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Abstract

As a generalization of the famous atom-bond connectivity index ABC(G), the
general atom-bound connectivity index of a graph G, ABCα(G), is denoted by

ABCα(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)− 2

dG(u)dG(v)

)α
for any α ∈ R \ {0}.

The (general) atom-bound connectivity index has been shown to be a useful topo-
logical index and has received more and more attention recently. In this paper, we
show that ABCα(G + uv) > ABCα(G) holds for any two non-adjacent vertices u
and v of a graph G with dG(u) + dG(v) ≥ 1 for 0 < α ≤ 1

2 . Moreover, by applying
this new property, we determine the maximum value of ABCα together with the
corresponding extremal graphs in the class of graphs with n vertices and maximum
degree ∆ for 0 < α ≤ 1

2 .

1 Introduction

Throughout this paper, we only consider undirected simple graphs, and G = (V,E) is

a simple graph. Let dG(u) and NG(x), respectively, be the degree and neighbor set of

vertex u in G. Specially, ∆ = ∆(G) and δ = δ(G), respectively, denotes the maximum
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and minimum degree of G. If ∆ = δ, then G is called a regular graph. As in [3], if δ < ∆

and G contains exactly |V (G)| − 1 vertices of degree ∆ and one vertex of degree δ, then

G is called a (∆, δ)-quasi-regular graph.

To study the strain energy of cycloalkanes and the stability of alkanes, E. Estrada

et al. [4] put forward the notation of atom-bond connectivity index, ABC(G) for a

graph G, where

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)dG(v)
.

Later, to better understand the correlation properties of the atom-bond connectivity

index for the heat of formation of alkanes, B. Furtula et al. [7] generalized the atom-bond

connectivity index to the general atom-bond connectivity index ABCα(G), where

ABCα(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)− 2

dG(u)dG(v)

)α
for any α ∈ R \ {0}. (1)

It is easily checked that ABC(G) = ABC 1
2
(G).

Throughout this paper, denote by

α1 =
log
(

2∆−2
2∆−3

)
log
(

∆2

4∆−4

) , α2 =
log
(

4∆−5
4∆−6

)
log
(

∆2

4∆−4

) , and α3 =
log (∆− 1)

log
(

∆(2∆−3)
2(∆−1)2

) .
Let S(n,∆) be the set of graphs with n vertices and maximum degree ∆. Recently,

the research on extremal problem of (general) atom-bond connectivity index has received

much attention [2, 3, 5, 6, 8, 9]. In this line, Chen et al. [2] showed the following useful

property of ABCα for connected graphs.

Theorem 1.1. [2] Let G be a connected graph with two non-adjacent vertices u and v.

If α ≤ 1/2 and α 6= 0, then ABCα(G+ uv) > ABCα(G).

In this paper, we will extent Theorem 1.1 to general graphs for 0 < α ≤ 1/2.

Theorem 1.2. Let G be a graph with two non-adjacent vertices u and v. If 0 < α ≤ 1/2,

then ABCα(G+ uv) ≥ ABCα(G), where the equality holds if and only if u and v are two

isolated vertices of G.

Except for this, we shall consider the maximum general atom-bond connectivity index

in the class of S(n,∆). If ∆ = 1, then S(n,∆) is the set of graphs with each component

being either an edge or an isolated vertex. If ∆ = 2, then S(n,∆) is the set of graphs

with each component being either a cycle or a path or an isolated vertex. Thus, we always

suppose that ∆ ≥ 3 in the following.
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Theorem 1.3. [3] Let G be a graph of S(n,∆), where 3 ≤ ∆ ≤ n− 1.

(i) If ∆n is even and α < α1, then

ABCα(G) ≤ n∆

2

(
2∆− 2

∆2

)α
,

with equality if and only if G is regular.

(ii) If ∆n is odd and 0 < α ≤ α2, then

ABCα(G) ≤ ∆n− 2∆ + 1

2

(
2∆− 2

∆2

)α
+ (∆− 1)

(
2∆− 3

∆(∆− 1)

)α
,

with equality if and only if G is (∆,∆− 1)-quasi-regular.
(iii) If ∆n is odd and α < 0, then

ABCα(G) ≤ max

{
∆(n− 1)− 2d

2

(
2∆− 2

∆2

)α
+ 2d

(
∆ + 2d− 2

2d∆

)α
: 1 ≤ d ≤ ∆− 1

2

}
.

