Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

On the Maximal General *ABC* Index of Graphs with Fixed Maximum Degree

Xuegong Tan¹, Muhuo Liu², Jianping Liu³

¹The College of Chinese Language and Culture, Jinan University, Guangzhou, 510610, China tanxuegong@hwy.jnu.edu.cn

²Department of Mathematics, South China Agricultural University, Guangzhou, 510642, China liumuhuo@163.com (Corresponding author)

> ³College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, P.R. China ljping010@163.com

> > (Received June 10, 2020)

Abstract

As a generalization of the famous atom-bond connectivity index ABC(G), the general atom-bound connectivity index of a graph G, $ABC_{\alpha}(G)$, is denoted by

$$ABC_{\alpha}(G) = \sum_{uv \in E(G)} \left(\frac{d_G(u) + d_G(v) - 2}{d_G(u)d_G(v)} \right)^{\alpha} \text{ for any } \alpha \in \mathbb{R} \setminus \{0\}.$$

The (general) atom-bound connectivity index has been shown to be a useful topological index and has received more and more attention recently. In this paper, we show that $ABC_{\alpha}(G + uv) > ABC_{\alpha}(G)$ holds for any two non-adjacent vertices uand v of a graph G with $d_G(u) + d_G(v) \ge 1$ for $0 < \alpha \le \frac{1}{2}$. Moreover, by applying this new property, we determine the maximum value of ABC_{α} together with the corresponding extremal graphs in the class of graphs with n vertices and maximum degree Δ for $0 < \alpha \le \frac{1}{2}$.

1 Introduction

Throughout this paper, we only consider undirected simple graphs, and G = (V, E) is a simple graph. Let $d_G(u)$ and $N_G(x)$, respectively, be the degree and neighbor set of vertex u in G. Specially, $\Delta = \Delta(G)$ and $\delta = \delta(G)$, respectively, denotes the maximum and minimum degree of G. If $\Delta = \delta$, then G is called a **regular** graph. As in [3], if $\delta < \Delta$ and G contains exactly |V(G)| - 1 vertices of degree Δ and one vertex of degree δ , then G is called a (Δ, δ) -quasi-regular graph.

To study the strain energy of cycloalkanes and the stability of alkanes, E. Estrada et al. [4] put forward the notation of **atom-bond connectivity index**, ABC(G) for a graph G, where

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u)d_G(v)}}.$$

Later, to better understand the correlation properties of the atom-bond connectivity index for the heat of formation of alkanes, B. Furtula et al. [7] generalized the atom-bond connectivity index to the **general atom-bond connectivity index** $ABC_{\alpha}(G)$, where

$$ABC_{\alpha}(G) = \sum_{uv \in E(G)} \left(\frac{d_G(u) + d_G(v) - 2}{d_G(u)d_G(v)} \right)^{\alpha} \text{ for any } \alpha \in \mathbb{R} \setminus \{0\}.$$
(1)

It is easily checked that $ABC(G) = ABC_{\frac{1}{2}}(G)$.

Throughout this paper, denote by

$$\alpha_1 = \frac{\log\left(\frac{2\Delta-2}{2\Delta-3}\right)}{\log\left(\frac{\Delta^2}{4\Delta-4}\right)}, \ \alpha_2 = \frac{\log\left(\frac{4\Delta-5}{4\Delta-6}\right)}{\log\left(\frac{\Delta^2}{4\Delta-4}\right)}, \ \text{and} \ \alpha_3 = \frac{\log\left(\Delta-1\right)}{\log\left(\frac{\Delta(2\Delta-3)}{2(\Delta-1)^2}\right)}.$$

Let $S(n, \Delta)$ be the set of graphs with *n* vertices and maximum degree Δ . Recently, the research on extremal problem of (general) atom-bond connectivity index has received much attention [2, 3, 5, 6, 8, 9]. In this line, Chen et al. [2] showed the following useful property of ABC_{α} for connected graphs.

Theorem 1.1. [2] Let G be a connected graph with two non-adjacent vertices u and v. If $\alpha \leq 1/2$ and $\alpha \neq 0$, then $ABC_{\alpha}(G + uv) > ABC_{\alpha}(G)$.

In this paper, we will extent Theorem 1.1 to general graphs for $0 < \alpha \leq 1/2$.

