
31\ (a=1)"
2\2 T ’
Proof. Since § < 2(2_1) <2and 0 <o < 3,
2z —1)\"
<(17)) < 2% S \/5 < §
T 2

and thus the result holds. ]

Proof of Theorem 1.2: Throughout this proof, we simplify write dg(z) and Ng(z) as
d(z) and N(z), respectively. Without loss of generality, we suppose that d(u) > d(v).
Case 1. d(v) =0.

If d(u) = 0, then ABC, (G + uv) = ABC,(G) by (1).

If d(u) = 1, then suppose that N(u) = w, and thus d(w) > 1. By (1), we have

ABC,(G + wv) — ABCL(G) =2 G) T (%) " (4)

which implies that ABC,(G + uv) > ABC,(G) for 1 < d(w) < 2. Thus, we suppose that
d(w) > 3 and then ABC,(G + wv) > ABC,(G) follows from (4) and Lemma 2.2.
Next, we suppose that d(u) > 2. In this case, by (1) and Lemma 2.1, we have

ABC,(G +uv) — ABCo(G) = > W(d(u),d(x)) +( d(u) )a

zEN (u) d(u) +1
1 “ du) \“
- <d(u) + 1) + <d(u) + 1) ' 5)
Since d(u)* —a >2* —a >1—«a >0, it follows from (5) that
ABCL(G + w) — ABC,(G) > (Z((U)) +—1;éa >0,
u

as desired.
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Case 2. d(v) > 1. By (1) and Lemma 2.1, we have
ABC, (G + uwv) — ABC,(G)

= 3 w(dw),d@) + Y \If(d(v),d(y))+< d(u +d(v)+1))

zeN(u) yeN (v)

+
R N —a N d(u) + d(v)
(d(u) + l)a (d(v) + 1)[y (d(u) + 1) (d(v) + 1)
—2a 1 d(u) +d(v)\*“
= (d(v) + l)a + (d(v) + l)a ( d(u) +1 ) '
Since 0 < o < 1 and d(u) > d(v) > 1, we have
d(u) +d(v)\“
(o) 21z

Thus, ABC,(G + uwv) > ABC,(G), as desired. [ |

3 The Proof of Theorem 1.5

Let H(p) be a graph with n — 1 vertices of degree A and one vertex of degree p, where
0 < p < A. From the definition, H(A) is a regular graph.

Lemma 3.1. [f0<p<qg<A, A>2 and0<0z§%, then
ABCQ(H(p)) < ABCQ(H(q)).

Proof. We first suppose that p = 0. Since 0 < ¢ < A, we have
A+qg—2 _ 2A-2 A+q—2\" 2A — 2\ “
> > .
A Z 2 and thus ( A > A2
From (1), it follows that
ABC, (H(q)) — ABC, (H(O))

_An—1)—q (2A -2 a+ A+qg—2 aﬁA(nfl) 2A — 2\
- 2 A? N\ A 2 A?
Aln=1)+¢q (2A =2\" A(n—1) [2A —2\"

= 2 ( A? ) 2 A? >0,

as desired.
Next we suppose that p > 1. By (1), it suffices to show that

A(n—l)—q(2A—2)"+q(A+q72>“> A(nfl)fp(QA,Q)"

2 A2 aA 2 A2

A+p—2\"
+p( pA )
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which is equivalent to
A+q—2\" A+p—2\"_ q—p (20 -2\"
o(Fa) (55 ) ©

Denote by f(z) = x (%)a, where © > 1. By the Lagrange Mean Value Theorem,

there exists 6 with p < 6 < ¢ such that

oo (P2l (2202

Sincep < <g<Aand A >2,

A+6-2 Atg-2 2A-2
0N T A T A?

and thus 0 < o < % implies that

(AJ;Z—Q)“Z (QAA;2>”' (8)

By Combining with (7) and (8), to show (6), it suffices to show that

0+ (1—a)(A—2)

1 )
Ao >3 that is 2(0+ (1 — a)(A—2)) — (A+6-2) >0. (9)

Sincel§p<9<q§A,A22andO<a§é,wehaveQ(@-i—(l—a)(A—?))—

(A+6-2)=0+(A—-2)(1—2a)>6>0, and so (9) holds. |
Lemma 3.2. Let G be a graph with two edges {uv,wz} C E(G), where dg(v) > da(w) >
da(z) and dg(u) = dg(v) > 2. If 0 < a < 1 and {uw,vz} € E(G), then ABC,(G1) >
ABC,(G), where G1 = G + uw + vz — uv — wz.

Proof. For simplification, we rewrite dg(v), dg(w), and dg(z) as d, d; and da, respectively.
By the hypothesis, we have d > d; > dy. To show that ABC,(G;) > ABC,(G), from (1)

it suffices to show that

d+d; —2\° d+dy —2\° 2d — 2\ “ dy +dy — 2\
. 1
( dd, ) +( dd, ) >( a? ) +( dids ) 10

If dy = 1, since

d+d1—2>2d—2. d—1 >d1—1

, do<a<l,
dd, - & d 4 " ass
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it is easily checked that (10) already holds. Thus, we may suppose that dy > 2 and d > 3
in what follows. Now, to show (10), it suffices to show that
a(1-8)+a #(-%)+%
/ atdt > / at*ldt,
5(-3)+} B(-2)

which is equivalent to

oy ) o ) e

By Mean Value Theorem of Integrals, i > é and 0 < @ < 1, (11) is equivalent to

<1 - 3) (01 + (%)(H > (1 - d%) (92 + i)wl : (12)

where } (1-2) <0< L (1-2and 3 (1-2) << 1 (1-2).