(iv) If ∆n is odd and α ≤ −α3, then

ABCα(G) ≤ ∆(n− 1)− 2

2

(
2∆− 2

∆2

)α
+ 21−α,

with equality if and only if G is (∆, 2)-quasi-regular.

A chemical graph is a connected graph with maximum degree ∆ ≤ 4. Let C(n,∆) be

the class of connected chemical graphs with n vertices and maximum degree ∆. Except

for Theorem 1.3 (which is not necessary connected), Das et al. [3] also determined the

extremal maximum graphs in the class of C(n,∆), that is,

Theorem 1.4. [3] Suppose that 3 ≤ ∆ ≤ 4 and α ≤ 1
2
with α 6= 0.

(i) If ∆n is even, then the graphs in C(n,∆) that maximize the ABCα index are exactly

the connected regular graphs.

(ii) If ∆n is odd, then the graphs in C(n,∆) that maximize the ABCα index are exactly

the connected (∆,∆− 1)-quasi-regular graphs.

Note that

lim
∆→+∞

α1 = lim
∆→+∞

α2 = 0, and lim
∆→+∞

α3 = +∞.

By comparing the results of Theorems 1.3 and 1.4 and since ABC(G) = ABC 1
2
(G), we

will consider the similar problem for ABCα in the case 0 < α ≤ 1/2, that is,
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Theorem 1.5. Let G ∈ S(n,∆), where 3 ≤ ∆ ≤ n− 1, and providing that 0 < α ≤ 1/2.

(i) If ∆n is even, then

ABCα(G) ≤ n∆

2

(
2∆− 2

∆2

)2

,

where the equality holds if and only if G is regular.

(ii) If ∆n is odd, then

ABCα(G) ≤ ∆(n− 2) + 1

2

(
2∆− 2

∆2

)α
+ (∆− 1)

(
2∆− 3

∆(∆− 1)

)α
,

where the equality holds if and only if G is (∆,∆− 1)-quasi-regular.

The extremal graphs of Theorem 1.5 must exist, as we have

Proposition 1.6. [1] Suppose that 2 ≤ k ≤ n− 1.

(i) If kn is even, then there is a connected k-regular graph with n vertices.

(ii) If kn is odd, then there is a connected (k, k−1)-quasi-regular graph with n vertices.

2 The proof of Theorem 1.2

This section is dedicated to the proof of Theorem 1.2. Hereafter, denote by

Ψ(x, y) =

(
x+ y − 1(
x+ 1

)
y

)α

−
(
x+ y − 2

xy

)α
.

Lemma 2.1. Let x, y and α be three real numbers. If x ≥ 1, y > 0 and 0 < α < 1, then

Ψ(x, y) >
−α

x
(
x+ 1

)α . (2)

Proof. If y = 2, then Ψ
(
x, y
)

= 0, and so (2) holds. Next, we suppose that y 6= 2. To

show (2), we define Φ(z) = zα, let z1 = x+y−1
(x+1)y

and z2 = x+y−2
xy

.

By the Lagrange Mean Value Theorem and since

z1 − z2 =
x+ y − 1

(x+ 1)y
− x+ y − 2

xy
=

2− y
xy(x+ 1)

,

we have

Ψ
(
x, y
)

= Φ(z1)− Φ(z2) = α(z1 − z2)ξα−1 =
α
(
2− y

)
xy
(
x+ 1

)ξα−1, (3)

where ξ ∈ (z2, z1) if 0 < y < 2, and ξ ∈ (z1, z2) if y > 2.

If 0 < y < 2, then Φ(z1)− Φ(z2) > 0 by (3), and thus (3) implies that (2) holds.
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If y > 2, then (3) implies that

Φ(z1)− Φ(z2) >
α
(
2− y

)
xy
(
x+ 1

) (x+ y − 1(
x+ 1

)
y

)α−1

=
α
(
2− y

)
x
(
x+ y − 1

)(
x+ 1

)α (x+ y − 1

y

)α
≥

α
(
2− y

)
xy
(
x+ 1

)α > −α
x
(
x+ 1

)α ,
and thus (3) implies that (2) holds.

Lemma 2.2. Let x and α be two real numbers. If x ≥ 3 and 0 < α ≤ 1
2
, then

3

2

(
1

2

)α
>

(
x− 1

x

)α
.

Proof. Since 4
3
≤ 2
(
x−1
)

x
< 2 and 0 < α ≤ 1

2
,(

2
(
x− 1

)
x

)α

< 2α ≤
√

2 <
3

2

and thus the result holds.