Theorem 1.2. Let G be a graph with two non-adjacent vertices u and v. If $0 < \alpha \le 1/2$, then $ABC_{\alpha}(G + uv) \ge ABC_{\alpha}(G)$, where the equality holds if and only if u and v are two isolated vertices of G.

Except for this, we shall consider the maximum general atom-bond connectivity index in the class of $\mathcal{S}(n, \Delta)$. If $\Delta = 1$, then $\mathcal{S}(n, \Delta)$ is the set of graphs with each component being either an edge or an isolated vertex. If $\Delta = 2$, then $\mathcal{S}(n, \Delta)$ is the set of graphs with each component being either a cycle or a path or an isolated vertex. Thus, we always suppose that $\Delta \geq 3$ in the following. **Theorem 1.3.** [3] Let G be a graph of $S(n, \Delta)$, where $3 \le \Delta \le n - 1$.

(i) If Δn is even and $\alpha < \alpha_1$, then

$$ABC_{\alpha}(G) \leq \frac{n\Delta}{2} \left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha},$$

with equality if and only if G is regular.

(ii) If Δn is odd and $0 < \alpha \leq \alpha_2$, then

$$ABC_{\alpha}(G) \leq \frac{\Delta n - 2\Delta + 1}{2} \left(\frac{2\Delta - 2}{\Delta^2}\right)^{\alpha} + (\Delta - 1) \left(\frac{2\Delta - 3}{\Delta(\Delta - 1)}\right)^{\alpha},$$

with equality if and only if G is $(\Delta, \Delta - 1)$ -quasi-regular. (iii) If Δn is odd and $\alpha < 0$, then

$$ABC_{\alpha}(G) \leq \max\left\{\frac{\Delta(n-1) - 2d}{2} \left(\frac{2\Delta - 2}{\Delta^2}\right)^{\alpha} + 2d\left(\frac{\Delta + 2d - 2}{2d\Delta}\right)^{\alpha}: \ 1 \leq d \leq \frac{\Delta - 1}{2}\right\}$$

(iv) If Δn is odd and $\alpha \leq -\alpha_3$, then

$$ABC_{\alpha}(G) \leq \frac{\Delta(n-1)-2}{2} \left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha} + 2^{1-\alpha},$$

with equality if and only if G is $(\Delta, 2)$ -quasi-regular.

A chemical graph is a connected graph with maximum degree $\Delta \leq 4$. Let $C(n, \Delta)$ be the class of connected chemical graphs with n vertices and maximum degree Δ . Except for Theorem 1.3 (which is not necessary connected), Das et al. [3] also determined the extremal maximum graphs in the class of $C(n, \Delta)$, that is,

Theorem 1.4. [3] Suppose that $3 \le \Delta \le 4$ and $\alpha \le \frac{1}{2}$ with $\alpha \ne 0$.

(i) If Δn is even, then the graphs in $\mathcal{C}(n, \Delta)$ that maximize the ABC_{α} index are exactly the connected regular graphs.

(ii) If Δn is odd, then the graphs in $C(n, \Delta)$ that maximize the ABC_{α} index are exactly the connected $(\Delta, \Delta - 1)$ -quasi-regular graphs.

Note that

$$\lim_{\Delta \to +\infty} \alpha_1 = \lim_{\Delta \to +\infty} \alpha_2 = 0, \text{ and } \lim_{\Delta \to +\infty} \alpha_3 = +\infty.$$

By comparing the results of Theorems 1.3 and 1.4 and since $ABC(G) = ABC_{\frac{1}{2}}(G)$, we will consider the similar problem for ABC_{α} in the case $0 < \alpha \leq 1/2$, that is,

Theorem 1.5. Let $G \in S(n, \Delta)$, where $3 \le \Delta \le n - 1$, and providing that $0 < \alpha \le 1/2$. (i) If Δn is even, then

$$ABC_{\alpha}(G) \leq \frac{n\Delta}{2} \left(\frac{2\Delta-2}{\Delta^2}\right)^2,$$

where the equality holds if and only if G is regular.

(ii) If Δn is odd, then

$$ABC_{\alpha}(G) \leq \frac{\Delta(n-2)+1}{2} \left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha} + (\Delta-1) \left(\frac{2\Delta-3}{\Delta(\Delta-1)}\right)^{\alpha},$$

where the equality holds if and only if G is $(\Delta, \Delta - 1)$ -quasi-regular.

