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Abstract

Let G be a simple graph with vertex set V (G) and edge set E(G). The Lanzhou
index of a graph G is defined by Lz(G) =

∑
u∈V (G) dG(v)d2G(v), where dG(v) denotes

the degree of the vertex v in G. In this paper, we study the Lanzhou index of several
classes of hexagonal systems. Moreover, Lanzhou index of trees with some given
diameters are obtained. Finally, we get this index for Cartesian product graphs
and Nordhaus-Gaddum-type results.

1 Introduction

In a chemical graph, vertices represent atoms and edges represent bonds between atoms.

The topological index of a chemical graph G is a number that is fixed under the auto-

morphism of G. When analyzing the total electron energy, Balaban et al. [1] introduced

the Zagreb group index (now call it the first Zagreb index). After that, Furtula and
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Gutman [5] introduced the forgotten index, and Kazemi & Behtoei [6] showed that the

forgotten index can be used to test the chemical and pharmacological properties of drug

molecular structures. In 2018, Vukičević et al. [8] introduced a new topological index, and

showed that it behaves better than the existing ones in predicting a chemically relevant

property. The index is named by Lanzhou index, and the Lanzhou index [8] of a graph

G is defined by

Lz(G) =
∑

v∈V (G)

dG(v)d2G(v),

where dG(v) denotes the degree of the vertex v in G.

Recently, Bera and Das [2] obtained some bounds for the Lanzhou index of the first,

second and third Zagreb indices, radius, eccentric connectivity index, Schultz index, in-

verse sum indeg index and symmetric division deg index, and the Lanzhou index of corona

and joined graphs.

In Section 2, we study the Lanzhou index of several known classes of hexagonal

systems. Moreover, Lanzhou index of trees with some given diameters are obtained in

Section 3. In Section 4, we get this index for Cartesian product graphs and Nordhaus-

Gaddum-type results.

2 Results for hexagonal systems

In 1997, Klavžar et al. [7] determined the Wiener index of several classes of hexagonal

systems (called benzenoid systems in [7]). A general hexagonal system [7] denoted by

GH(m, k1, k2, k3, k4) is shown as in Figure 1, where m ≥ 1 is the number of benzenoids

in the lowest layer, 0 ≤ k1 ≤ k3 ≤ m, 0 ≤ k4 ≤ k2 ≤ m and k1 + k2 = k3 + k4.

Theorem 1. Let m ≥ 1, 0 ≤ k1 ≤ k3 ≤ m, 0 ≤ k4 ≤ k2 ≤ m and k1 + k2 = k3 + k4.

Then the Lanzhou index of a general hexagonal system GH(m, k1, k2, k3, k4) is

Lz(GH(m, k1, k2, k3, k4)) = 9n3(n2 + n3 − 4) + 4n2(n2 + n3 − 3),

where n3 = 2m(k1+k2+1)+k1(k1+2k2+1)−k4(k4+1)−2 and n2 = 2m+3k1+2k2−k4+4.

Proof. We consider the number of vertices of degree 3 firstly. Except m − 1 vertices of

degree 3 on the bottom and m+k1−k4−1 on the top, the remaining vertices of degree 3

can be divided to three parts, say T, P, T ′. Note that T is a trapezium, and the all vertices

in T are on k1 layers, and the number of vertices of degree 3 is 2m+ 1 on the lowest layer
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Figure 1. A general hexagonal system GH(m, k1, k2, k3, k4).

and 2(m+ k1− 1) + 1 on the highest layer. Then the number of vertices of degree 3 in T

is
∑k1

j=1

(
2(m+ j−1) + 1

)
= k1(2m+k1). Similarly, the number of vertices of degree 3 in

T ′ is k4(2m+ 2k1 − k4). Since P is a parallelogram and the number of vertices on every

layer is 2(m + k1), it follows that the number of all vertices in P is 2(m + k1)(k3 − k1),

and hence the number of all vertices of degree 3 in GH(m, k1, k2, k3, k4) is

2m(k1 + k2 + 1) + k1(k1 + 2k2 + 1)− k4(k4 + 1)− 2.