Proof of Theorem 1.2: Throughout this proof, we simplify write dG(x) and NG(x) as

d(x) and N(x), respectively. Without loss of generality, we suppose that d(u) ≥ d(v).

Case 1. d(v) = 0.

If d(u) = 0, then ABCα(G+ uv) = ABCα(G) by (1).

If d(u) = 1, then suppose that N(u) = w, and thus d(w) ≥ 1. By (1), we have

ABCα(G+ uv)− ABCα(G) = 2

(
1

2

)α
−
(
d(w)− 1

d(w)

)α
, (4)

which implies that ABCα(G+ uv) > ABCα(G) for 1 ≤ d(w) ≤ 2. Thus, we suppose that

d(w) ≥ 3 and then ABCα(G+ uv) > ABCα(G) follows from (4) and Lemma 2.2.

Next, we suppose that d(u) ≥ 2. In this case, by (1) and Lemma 2.1, we have

ABCα(G+ uv)− ABCα(G) =
∑

x∈N(u)

Ψ
(
d(u), d(x)

)
+

(
d(u)

d(u) + 1

)α
> −α

(
1

d(u) + 1

)α
+

(
d(u)

d(u) + 1

)α
. (5)

Since d(u)α − α ≥ 2α − α > 1− α > 0, it follows from (5) that

ABCα(G+ uv)− ABCα(G) >
d(u)α − α(
d(u) + 1

)α > 0,

as desired.

-125-



Case 2. d(v) ≥ 1. By (1) and Lemma 2.1, we have

ABCα(G+ uv)− ABCα(G)

=
∑

x∈N(u)

Ψ
(
d(u), d(x)

)
+
∑

y∈N(v)

Ψ
(
d(v), d(y)

)
+

(
d(u) + d(v)(

d(u) + 1
)(
d(v) + 1

))α

>
−α(

d(u) + 1
)α +

−α(
d(v) + 1

)α +

(
d(u) + d(v)(

d(u) + 1
)(
d(v) + 1

))α

≥ −2α(
d(v) + 1

)α +
1(

d(v) + 1
)α (d(u) + d(v)

d(u) + 1

)α
.

Since 0 < α ≤ 1
2

and d(u) ≥ d(v) ≥ 1, we have(
d(u) + d(v)

d(u) + 1

)α
≥ 1 ≥ 2α.

Thus, ABCα(G+ uv) > ABCα(G), as desired.

3 The Proof of Theorem 1.5

Let H(p) be a graph with n − 1 vertices of degree ∆ and one vertex of degree p, where

0 ≤ p ≤ ∆. From the definition, H(∆) is a regular graph.

Lemma 3.1. If 0 ≤ p < q ≤ ∆, ∆ ≥ 2 and 0 < α ≤ 1
2
, then

ABCα
(
H(p)

)
< ABCα

(
H(q)

)
.

Proof. We first suppose that p = 0. Since 0 < q ≤ ∆, we have

∆ + q − 2

q∆
≥ 2∆− 2

∆2
and thus

(
∆ + q − 2

q∆

)α
≥
(

2∆− 2

∆2

)α
.

From (1), it follows that

ABCα
(
H(q)

)
− ABCα

(
H(0)

)
=

∆(n− 1)− q
2

(
2∆− 2

∆2

)α
+ q

(
∆ + q − 2

q∆

)α
− ∆(n− 1)

2

(
2∆− 2

∆2

)α
≥∆(n− 1) + q

2

(
2∆− 2

∆2

)α
− ∆(n− 1)

2

(
2∆− 2

∆2

)α
> 0,

as desired.

Next we suppose that p ≥ 1. By (1), it suffices to show that

∆(n− 1)− q
2

(
2∆− 2

∆2

)α
+ q

(
∆ + q − 2

q∆

)α
>

∆(n− 1)− p
2

(
2∆− 2

∆2

)α
+ p

(
∆ + p− 2

p∆

)α
,
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which is equivalent to

q

(
∆ + q − 2

q∆

)α
− p

(
∆ + p− 2

p∆

)α
>
q − p

2

(
2∆− 2

∆2

)α
. (6)

Denote by f(x) = x
(

∆+x−2
x∆

)α
, where x ≥ 1. By the Lagrange Mean Value Theorem,

there exists θ with p < θ < q such that

(q − p)f ′(θ) = f(q)− f(p) = q

(
∆ + q − 2

q∆

)α
− p

(
∆ + p− 2

p∆

)α
=(q − p)