The extremal graphs of Theorem 1.5 must exist, as we have

Proposition 1.6. [1] Suppose that $2 \le k \le n-1$.

(i) If kn is even, then there is a connected k-regular graph with n vertices.

(ii) If kn is odd, then there is a connected (k, k-1)-quasi-regular graph with n vertices.

2 The proof of Theorem 1.2

This section is dedicated to the proof of Theorem 1.2. Hereafter, denote by

$$\Psi(x,y) = \left(\frac{x+y-1}{(x+1)y}\right)^{\alpha} - \left(\frac{x+y-2}{xy}\right)^{\alpha}$$

Lemma 2.1. Let x, y and α be three real numbers. If $x \ge 1, y > 0$ and $0 < \alpha < 1$, then

$$\Psi(x,y) > \frac{-\alpha}{x(x+1)^{\alpha}}.$$
(2)

Proof. If y = 2, then $\Psi(x, y) = 0$, and so (2) holds. Next, we suppose that $y \neq 2$. To show (2), we define $\Phi(z) = z^{\alpha}$, let $z_1 = \frac{x+y-1}{(x+1)y}$ and $z_2 = \frac{x+y-2}{xy}$.

By the Lagrange Mean Value Theorem and since

$$z_1 - z_2 = \frac{x + y - 1}{(x + 1)y} - \frac{x + y - 2}{xy} = \frac{2 - y}{xy(x + 1)},$$

we have

$$\Psi(x,y) = \Phi(z_1) - \Phi(z_2) = \alpha(z_1 - z_2)\xi^{\alpha - 1} = \frac{\alpha(2 - y)}{xy(x + 1)}\xi^{\alpha - 1},$$
(3)

where $\xi \in (z_2, z_1)$ if 0 < y < 2, and $\xi \in (z_1, z_2)$ if y > 2.

If 0 < y < 2, then $\Phi(z_1) - \Phi(z_2) > 0$ by (3), and thus (3) implies that (2) holds.

If y > 2, then (3) implies that

$$\Phi(z_1) - \Phi(z_2) > \frac{\alpha(2-y)}{xy(x+1)} \left(\frac{x+y-1}{(x+1)y}\right)^{\alpha-1} \\ = \frac{\alpha(2-y)}{x(x+y-1)(x+1)^{\alpha}} \left(\frac{x+y-1}{y}\right)^{\alpha} \ge \frac{\alpha(2-y)}{xy(x+1)^{\alpha}} > \frac{-\alpha}{x(x+1)^{\alpha}},$$

and thus (3) implies that (2) holds.

Lemma 2.2. Let x and α be two real numbers. If $x \ge 3$ and $0 < \alpha \le \frac{1}{2}$, then

$$\frac{3}{2}\left(\frac{1}{2}\right)^{\alpha} > \left(\frac{x-1}{x}\right)^{\alpha}$$

Proof. Since $\frac{4}{3} \leq \frac{2(x-1)}{x} < 2$ and $0 < \alpha \leq \frac{1}{2}$,

$$\left(\frac{2(x-1)}{x}\right)^{\alpha} < 2^{\alpha} \le \sqrt{2} < \frac{3}{2}$$

and thus the result holds.

Proof of Theorem 1.2: Throughout this proof, we simplify write $d_G(x)$ and $N_G(x)$ as d(x) and N(x), respectively. Without loss of generality, we suppose that $d(u) \ge d(v)$. **Case 1.** d(v) = 0.

If
$$d(u) = 0$$
, then $ABC_{\alpha}(G + uv) = ABC_{\alpha}(G)$ by (1).

If d(u) = 1, then suppose that N(u) = w, and thus $d(w) \ge 1$. By (1), we have

$$ABC_{\alpha}(G+uv) - ABC_{\alpha}(G) = 2\left(\frac{1}{2}\right)^{\alpha} - \left(\frac{d(w)-1}{d(w)}\right)^{\alpha},\tag{4}$$

which implies that $ABC_{\alpha}(G + uv) > ABC_{\alpha}(G)$ for $1 \le d(w) \le 2$. Thus, we suppose that $d(w) \ge 3$ and then $ABC_{\alpha}(G + uv) > ABC_{\alpha}(G)$ follows from (4) and Lemma 2.2.

