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Abstract

The multiplicative sum Zagreb index of a graph G, denoted by Π∗
1(G), is the

product of the sum of the degrees of adjacent vertices in G. This graphical invariant
is the multiplicative version of the well known first Zagreb index and introduced
by Eliasi, Iranmanesh and Gutman (MATCH Commun. Math. Comput. Chem.

68 (2012) 217–230). In this paper we determine the extremal graphs with respect
to the multiplicative sum Zagreb index for several classes of graphs.

1 Introduction

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). The degree of the

vertex u in G is denoted by dG(u). In chemical graph theory and mathematical chemistry,

a topological index also known as a connectivity index is a type of a molecular descriptor

that is calculated based on the molecular graph of a chemical compound. The oldest and

best known topological indices are the first Zagreb index M1(G) and the second Zagreb

index M2(G) of a graph G and they are defined as

M1(G) =
∑

u∈V (G)

(dG(u))
2 and M2(G) =

∑

uv∈E(G)

dG(u)dG(v).
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These indices were first introduced about fifty years ago by Gutman and Trinajstić [12],

and for details of the mathematical studies and chemical applications on the Zagreb

indices, see [3, 13, 15, 21, 24] and the references cited therein. Moreover the classical

Zagreb indices M1 and M2 were studied in the mathematical literature under other names

[2, 6, 23, 28]. Also the relation and comparison between M1 and M2 were investigated

in [5, 7, 10, 11, 16–18,25].

Todeschini and Consonni [26] proposed the multiplicative versions of the classical

Zagreb indices M1 and M2, which are defined as

Π1(G) =
∏

u∈V (G)

dG(u)
2 and Π2(G) =

∏

uv∈E(G)

dG(u)dG(v).

Gutman [14] studied these two graph invariants and called the first and second multiplica-

tive Zagreb indices, respectively. The recent results related to the multiplicative Zagreb

indices and their other versions can be found in [1, 4, 8, 20, 22, 27,29,30,32].

Eliasi, Iranmanesh and Gutman [9] introduced a new graphical invariant, which is the

multiplicative version of the well known first Zagreb indexM1 and called the multiplicative

sum Zagreb index by Xu and Das [31]. The multiplicative sum Zagreb index is defined

as follows:

Π∗
1(G) =

∏

uv∈E(G)

(dG(u) + dG(v)).

Although Π∗
1 was introduced in 2012, it has been studied only to a limited extent

for various class of graphs. Eliasi, Iranmanesh and Gutman [9] proved that among all

connected graphs with a given order, the path has minimal Π∗
1-value. Also they determined

the trees with the second minimal Π∗
1-value. Xu and Das [31] characterized the extremal

trees, unicyclic and bicyclic graphs with a given order with respect to the multiplicative

sum Zagreb index by introducing some graph transformations. Kazemi [19] studied the

multiplicative Zagreb indices of molecular graphs with tree structure.

For vertices u, v ∈ V (G), the distance between d(u, v) is defined as the length of the

shortest path between u and v. A cut edge in a graph G is an edge whose removal

increases the number of connected components of G. For uv ∈ E(G), denote by G − uv

the subgraph of G obtained from G by deleting the edge uv. For two nonadjacent vertices

u, v ∈ V (G), denote by G + uv the graph obtained from G by adding the edge uv. The

girth of a graph G is the length of a shortest cycle contained in G. Maximum degree of
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G is denoted by ∆. Denote by Un, g the class of all unicyclic graphs of order n with girth

g. Denote by Gn, k the class of all connected graphs of order n with k cut edges.

The aim of this paper is to continue works started by Gutman [14], Eliasi et al. [9]

and Xu et al. [31] on the multiplicative sum Zagreb index. We denote by Fn, g and Hn, k

the class of graphs of order n with girth g and the class of graphs of order n with k

pendant vertices, respectively. The paper is organized as follows. In section 2, we present

the sharp upper bound on Π∗
1 of graphs in Un, g and characterize extremal graphs. Also,

we determine the graphs that have minimal Π∗
1-value in Un, g and Fn, g. In section 3, we

obtain the sharp upper bound on Π∗
1 of graphs in Gn, k and characterize the corresponding

extremal graphs. Moreover, we determine the graphs that have minimal and maximal

Π∗
1-value in Gn, k and Hn, k, respectively.