(
θ + (1− α)(∆− 2)

∆ + θ − 2

)(
∆ + θ − 2

θ∆

)α
. (7)

Since p < θ < q ≤ ∆ and ∆ ≥ 2,

∆ + θ − 2

θ∆
≥ ∆ + q − 2

q∆
≥ 2∆− 2

∆2
.

and thus 0 < α ≤ 1
2

implies that(
∆ + θ − 2

θ∆

)α
≥
(

2∆− 2

∆2

)α
. (8)

By Combining with (7) and (8), to show (6), it suffices to show that

θ + (1− α)(∆− 2)

∆ + θ − 2
>

1

2
, that is 2

(
θ + (1− α)(∆− 2)

)
−
(
∆ + θ − 2

)
> 0. (9)

Since 1 ≤ p < θ < q ≤ ∆, ∆ ≥ 2 and 0 < α ≤ 1
2
, we have 2

(
θ + (1 − α)(∆ − 2)

)
−(

∆ + θ − 2
)

= θ + (∆− 2)(1− 2α) ≥ θ > 0, and so (9) holds.

Lemma 3.2. Let G be a graph with two edges {uv, wz} ⊆ E(G), where dG(v) > dG(w) ≥

dG(z) and dG(u) = dG(v) ≥ 2. If 0 < α < 1 and {uw, vz} 6⊆ E(G), then ABCα(G1) >

ABCα(G), where G1 = G+ uw + vz − uv − wz.

Proof. For simplification, we rewrite dG(v), dG(w), and dG(z) as d, d1 and d2, respectively.

By the hypothesis, we have d > d1 ≥ d2. To show that ABCα(G1) > ABCα(G), from (1)

it suffices to show that(
d+ d1 − 2

dd1

)α
+

(
d+ d2 − 2

dd2

)α
>

(
2d− 2

d2

)α
+

(
d1 + d2 − 2

d1d2

)α
. (10)

If d2 = 1, since

d+ d1 − 2

dd1

≥ 2d− 2

d2
,
d− 1

d
>
d1 − 1

d1

, and 0 < α < 1,
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it is easily checked that (10) already holds. Thus, we may suppose that d2 ≥ 2 and d ≥ 3

in what follows. Now, to show (10), it suffices to show that∫ 1
d1

(1− 2
d)+ 1

d

1
d(1− 2

d)+ 1
d

αtα−1dt >

∫ 1
d1

(
1− 2

d2

)
+ 1

d2

1
d

(
1− 2

d2

)
+ 1

d2

αtα−1dt,

which is equivalent to∫ 1
d1

(1− 2
d)

1
d(1− 2

d)
α

(
t+

1

d

)α−1

dt >

∫ 1
d1

(
1− 2

d2

)
1
d

(
1− 2

d2

) α

(
t+

1

d2

)α−1

dt. (11)

By Mean Value Theorem of Integrals, 1
d1
> 1

d
and 0 < α < 1, (11) is equivalent to(

1− 2

d

)(
θ1 +

1

d

)α−1

>

(
1− 2

d2

)(
θ2 +

1

d2

)α−1

, (12)

where 1
d

(
1− 2

d

)
≤ θ1 ≤ 1

d1

(
1− 2

d

)
and 1

d

(
1− 2

d2

)
≤ θ2 ≤ 1

d1

(
1− 2

d2

)
.

Once again, since 0 < α < 1 and 1− 2
d2
< 1− 2

d
, to prove (12), it suffices to show that

0 < θ1 +
1

d
≤ θ2 +

1

d2

. (13)

Taking 1
d

(
1− 2

d

)
≤ θ1 ≤ 1

d1

(
1− 2

d

)
, θ2 ≥ 1

d

(
1− 2

d2

)
and d ≥ 2 into consideration, it

follows that

0 <
1

d

(
2− 2

d

)
≤ θ1 +

1

d
≤ 1

d1

(
1− 2

d

)
+

1

d
≤ 1

d

(
1− 2

d2

)
+

1

d2

≤ θ2 +
1

d2

,

and thus (13) holds.

Proof of Theorem 1.5: Let G ∈ S(n,∆) be a graph with maximal ABCα(G). Denote

by V1 =
{
v ∈ V (G) : dG(v) < ∆

}
and V2 =

{
u ∈ V (G) : dG(u) = ∆

}
. Suppose that

|V1| = k. By Theorem 1.2, we can conclude that G[V1] ∼= Kk. Otherwise, if G[V1] � Kk,

then we can add some edges to G[V1] so that the resultant graph has larger ABCα index

than G and also belongs to S(n,∆), contrary with the choice of G and Theorem 1.2.