Next, we suppose that $d(u) \ge 2$. In this case, by (1) and Lemma 2.1, we have

$$ABC_{\alpha}(G+uv) - ABC_{\alpha}(G) = \sum_{x \in N(u)} \Psi(d(u), d(x)) + \left(\frac{d(u)}{d(u)+1}\right)^{\alpha}$$
$$> -\alpha \left(\frac{1}{d(u)+1}\right)^{\alpha} + \left(\frac{d(u)}{d(u)+1}\right)^{\alpha}.$$
(5)

Since $d(u)^{\alpha} - \alpha \ge 2^{\alpha} - \alpha > 1 - \alpha > 0$, it follows from (5) that

$$ABC_{\alpha}(G+uv) - ABC_{\alpha}(G) > \frac{d(u)^{\alpha} - \alpha}{\left(d(u) + 1\right)^{\alpha}} > 0,$$

as desired.

Case 2. $d(v) \ge 1$. By (1) and Lemma 2.1, we have

$$\begin{split} &ABC_{\alpha}(G+uv) - ABC_{\alpha}(G) \\ &= \sum_{x \in N(u)} \Psi(d(u), d(x)) + \sum_{y \in N(v)} \Psi(d(v), d(y)) + \left(\frac{d(u) + d(v)}{(d(u) + 1)(d(v) + 1)}\right)^{\alpha} \\ &> \frac{-\alpha}{(d(u) + 1)^{\alpha}} + \frac{-\alpha}{(d(v) + 1)^{\alpha}} + \left(\frac{d(u) + d(v)}{(d(u) + 1)(d(v) + 1)}\right)^{\alpha} \\ &\geq \frac{-2\alpha}{(d(v) + 1)^{\alpha}} + \frac{1}{(d(v) + 1)^{\alpha}} \left(\frac{d(u) + d(v)}{d(u) + 1}\right)^{\alpha}. \end{split}$$

Since $0 < \alpha \leq \frac{1}{2}$ and $d(u) \geq d(v) \geq 1$, we have

$$\left(\frac{d(u)+d(v)}{d(u)+1}\right)^{\alpha} \ge 1 \ge 2\alpha.$$

Thus, $ABC_{\alpha}(G+uv) > ABC_{\alpha}(G)$, as desired.

3 The Proof of Theorem 1.5

Let H(p) be a graph with n-1 vertices of degree Δ and one vertex of degree p, where $0 \le p \le \Delta$. From the definition, $H(\Delta)$ is a regular graph.

Lemma 3.1. If $0 \le p < q \le \Delta$, $\Delta \ge 2$ and $0 < \alpha \le \frac{1}{2}$, then

$$ABC_{\alpha}(H(p)) < ABC_{\alpha}(H(q)).$$

Proof. We first suppose that p = 0. Since $0 < q \le \Delta$, we have

$$\frac{\Delta+q-2}{q\Delta} \ge \frac{2\Delta-2}{\Delta^2} \text{ and thus } \left(\frac{\Delta+q-2}{q\Delta}\right)^{\alpha} \ge \left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha}.$$

From (1), it follows that

$$ABC_{\alpha}(H(q)) - ABC_{\alpha}(H(0))$$

$$= \frac{\Delta(n-1) - q}{2} \left(\frac{2\Delta - 2}{\Delta^2}\right)^{\alpha} + q \left(\frac{\Delta + q - 2}{q\Delta}\right)^{\alpha} - \frac{\Delta(n-1)}{2} \left(\frac{2\Delta - 2}{\Delta^2}\right)^{\alpha}$$

$$\geq \frac{\Delta(n-1) + q}{2} \left(\frac{2\Delta - 2}{\Delta^2}\right)^{\alpha} - \frac{\Delta(n-1)}{2} \left(\frac{2\Delta - 2}{\Delta^2}\right)^{\alpha} > 0,$$

as desired.