Furthermore, the number of vertices of degree 2 on the bound of GH(m, k1, k2, k3, k4)

is m+ 2 + k1 + 1 + k2 + 1 + k3 + 1 + k4 + 1 +m+ k1 − k4 − 2 = 2m+ 3k1 + 2k2 − k4 + 4.

Then the result follows.

Due to parallelogram, trapezium, bitrapezium and corona hexagonal systems [7] de-

noted by P (m,n), T (m,n), BT (m, k1, k2) and Hm are the special cases of general hexago-

nal system, that is, P (m,n) = GH(m, 0, n−1, n−1, 0), T (m,n) = GH(m, 0, n−1, 0, n−

1), BT (m, k1, k2) = GH(n− k1, k1, k2, k1, k2) and Hm = GH(m,m− 1,m− 1,m− 1,m−

1) = BT (2m− 1,m− 1,m− 1), and so Corollaries 2, 3 and 4 are immediate.
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Figure 2. A parallelogram hexagonal system P (m,n).

Corollary 2. Let m,n be two positive integers. Then the Lanzhou index of a parallelo-

gram hexagonal system P (m,n) as shown in Figure 2 is

Lz(P (m,n)) = 8(m+ n+ 1)(2mn+ 2m+ 2n− 3) + 36(mn− 1)(mn+m+ n− 2).

Figure 3. A trapezium hexagonal system T (m,n).

Figure 4. A bitrapezium hexagonal system BT (m, k1, k2).

Corollary 3. Let m and n be positive integers. The Lanzhou index of a trapezium

hexagonal system T (m,n) as shown in Figure 3 is

Lz(T (m,n)) = 9(2mn−m2 +m− 2)(2m+ 2n+ 2mn−m2 − 3)

+4(m+ 2n+ 3)(2m+ 2n+ 2mn−m2 − 2).
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For two non-negative integers k1 and k2. The Lanzhou index of bitrapezium hexagonal

system BT (m, k1, k2) as shown in Figure 4 is

Lz(BT (m, k1, k2)) = 9(2mn− n− k21 − k22 − 1)(2m(n+ 1)− k21 − k22 − 2)

4(2m+ n+ 3)(2m(n+ 1)− k21 − k22 − 1),

where n = k1 + k2 + 1.

Figure 5. A corona Hm.

Corollary 4. Let m be a positive integer. Then the Lanzhou index of corona Hm as

shown in Figure 5 is

Lz(Hm) = 324m4 − 180m3 − 216m2 + 144m.

Let Pj(m,n) be the parallelogram-like hexagonal system [7] of type j as shown in

Figure 6 for j = 1, 2, 3. A simple calculation gives Proposition 5.

Proposition 5. Let m and n be positive integers. Then

Lz(P1(m,n)) = 36(2mn− 1)(m+ 2n+ 2mn− 2) + 8(m+ 2n+ 1)(2m+ 4n+ 4mn− 3);

Lz(P2(m,n)) = 36(2mn−m− n)(n+ 2mn− 2) + 8(m+ 2n)(2n+ 4mn− 3);

Lz(P3(m,n)) = 36(2mn−m+ n− 2)(3n+ 2mn− 4) + 8(m+ 2n)(6n+ 4mn− 7).

A vertex shared by three hexagons is called an internal vertex of the respective hexag-

onal system. A hexagonal system is said to be catacondensed if it does not possess inter-

nal vertices, and thus the inner dual graph (obtained from dual graph [3] by deleting the

vertex corresponding to outer face) is a tree.
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(a): P1(m,n) of Type 1. (b): P2(m,n) of Type 2.

(c): P3(m,n) of Type 3.

Figure 6. Three parallelogram-like hexagonal systems.

Figure 7. A catacondensed hexagonal system with inner dual graph.
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Theorem 6. Let n be a positive integer, and let HSn denote a catacondensed hexagonal

system with n hexagons. Then

Lz(HSn) = 104n2 − 52n+ 20.