By the definition of V1, we have 0 ≤ k = |V1| ≤ ∆. Now, we prove |V1| ≤ 1.

Claim 1. If |V1| = k ≥ 1, then NG(x) ∩ V2 6= ∅ for some vertex x of V1.

Proof of Claim 1. By contradiction, we assume that G[V1] = Kk is a component of G. If

k ≥ 2, then there exists one edge of G[V1]. Note that G[V2] contains at least one edge.

Thus, by the operation as defined in Lemma 3.2, it leads to a contradiction. Therefore,

k = 1. In this case, G[V1] is an isolated vertex. By Lemma 3.1, ABCα(G) is not maximum,

a contradiction. This completes the proof of Claim 1.
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In what follows, by Claim 1, if |V1| = k ≥ 1, then we always suppose that

x is a vertex of V1 such that NG(x) ∩ V2 6= ∅ and u ∈ NG(x) ∩ V2. (14)

Claim 2. If |V1| = k ≥ 2, then u is adjacent to every vertex of V1.

Proof of Claim 2. Let NG(x)∩ V2 = S and V2− S = T . By (14), we have |S|+ |V1| − 1 =

dG(x) ≤ ∆− 1 < dG(u), and S 6= ∅, which implies that T 6= ∅.

For any vertex u of S, since dG(u) = ∆ > dG(x) = |S|+|V1|−1, we have NG(u)∩T 6= ∅,

and thus we may suppose that uv ∈ E(G), where v ∈ T . If there exists some vertex y of

V1 such that uy 6∈ E(G), then xy ∈ E(G), as G[V1] = Kk. Since u ∈ S and v ∈ T , we

can define G1 = G + uy + vx − uv − xy. In this case, G1 ∈ S(n,∆). However, Lemma

3.2 implies that ABCα(G1) > ABCα(G), a contradiction. Thus, u is adjacent to every

vertex of V1, and so Claim 2 holds.

By Claim 2, we can conclude that

NG(x) \ {y} = NG(y) \ {x} holds for any two vertices {x, y} ⊆ V1. (15)

Claim 3. |V1| = k ≤ 1.

Proof of Claim 3. By contradiction, we assume that |V1| = k ≥ 2. Recall that S =

NG(x) ∩ V2 and T = V2\S, where x is defined as in (14). As in the proof of Claim 2, if

|V1| ≥ 2, then S 6= ∅ 6= T .

If E
(
G[T ]

)
6= ∅, then we choose u0v0 ∈ E

(
G[T ]

)
and xy ∈ E

(
G[V1]

)
(as k ≥ 2, such

edge xy must exist). By (15), NG(y)∩T = ∅ = NG(x)∩T. Let G2 = G+u0x+v0y−u0v0−

xy. Then, G2 ∈ S(n,∆) and ABCα(G2) > ABCα(G) by Lemma 3.2. This contradiction

shows that G[T ] is an independent set of G. We choose w ∈ T . Then, NG(w) ⊆ S by

(15). This implies that ∆ = dG(w) ≤ |S| < |S| + |V1| − 1 = dG(x) < ∆, a contradiction.

Thus, Claim 3 holds.

In what follows, we divide the proof into two cases according to the parity of n∆.

Case 1. n∆ is even. In this case, to complete the proof of Theorem 1.5 (i), it suffices

to show that |V1| = k = 0. By contradiction and Claim 3, we assume that |V1| = 1, and

suppose that dG(z) = δ < ∆. Then, G = H(δ) and thus ABCα(G) = ABCα
(
H(δ)

)
<

ABCα
(
H(∆)

)
by Lemma 3.1 and Proposition 1.6 (i), a contradiction.
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Case 2. n∆ is odd. Since n∆ is odd, by the Handshaking Lemma, G is not a regular

graph, that is δ < ∆. By Claim 3, G is a (∆, δ)-quasi-regular graph. To complete the

proof of Theorem 1.5 (ii), it suffices to show that δ = ∆−1. By contradiction, if δ ≤ ∆−2,

then ABCα(G) = ABCα
(
H(δ)

)
< ABCα

(
H(∆− 1)

)
by Lemma 3.1 and Proposition 1.6

(ii), a contradiction.
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