Next we suppose that $p \ge 1$. By (1), it suffices to show that

$$\frac{\Delta(n-1)-q}{2}\left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha} + q\left(\frac{\Delta+q-2}{q\Delta}\right)^{\alpha} > \frac{\Delta(n-1)-p}{2}\left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha} + p\left(\frac{\Delta+p-2}{p\Delta}\right)^{\alpha},$$

which is equivalent to

$$q\left(\frac{\Delta+q-2}{q\Delta}\right)^{\alpha} - p\left(\frac{\Delta+p-2}{p\Delta}\right)^{\alpha} > \frac{q-p}{2}\left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha}.$$
 (6)

Denote by $f(x) = x \left(\frac{\Delta + x - 2}{x\Delta}\right)^{\alpha}$, where $x \ge 1$. By the Lagrange Mean Value Theorem, there exists θ with $p < \theta < q$ such that

$$(q-p)f'(\theta) = f(q) - f(p) = q \left(\frac{\Delta + q - 2}{q\Delta}\right)^{\alpha} - p \left(\frac{\Delta + p - 2}{p\Delta}\right)^{\alpha}$$
$$= (q-p) \left(\frac{\theta + (1-\alpha)(\Delta - 2)}{\Delta + \theta - 2}\right) \left(\frac{\Delta + \theta - 2}{\theta\Delta}\right)^{\alpha}.$$
(7)

Since $p < \theta < q \leq \Delta$ and $\Delta \geq 2$,

$$\frac{\Delta + \theta - 2}{\theta \Delta} \ge \frac{\Delta + q - 2}{q \Delta} \ge \frac{2\Delta - 2}{\Delta^2}.$$

and thus $0 < \alpha \leq \frac{1}{2}$ implies that

$$\left(\frac{\Delta+\theta-2}{\theta\Delta}\right)^{\alpha} \ge \left(\frac{2\Delta-2}{\Delta^2}\right)^{\alpha}.$$
(8)

By Combining with (7) and (8), to show (6), it suffices to show that

$$\frac{\theta + (1-\alpha)(\Delta - 2)}{\Delta + \theta - 2} > \frac{1}{2}, \text{ that is } 2\left(\theta + (1-\alpha)(\Delta - 2)\right) - \left(\Delta + \theta - 2\right) > 0.$$
(9)

Since $1 \le p < \theta < q \le \Delta$, $\Delta \ge 2$ and $0 < \alpha \le \frac{1}{2}$, we have $2(\theta + (1 - \alpha)(\Delta - 2)) - (\Delta + \theta - 2) = \theta + (\Delta - 2)(1 - 2\alpha) \ge \theta > 0$, and so (9) holds.

Lemma 3.2. Let G be a graph with two edges $\{uv, wz\} \subseteq E(G)$, where $d_G(v) > d_G(w) \ge d_G(z)$ and $d_G(u) = d_G(v) \ge 2$. If $0 < \alpha < 1$ and $\{uw, vz\} \not\subseteq E(G)$, then $ABC_{\alpha}(G_1) > ABC_{\alpha}(G)$, where $G_1 = G + uw + vz - uv - wz$.

Proof. For simplification, we rewrite $d_G(v)$, $d_G(w)$, and $d_G(z)$ as d, d_1 and d_2 , respectively. By the hypothesis, we have $d > d_1 \ge d_2$. To show that $ABC_{\alpha}(G_1) > ABC_{\alpha}(G)$, from (1) it suffices to show that

$$\left(\frac{d+d_1-2}{dd_1}\right)^{\alpha} + \left(\frac{d+d_2-2}{dd_2}\right)^{\alpha} > \left(\frac{2d-2}{d^2}\right)^{\alpha} + \left(\frac{d_1+d_2-2}{d_1d_2}\right)^{\alpha}.$$
 (10)

If $d_2 = 1$, since

$$\frac{d+d_1-2}{dd_1} \geq \frac{2d-2}{d^2}, \ \frac{d-1}{d} > \frac{d_1-1}{d_1}, \ \text{and} \ 0 < \alpha < 1,$$

it is easily checked that (10) already holds. Thus, we may suppose that $d_2 \ge 2$ and $d \ge 3$ in what follows. Now, to show (10), it suffices to show that

$$\int_{\frac{1}{d}\left(1-\frac{2}{d}\right)+\frac{1}{d}}^{\frac{1}{d}\left(1-\frac{2}{d}\right)+\frac{1}{d}}\alpha t^{\alpha-1}dt > \int_{\frac{1}{d}\left(1-\frac{2}{d_2}\right)+\frac{1}{d_2}}^{\frac{1}{d}\left(1-\frac{2}{d_2}\right)+\frac{1}{d_2}}\alpha t^{\alpha-1}dt,$$

which is equivalent to

$$\int_{\frac{1}{d}\left(1-\frac{2}{d}\right)}^{\frac{1}{d_{1}}\left(1-\frac{2}{d}\right)} \alpha\left(t+\frac{1}{d}\right)^{\alpha-1} dt > \int_{\frac{1}{d}\left(1-\frac{2}{d_{2}}\right)}^{\frac{1}{d_{1}}\left(1-\frac{2}{d_{2}}\right)} \alpha\left(t+\frac{1}{d_{2}}\right)^{\alpha-1} dt.$$
(11)