2 Extremal graphs in Un,g and Fn,g with respect to

Π∗
1

In this section, we obtain the extremal graphs with respect to multiplicative sum Zagreb

index for the class of unicyclic graphs of order n with girth g. Also, we obtain the

graphs that have minimal Π∗
1-value in the class of graphs of order n with girth g. Let

P = uu1u2 · · · uk be a path in G such that dG(u) ≥ 3, dG(uk) = 1 and dG(ui) = 2 for

1 ≤ i < k. Then it is called a pendant path in G, u and k are called the origin and the

length of P . The following results immediately follows from the definition of multiplicative

sum Zagreb index.

Lemma 2.1. Let G be a connected graph.

(i) If uv /∈ E(G) then Π∗
1(G) < Π∗

1(G+ uv).

(ii) If uv ∈ E(G) then Π∗
1(G) > Π∗

1(G− uv).

Transformation A. Let P1 and P2 be two pendant paths with origin u and v in a

connected graph G, respectively. Suppose that x is the neighbor of the vertex u on P1

and y is the pendant vertex on P2. Let G
′ be the graph obtained from G by deleting edge

ux and adding new edge xy. (see Figure 1.)

Lemma 2.2. [31] Let G and G′ be the graphs depicted in Figure 1. If u ≡ v then

Π∗
1(G

′) < Π∗
1(G).
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Figure 1. Transformation A

Lemma 2.3. Let G and G′ be the graphs depicted in Figure 1.

(i) If dG(u) ≥ 4, then Π∗
1(G

′) < Π∗
1(G).

(ii) If there exists ui ∈ NG(u) such that ui 6= x and dG(u) + dG(ui) ≤ 16, then Π∗
1(G

′) <

Π∗
1(G).

Proof. Let z be the neighbor of the pendant vertex y. By the definition of Π∗
1, we have

Π∗
1(G

′)

Π∗
1(G)

=
(dG(x) + 2)(dG(z) + 2)

(dG(u) + dG(x))(dG(z) + 1)

∏

ui∈NG(u)\{x}

dG(u) + dG1(ui)− 1

dG(u) + dG(ui)

=
dG(x) + 2

dG(u) + dG(x)
·

(

1 +
1

dG(z) + 1

)

∏

ui∈NG(u)\{x}

(

1−
1

dG(u) + dG(ui)

)

. (1)

(i) If the length of the pendant path P2 is greater and equal to 2, then dG(z) = 2. Clearly

dG(x) ≤ 2. Then from (1), we get Π∗
1(G

′) < Π∗
1(G) since dG(u) ≥ 4. If the length of the

pendant path P2 is equal to 1, then z ≡ v and dG(z) ≥ 3. Hence, from (1) we have

Π∗
1(G

′)

Π∗
1(G)

<
5

4
·

dG(x) + 2

dG(u) + dG(x)
. (2)

Since dG(u) ≥ 4 and dG(x) ≤ 2, it follows from (2) that Π∗
1(G

′) < Π∗
1(G).

(ii) If dG(u) ≥ 4 then Π∗
1(G

′) < Π∗
1(G) by (i). Let now dG(u) = 3. Then, since there

exists a neighbour ui (ui 6= x) of u such that dG(u) + dG(ui) ≤ 16, we have

Π∗
1(G

′)

Π∗
1(G)

<
dG(x) + 2

dG(u) + dG(x)
·

(

1 +
1

dG(z) + 1

)(

1−
1

dG(u) + dG(ui)

)

≤
dG(x) + 2

3 + dG(x)
·

(

1 +
1

dG(z) + 1

)

·
15

16
(3)

from (1). Clearly, we have dG(z) ≥ 2 and dG(x) ≤ 2. Therefore, it follows from (3) that

Π∗
1(G

′) < Π∗
1(G).
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A unicyclic graph G is said to be a sun graph if ∆(G) = 3 and the origin of all pendant

paths lie on the unique cycle C. Denote by S(n, g) the class of all sun graphs of order n

with girth g. Then we have S(n, g) ⊂ Un, g.

Proposition 2.4. Let G ∈ Un, g. If Π∗
1(G) is minimum in Un, g then G ∈ S(n, g).

Proof. Suppose that G /∈ S(n, g). Then there are two pendant paths P1 and P2 with

common origin u. If we apply Transformation A for the paths P1 and P2, then Π∗
1(G) >

Π∗
1(G

′) by Lemma 2.2, which is a contradiction.

We denote by Cn, g the sun graph of order n with girth g that has at most one pendant

path. If g = n then Cn, n is the cycle of order n and it is denoted by Cn.

Theorem 2.5. Let G be a unicyclic graph in Un, g which is not isomorphic to Cn, g. Then

Π∗
1(G) > Π∗

1(Cn, g).