Proof. Let Tn denote the tree corresponding to the inner dual graph of a hexagonal system

HSn. Clearly ∆(Tn) ≤ 3 and let n3 be the number of vertices of degree 3 in Tn. If n3 > 0,

then the number of vertices of degree 1 in Tn is n3 + 2. As shown in Figure 7, we divide

all vertices of HSn to n parts.

If deg(v) = 1, deg(u) = 3 and deg(sj) = 2 for j = 1, 2, . . . , k in uv-path us1s2 · · · skv,

then there are two vertices of degree 2 and two vertices of degree 3 in HSn corresponding

to sj for j = 1, 2, . . . , k. If deg(w) = 3 and deg(tj) = 2 for j = 1, 2, . . . ,m in uw-path

ut1t2 · · · tmw, then exists just one vertex t′ ∈ {t1, t2, . . . , tm} such that there are two

remaining vertices of degree 2 in HSn corresponding to t′; and there are two vertices

of degree 2 and two vertices of degree 3 in HSn corresponding to every vertex t′′ ∈

{t1, t2, . . . , tm}\{t′}. It is difficult to see that there are exactly n3−1 paths like uw-path.

Note that the degree of vertices in a hexagon in HSn corresponding to a vertex of

degree 3 in Tn are 3; and there are four vertices of degree 2 in HSn corresponding to a

vertex of degree 1 in Tn.

Therefore, the number of vertices of degree 3 in HSn is 6n3+2(n−2n3−2)−2(n3−1) =

2(n− 1), and the number of vertices of degree 2 in HSn is 4(n3 + 2) + 2(n− 2n3 − 2) =

2(n+ 2). Hence |V (HSn)| = 2(2n+ 1).

It is not difficult to verify that the above results hold on n3 = 0, and hence

Lz(HSn) = 2(n−1)(2(2n+1)−1−3)32+2(n+2)(2(2n+1)−1−2)22 = 104n2−52n+20.

3 Trees with given diameter

The double star S(a, b) for integers a ≥ b ≥ 2 is the graph obtained from the union of

two stars K1,a−1 and K1,b−1 by adding the edge between their centers.

Proposition 7. Let a and b are positive integers, and let S(a, b) be a double star of order

a+ b. Then

Lz(S(a, b)) = (a+ b)(ab− 4) + 2ab+ 4.
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Proof. Since the numbers of vertices of degree a and b are 1 in S(a, b) respectively, it

follows that the Lanzhou index of S(a, b) is

Lz(Sa,b) = (b− 1)a2 + (a− 1)b2 + (a+ b− 2)(a+ b− 1− 1)12 = (a+ b)(ab− 4) + 2ab+ 4.

Figure 8. A tree of diameter 4.

Proposition 8. Let Sr,s,t (r + s+ t = n− 1) be a tree of diameter 4 as shown in Figure

8, where |V0| = r, |Vi| = ti for i = 1, 2, . . . , s and t =
∑s

i=1 ti. Then

Lz(Sr,s,t) = (r + t)(n− 2) + t(r + s)2 +
s∑

i=1

(n− 2− ti)(ti + 1)2.

Proof. As shown in Figure 8, dv0 = r + s, dvi = ti + 1 for i = 1, 2, . . . , s. Note that the

number of vertices of degree 1 is r + t, and so

Lz(Sr,s,t) = (r + t)(n− 1− 1)12 + (n− 1− r − s)(r + s)2 +
s∑

i=1

(n− 1− ti − 1)(ti + 1)2

= (r + t)(n− 2) + t(r + s)2 +
s∑

i=1

(n− 2− ti)(ti + 1)2.