By Mean Value Theorem of Integrals, $\frac{1}{d_1} > \frac{1}{d}$ and $0 < \alpha < 1$, (11) is equivalent to

$$\left(1-\frac{2}{d}\right)\left(\theta_1+\frac{1}{d}\right)^{\alpha-1} > \left(1-\frac{2}{d_2}\right)\left(\theta_2+\frac{1}{d_2}\right)^{\alpha-1},\tag{12}$$

where $\frac{1}{d} \left(1 - \frac{2}{d} \right) \le \theta_1 \le \frac{1}{d_1} \left(1 - \frac{2}{d} \right)$ and $\frac{1}{d} \left(1 - \frac{2}{d_2} \right) \le \theta_2 \le \frac{1}{d_1} \left(1 - \frac{2}{d_2} \right)$.

Once again, since $0 < \alpha < 1$ and $1 - \frac{2}{d_2} < 1 - \frac{2}{d}$, to prove (12), it suffices to show that

$$0 < \theta_1 + \frac{1}{d} \le \theta_2 + \frac{1}{d_2}.$$
 (13)

Taking $\frac{1}{d}\left(1-\frac{2}{d}\right) \leq \theta_1 \leq \frac{1}{d_1}\left(1-\frac{2}{d}\right), \ \theta_2 \geq \frac{1}{d}\left(1-\frac{2}{d_2}\right) \ \text{and} \ d \geq 2 \ \text{into consideration, it follows that}$

$$0 < \frac{1}{d} \left(2 - \frac{2}{d} \right) \le \theta_1 + \frac{1}{d} \le \frac{1}{d_1} \left(1 - \frac{2}{d} \right) + \frac{1}{d} \le \frac{1}{d} \left(1 - \frac{2}{d_2} \right) + \frac{1}{d_2} \le \theta_2 + \frac{1}{d_2},$$

and thus (13) holds.

Proof of Theorem 1.5: Let $G \in S(n, \Delta)$ be a graph with maximal $ABC_{\alpha}(G)$. Denote by $V_1 = \{v \in V(G) : d_G(v) < \Delta\}$ and $V_2 = \{u \in V(G) : d_G(u) = \Delta\}$. Suppose that $|V_1| = k$. By Theorem 1.2, we can conclude that $G[V_1] \cong K_k$. Otherwise, if $G[V_1] \ncong K_k$, then we can add some edges to $G[V_1]$ so that the resultant graph has larger ABC_{α} index than G and also belongs to $S(n, \Delta)$, contrary with the choice of G and Theorem 1.2.

By the definition of V_1 , we have $0 \le k = |V_1| \le \Delta$. Now, we prove $|V_1| \le 1$. **Claim 1.** If $|V_1| = k \ge 1$, then $N_G(x) \cap V_2 \ne \emptyset$ for some vertex x of V_1 .

Proof of Claim 1. By contradiction, we assume that $G[V_1] = K_k$ is a component of G. If $k \ge 2$, then there exists one edge of $G[V_1]$. Note that $G[V_2]$ contains at least one edge. Thus, by the operation as defined in Lemma 3.2, it leads to a contradiction. Therefore, k = 1. In this case, $G[V_1]$ is an isolated vertex. By Lemma 3.1, $ABC_{\alpha}(G)$ is not maximum, a contradiction. This completes the proof of Claim 1.

In what follows, by Claim 1, if $|V_1| = k \ge 1$, then we always suppose that

x is a vertex of V_1 such that $N_G(x) \cap V_2 \neq \emptyset$ and $u \in N_G(x) \cap V_2$. (14)

Claim 2. If $|V_1| = k \ge 2$, then u is adjacent to every vertex of V_1 . Proof of Claim 2. Let $N_G(x) \cap V_2 = S$ and $V_2 - S = T$. By (14), we have $|S| + |V_1| - 1 = d_G(x) \le \Delta - 1 < d_G(u)$, and $S \ne \emptyset$, which implies that $T \ne \emptyset$.