Once again, since 0 < a < 1 and 1 — d% <1l- %7 to prove (12), it suffices to show that

1 1
0<é6 - <0 —. 13
<1+d_2+d2 (13)

Taking 3 (1—2) <6, < i (1-2),6,>1 <1 — %) and d > 2 into consideration, it

follows that

1 2 1 1 2 1 1 2 1 1
“(2-2) < P I R R I —
0<d( d)791+d7d1< d)er*d( d2)+d2792+d27

and thus (13) holds. |

Proof of Theorem 1.5: Let G € S(n, A) be a graph with maximal ABC,(G). Denote
by Vi = {v € V(G) : dg(v) < A} and Vo = {u € V(G) : dg(u) = A}. Suppose that
|[Vi| = k. By Theorem 1.2, we can conclude that G[V;] & Kj. Otherwise, if G[Vi] 2 K,
then we can add some edges to G[V;] so that the resultant graph has larger ABC,, index
than G and also belongs to S(n, A), contrary with the choice of G and Theorem 1.2.
By the definition of V4, we have 0 < k = [V;] < A. Now, we prove |V;] < 1.

Claim 1. If |V}| = k > 1, then Ng(z) NV, # 0 for some vertex = of V.

Proof of Claim 1. By contradiction, we assume that G[V;] = K}, is a component of G. If
k > 2, then there exists one edge of G[V;]. Note that G[V5] contains at least one edge.
Thus, by the operation as defined in Lemma 3.2, it leads to a contradiction. Therefore,
k = 1. In this case, G[V}] is an isolated vertex. By Lemma 3.1, ABC,(G) is not maximum,

a contradiction. This completes the proof of Claim 1. |
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In what follows, by Claim 1, if |V3| = k& > 1, then we always suppose that
x is a vertex of V; such that Ng(z) N Vs # 0 and u € Ng(z) N Va. (14)

Claim 2. If |Vj| = k > 2, then u is adjacent to every vertex of ;.
Proof of Claim 2. Let Ng(z)N'Va = S and Vo — S =T. By (14), we have |S|+|Vi| -1 =
do(x) < A—1<dg(u), and S # 0, which implies that 7" # 0.

For any vertex u of S, since dg(u) = A > dg(z) = |S|+|V1|—1, we have Ng(u)NT # 0,
and thus we may suppose that uv € E(G), where v € T. If there exists some vertex y of
V1 such that uy € E(G), then zy € E(G), as G[Vi] = Kj. Since u € S and v € T, we
can define G; = G + uy + v — uv — zy. In this case, G; € S(n,A). However, Lemma
3.2 implies that ABC,(G1) > ABC,(G), a contradiction. Thus, u is adjacent to every

vertex of V;, and so Claim 2 holds. |
By Claim 2, we can conclude that

Ng(z) \ {y} = Na(y) \ {z} holds for any two vertices {z,y} C V;. (15)

Claim 3. V| =k < 1.

Proof of Claim 3. By contradiction, we assume that |Vi| = k > 2. Recall that S =
Ng(z) NV and T = V5\S, where z is defined as in (14). As in the proof of Claim 2, if
[Vi| > 2, then S # 0 #£ T.

If E(G[T]) # 0, then we choose ugvy € E(G[T)) and zy € E(G[V4]) (as k > 2, such
edge xy must exist). By (15), Na(y)NT = 0 = Ng(2)NT. Let Gy = G+ uoz+voy — upvo—
xy. Then, Gy € 8(n,A) and ABC,(G2) > ABC,(G) by Lemma 3.2. This contradiction
shows that G[T7] is an independent set of G. We choose w € T. Then, Ng(w) C S by
(15). This implies that A = dg(w) < [S| < |S|+ V1| = 1 = de(z) < A, a contradiction.
Thus, Claim 3 holds. |

In what follows, we divide the proof into two cases according to the parity of nA.

Case 1. nA is even. In this case, to complete the proof of Theorem 1.5 (4), it suffices
to show that |V;| = k = 0. By contradiction and Claim 3, we assume that |V;| = 1, and
suppose that dg(z) = § < A. Then, G = H(6) and thus ABC,(G) = ABC,(H(9)) <
ABC,(H(A)) by Lemma 3.1 and Proposition 1.6 (), a contradiction.
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Case 2. nA is odd. Since nA is odd, by the Handshaking Lemma, G is not a regular

graph,

that is 6 < A. By Claim 3, G is a (A, ¢)-quasi-regular graph. To complete the

proof of Theorem 1.5 (i7), it suffices to show that § = A—1. By contradiction, if § < A—2,
then ABC,(G) = ABC,(H(0)) < ABC,(H(A — 1)) by Lemma 3.1 and Proposition 1.6

(17), a contradiction. |
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