Proof. Suppose that Π∗
1(G) is minimum in Un, g \Cn, g. Then by Proposition 2.4, we have

G ∈ S(n, g) and there exist at least two pendant paths P1 and P2 with origin u and v,

respectively, such that u, v ∈ V (C). Clearly dG(u) = 3 and dG(u) + dG(ui) ≤ 6 for all

ui ∈ NG(u). We apply Transformation A for the paths P1 and P2, then G′ ∈ Un, g and

Π∗
1(G) > Π∗

1(G
′) by Lemma 2.3 (ii). If G′ is not isomorphic to Cn, g, then we have a

contradiction to the fact that Π∗
1(G) is minimum in Un, g \ Cn, g. Otherwise, we get the

required result.

Theorem 2.6. Let G be a graph in Fn, g. If Π∗
1(G) is minimum in Fn, g then G is

isomorphic to Cn, g.

Proof. Let g be the girth of G and C be a cycle of length g ≥ 3 in G. By deleting edges

from a graph G, the multiplicative sum Zagreb index decreases by Lemma 2.1 (ii). Thus

by deleting the edges of G, which does not lie on the cycle C, a sufficient number of times

we arrive at a graph in Un, g. Then since Π∗
1(G) is minimum in Fn, g, it follows that G is

isomorphic to Cn, g by Theorem 2.5. This completes the proof.

Xu and Das [31] introduced the following transformation in order to characterize the

trees, unicyclic and bicyclic graphs with maximal multiplicative sum Zagreb index.

Transformation B. Let uv be a cut edge of a graphG such that dG(u) ≥ 2 and dG(v) ≥ 2.

Denote by G′ = G · (uv)+uv the graph obtained by the contraction of uv onto the vertex

u and adding a pendant vertex v to u. (see Figure 2.)
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Figure 2. Transformation B

Lemma 2.7. [31] Let G and G′ be the graphs depicted in Figure 2. Then Π∗
1(G) <

Π∗
1(G

′).

Proposition 2.8. Let G ∈ Gn, k. If Π∗
1(G) is maximum in Gn, k, then all cut edges of G

are pendant.

Proof. Suppose, on the contrary, that G contains a non-pendant cut edge uv. Then

dG(u) ≥ 2 and dG(v) ≥ 2. Let G′ be the graph obtained from G by using Transformation

B, i.e., G′ = G ·(uv)+uv. Then G′ ∈ Gn, k and Π∗
1(G) < Π∗

1(G
′) by Lemma 2.7. Therefore,

we have a contradiction to the assumption that Π∗
1(G) is maximum in Gn, k.

Corollary 2.9. [31] Let T be a tree of order n which is different from Sn. Then Π∗
1(T ) <

Π∗
1(Sn).

A unicyclic graph is called as cycle-caterpillar if deleting all its pendant vertices will

reduce it to a cycle. Denote by U(n, g) the class of all cycle-caterpillars of order n with

girth g. Then the following result immediately follows from Proposition 2.8.

Corollary 2.10. Let G ∈ Un, g. If Π
∗
1(G) is maximum in Un, g then G ∈ U(n, g).

Denote by Un, g the unicyclic graph obtained by attaching n − g pendant edges to a

vertex of Cg.

Theorem 2.11. Let G ∈ Un, g. Then

Π∗
1(G) ≤ 4g−2(n− g + 3)n−g(n− g + 4)2 (4)

with equality holding if and only if G is isomorphic to Un, g.

Proof. If G is isomorphic to Un, g, then Π∗
1(G) = 4g−2(n − g + 3)n−g(n − g + 4)2, the

equality holds. Suppose that G is not isomorphic to Un, g and Π∗
1(G) is maximum in Un, g.

Then by Corollary 2.10, we have G ∈ U(n, g). Let v1, v2, . . . , vg be the vertices, which are
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numbered clockwise, of cycle C(G) and ni be the number of pendant vertices adjacent to

vertex vi, i = 1, 2, . . . , g. Without loss of generality we may assume that v1 is maximum

degree vertex of G. Then, since G is not isomorphic to Un, g, there exists a vertex vi

such that vi 6= v1 and ni ≥ 1. Clearly, the vertices v1 and vi lie on the cycle C(G). Let

x1, x2, . . . , xni
be the pendant neighbors of vi. Consider the graph

G′ = G− {vix1, vix2, . . . , vixni
}+ {v1x1, v1x2, . . . , v1xni

}.