For any vertex u of S, since $d_G(u) = \Delta > d_G(x) = |S| + |V_1| - 1$, we have $N_G(u) \cap T \neq \emptyset$, and thus we may suppose that $uv \in E(G)$, where $v \in T$. If there exists some vertex y of V_1 such that $uy \notin E(G)$, then $xy \in E(G)$, as $G[V_1] = K_k$. Since $u \in S$ and $v \in T$, we can define $G_1 = G + uy + vx - uv - xy$. In this case, $G_1 \in \mathcal{S}(n, \Delta)$. However, Lemma 3.2 implies that $ABC_\alpha(G_1) > ABC_\alpha(G)$, a contradiction. Thus, u is adjacent to every vertex of V_1 , and so Claim 2 holds.

By Claim 2, we can conclude that

$$N_G(x) \setminus \{y\} = N_G(y) \setminus \{x\}$$
 holds for any two vertices $\{x, y\} \subseteq V_1$. (15)

Claim 3. $|V_1| = k \le 1$.

Proof of Claim 3. By contradiction, we assume that $|V_1| = k \ge 2$. Recall that $S = N_G(x) \cap V_2$ and $T = V_2 \setminus S$, where x is defined as in (14). As in the proof of Claim 2, if $|V_1| \ge 2$, then $S \neq \emptyset \neq T$.

If $E(G[T]) \neq \emptyset$, then we choose $u_0v_0 \in E(G[T])$ and $xy \in E(G[V_1])$ (as $k \ge 2$, such edge xy must exist). By (15), $N_G(y) \cap T = \emptyset = N_G(x) \cap T$. Let $G_2 = G + u_0x + v_0y - u_0v_0 - xy$. Then, $G_2 \in S(n, \Delta)$ and $ABC_{\alpha}(G_2) > ABC_{\alpha}(G)$ by Lemma 3.2. This contradiction shows that G[T] is an independent set of G. We choose $w \in T$. Then, $N_G(w) \subseteq S$ by (15). This implies that $\Delta = d_G(w) \le |S| < |S| + |V_1| - 1 = d_G(x) < \Delta$, a contradiction. Thus, Claim 3 holds.

In what follows, we divide the proof into two cases according to the parity of $n\Delta$.

Case 1. $n\Delta$ is even. In this case, to complete the proof of Theorem 1.5 (*i*), it suffices to show that $|V_1| = k = 0$. By contradiction and Claim 3, we assume that $|V_1| = 1$, and suppose that $d_G(z) = \delta < \Delta$. Then, $G = H(\delta)$ and thus $ABC_{\alpha}(G) = ABC_{\alpha}(H(\delta)) < ABC_{\alpha}(H(\Delta))$ by Lemma 3.1 and Proposition 1.6 (*i*), a contradiction. -130-

Case 2. $n\Delta$ is odd. Since $n\Delta$ is odd, by the Handshaking Lemma, G is not a regular graph, that is $\delta < \Delta$. By Claim 3, G is a (Δ, δ) -quasi-regular graph. To complete the proof of Theorem 1.5 (ii), it suffices to show that $\delta = \Delta - 1$. By contradiction, if $\delta \leq \Delta - 2$, then $ABC_{\alpha}(G) = ABC_{\alpha}(H(\delta)) < ABC_{\alpha}(H(\Delta - 1))$ by Lemma 3.1 and Proposition 1.6 (ii), a contradiction.

Acknowledgment: The third author is supported by the Natural Science Foundation of Fujian Province (2019J01643).

References

- W. Carballosa, J. M. Rodríguez, J. M. Sigarreta, Inequalities and several extremal problems on the variable sum exdeg index, submitted.
- [2] X. Chen, G. Hao, Extremal graphs with respect to generalized ABC index, Discr. Appl. Math. 243 (2018) 115–124.
- [3] K. C. Das, J. M. Rodríguez, J. M. Sigarreta, On the maximal general ABC index of graphs with given maximum degree, Appl. Math. Comput., to appear.
- [4] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem.* **37A** (1998) 849– 855.
- [5] I. Gutman, B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012) 131–136.
- [6] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012) 467–482.
- [7] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2009) 2828–2835.
- [8] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discr. Appl. Math. 159 (2011) 1617–1630.
- [9] X. M. Zhang, Y. Yang, H. Wang, X. D. Zhang, Maximum atom-bond connectivity index with given graph parameters, *Discr. Appl. Math.* **215** (2016) 208–217.