Theorem 9. Let Pr(m1,m2, . . . ,mr) denote the graph obtained from Pr by adding mi

pendent edges on the i-th vertex of Pr for i = 1, 2, . . . , r. Then

Lz(Pr(m1,m2, . . . ,mr)) = m(n−2)+
∑
i=1,r

(n−mi−2)(mi+1)2+
r−1∑
i=2

(n−m1−3)(m1+2)2,

where m =
∑r

j=1mj and n = m+ r.
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Proof. Without loss of generality, assume that V (Pr) = {v1, v2, . . . , vr}, dv1 = m1 + 1,

dvr = mr + 1 and dvi = mi + 2 for i = 2, 3, . . . , r − 1. Hence,

Lz(Pr(m1,m2, . . . ,mr)) = m(m+ r − 1− 1)12 + (m+ r − 1−m1 − 1)(m1 + 1)2

+ (m+ r − 1−mr − 1)(mr + 1)2

+
r−1∑
i=2

(m+ r − 1−m1 − 2)(m1 + 2)2

= m(n− 2) +
∑
i=1,r

(n−mi − 2)(mi + 1)2

+
r−1∑
i=2

(n−m1 − 3)(m1 + 2)2.

4 Results for Cartesian product graphs and

Nordhaus–Gaddum results

In this section, we derive some other results on the Lanzhou index. The Cartesian

product [3] is an operation studied widely in graph theory. The Cartesian product of P5,

P4 and P3 is shown in Figure 9.

Figure 9. The Cartesian product P52P42P3.

Theorem 10. Let
∏k

j=1 Pmj+2 = Pm1+22Pm2+22 · · ·2Pmk+2 denote the Cartesian prod-

uct of paths {Pmj+2}kj=1, where k is a positive integer and mj is a non-negative integer

for j = 1, 2, . . . , k. Then

Lz

(
k∏

j=1

Pmj+2

)
=

k∑
d=0

(n− 1− k − d)(k + d)22k−d
∑
J∈[k]d

∏
j∈J

mj,

where [k]d = {S : S ⊆ {1, 2, . . . , k} and |S| = d} and n =
∏k

j=1(mj + 2).

Especially, if mj = 0 for j = 1, 2, . . . , k, hence ∆ = k, then the Cartesian product

is a k-dimension cube, and the Lanzhou index is 2kk2(2k − k − 1); if mj = m > 0 for
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j = 1, 2, . . . , k, hence ∆ = 2k, then the Lanzhou index is
k∑

d=0

((m+ 2)k − 1− k − d)(k + d)22k−d
(
k

d

)
md.

Proof. Note that there are two vertices of degree 1, and mj vertices of degree 2 for

j = 1, 2, . . . , k. Then the generating function of degree sequence in
∏k

j=1 Pmj+2 is

k∏
j=1

(2x+mjx
2) = xk

k∏
j=1

(2 +mjx),

and hence δ = k and ∆ ≤ 2k. Similarly to the Binomial Theorem, the number of vertices

of degree k + d is

2k−d
∑
J∈[k]d

∏
j∈J

mj,

for d = 0, 1, . . . , k. Observe that the order of the Cartesian product is n =
∏k

j=1(mj + 2).

The result follows.

Proposition 11. Let G be a graph of order n. Then

0 ≤ Lz(G) + Lz(G) ≤ 1

4
n(n− 1)3.

The left equality is satisfied if and only if G is either complete or empty graph. The right

equality is satisfied if and only if n is odd and G is (n− 1)/2-regular.

Proof. From the definition of Lanzhou index, the left inequality is immediate. We only

consider the right inequality as follows.

Lz(G) + Lz(G) =
∑

v∈V (G)

(n− 1− degG(v)) degG(v)2 +
∑

v∈V (G)

degG(v)(n− 1− degG(v))2

= (n− 1)
∑

v∈V (G)

(n− 1− degG(v)) degG(v)

≤ (n− 1)
∑

v∈V (G)

(
n− 1− degG(v) + degG(v)

2

)2

=
1

4
n(n− 1)3.

The right equality is satisfied if and only if n−1−degG(v) = degG(v) for all v ∈ V (G),

that is, degG(v) = (n− 1)/2 for every v ∈ V (G). The result follows.
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