Then we have dG′(vi) = 2, dG′(v1) = dG(v1)+ni and dG′(vj) = dG(vj) for j 6= 1 and j 6= i.

Now, in order to prove that Π∗
1(G

′) > Π∗
1(G) we distinguish the following three cases:

Case 1. d(v1, vi) ≥ 3. By the definition of Π∗
1, we have

Π∗
1(G

′)

Π∗
1(G)

=
ni−1 + 4

ni + ni−1 + 4
·

ni+1 + 4

ni+1 + ni + 4
·
n1 + ni + ng + 4

n1 + ng + 4

×
n1 + ni + n2 + 4

n1 + n2 + 4
·
(n1 + ni + 3)n1+ni

(ni + 3)ni(n1 + 3)n1

=

(

1−
ni

ni + ni−1 + 4

)(

1−
ni

ni+1 + ni + 4

)(

1 +
ni

n1 + ng + 4

)

×

(

1 +
ni

n1 + n2 + 4

)(

1 +
n1

ni + 3

)ni
(

1 +
ni

n1 + 3

)n1

. (5)

On the other hand we have ni−1, ni+1 ≥ 0 and n2, ng ≤ n1. Therefore from (5), by

using these inequalities and well known Bernoulli’s inequality, we get

Π∗
1(G

′)

Π∗
1(G)

≥

(

1−
ni

ni + 4

)2 (

1 +
ni

2n1 + 4

)2 (

1 +
n1ni

ni + 3

)(

1 +
n1ni

n1 + 3

)

≥

(

1−
ni

ni + 4

)2 (

1 +
ni

2n1 + 4

)2 (

1 +
n1ni

n1 + 3

)2

=

(

2(2n1 + ni + 4)(n1 + 3 + n1ni)

(ni + 4)(n1 + 2)(n1 + 3)

)2

=

(

2(2n2
1 + 10n1 + 2n2

1ni + 3ni + 5n1ni + n1n
2
i + 12)

n2
1ni + 4n2

1 + 5n1ni + 20n1 + 6ni + 24

)2

=

(

1 +
3n2

1ni + 5n1ni + 2n1n
2
i

n2
1ni + 4n2

1 + 5n1ni + 20n1 + 6ni + 24

)2

> 1.

Case 2. d(v1, vi) = 2. In this case we can assume that i = 3. Using similar argument as

the above case, we get

Π∗
1(G

′)

Π∗
1(G)

=
n1 + n3 + n2 + 4

n1 + n2 + 4
·
n1 + n3 + ng + 4

n1 + ng + 4
·

n2 + 4

n2 + n3 + 4

×
n4 + 4

n3 + n4 + 4
·

(

n1 + n3 + 3

n1 + 3

)n1

·

(

n1 + n3 + 3

n3 + 3

)n3
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=

(

1 +
n3

n1 + n2 + 4

)(

1 +
n3

n1 + ng + 4

)(

1−
n3

n2 + n3 + 4

)

×

(

1−
n3

n3 + n4 + 4

)(

1 +
n3

n1 + 3

)n1
(

1 +
n1

n3 + 3

)n3

≥

(

1 +
n3

2n1 + 4

)2 (

1−
n3

n3 + 4

)2 (

1 +
n1n3

n1 + 3

)(

1 +
n1n3

n3 + 3

)

≥

(

1 +
n3

2n1 + 4

)2 (

1−
n3

n3 + 4

)2 (

1 +
n1n3

n1 + 3

)2

=

(

2(2n1 + 4 + n3)(n1 + 3 + n1n3)

(n1 + 2)(n3 + 4)(n1 + 3)

)2

=

(

1 +
3n2

1n3 + 5n1n3 + 2n1n
2
3

n2
1n3 + 5n1n3 + 4n2

1 + 20n1 + 6n3 + 24

)2

> 1.

Case 3. d(v1, vi) = 1. In this case we can assume that i = 2. Similarly as the above

cases, we also get

Π∗
1(G

′)

Π∗
1(G)

=
(n1 + n2 + 4)(n3 + 4)(n1 + n2 + ng + 4)(n1 + n2 + 3)n1+n2

(n1 + n2 + 4)(n2 + n3 + 4)(n1 + ng + 4)(n1 + 3)n1(n2 + 3)n2

=

(

1−
n2

n2 + n3 + 4

)(

1 +
n2

n1 + ng + 4

)(

1 +
n2

n1 + 3

)n1
(

1 +
n1

n2 + 3

)n2

≥

(

1−
n2

n2 + 4

)(

1 +
n2

2n1 + 4

)(

1 +
n1n2

n1 + 3

)(

1 +
n1n2

n2 + 3

)

≥

(

1−
n2

n2 + 4

)(

1 +
n2

2n1 + 4

)(

1 +
n1n2

n1 + 3

)2

≥

(

1−
n2

n2 + 4

)(

1 +
n2

2n1 + 4

)(

1 +
2n1n2

n1 + 3

)

=
2(2n1 + 4 + n2)(n1 + 3 + 2n1n2)

(n1 + 2)(n2 + 4)(n1 + 3)

= 1 +
7n2

1n2 + 13n1n2 + 4n1n
2
2

n2
1n2 + 4n2

1 + 5n1n2 + 20n1 + 6n2 + 24
> 1.

In all of the above cases, we have Π∗
1(G

′) > Π∗
1(G) and it contradicts to the assumption

that Π∗
1(G) is maximum in Un, g.

3 Extremal graphs in Gn,k and Hn,k with respect to

Π∗
1

In this section, we obtain extremal graphs with respect to multiplicative sum Zagreb

index for the class of connected graphs of order n with k cut edges. Also, we determine

the graphs that have maximal Π∗
1-value in the class of graphs of order n with k pendant

vertices. A connected graph of order n has at most n − 1 cut edges and if k = n − 1

then it is a tree. Eliasi, Iranmanesh and Gutman [9] proved that among all connected
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graphs with a given number of vertices, the path Pn has minimal Π∗
1-value. Also among

all connected graphs with a given number of vertices, the star Sn has maximal Π∗
1-value

by Corollary 2.9. Therefore, we further assume that 0 ≤ k < n − 1. Xu and Das [31]

determined the graphs extremal with respect to multiplicative sum Zagreb index from the

class of bicyclic graphs of order n.

Figure 3. Bicyclic graphs of order 4 and 5.

Lemma 3.1. [31] Let G be a bicyclic graph of order n ≥ 6. Then Π∗
1(G) ≥ 4n−4 · 54 · 6.

Theorem 3.2. Let G be a graph in Gn, k with 0 ≤ k < n − 1. If Π∗
1(G) is minimum in

Gn, k then G is isomorphic to Cn, n−k.

Proof. Let G be a graph in Gn, k which is not isomorphic to Cn, n−k such that Π∗
1(G) is

minimum. Then we show that Π∗
1(G) > Π∗

1(Cn, n−k). Since G is connected and 0 ≤ k <

n − 1, we have n ≥ 3. Let ν be the cyclomatic number of G. Since k < n − 1, we have

ν ≥ 1. If ν = 1 then G is a unicyclic graph and the girth of G is n−k. Hence G ∈ Un, n−k.

Since G is not isomorphic to Cn, n−k, we have Π∗
1(G) > Π∗

1(Cn, n−k) by Theorem 2.5.

Let now ν ≥ 2. Then n ≥ 4. Let g be the girth of G and C be a cycle of length g ≥ 3

in G. By deleting the non-cut edges of G, which does not lie on the cycle C, a sufficient

number of times (ν − 1-times) we arrive at a graph Gν−1 in Un, g. Thus by Lemma 2.1,

we get the following sequence

Π∗
1(G) > Π∗

1(G1) > · · · > Π∗
1(Gν−2) > Π∗

1(Gν−1). (6)

On the other hand one can easily calculate that

Π∗
1(Cn,t) = 3 · 4n−4 · 53 (7)

for all t < n−1. Clearly Gν−2 is a bicyclic graph. Let 4 ≤ n ≤ 5. Then all bicyclic graphs

of order n are depicted in Figure 3 and Gν−2 is isomorphic to one of them. In this case
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one can easily check that Π∗
1(Gν−2) > Π∗

1(Cn, n−k). Let now n ≥ 6. Then, by Lemma 3.1

and (7), we have

Π∗
1(Gν−2) ≥ 4n−4 · 54 · 6 > 4n−2 · 52 = Π∗

1(Cn, n−1)

> 3 · 4n−4 · 53 = Π∗
1(Cn, n−k) > 4n = Π∗

1(Cn) (8)

for k > 1. From (6) and (8), we obtain that Π∗
1(G) > Π∗

1(Cn, n−k) for all 0 ≤ k < n − 1.

This completes the proof.

Denote by G(n, k) the class of graphs of order n with k pendant vertices in which the

removal of all pendant vertices and their incident edges results in a complete graph of

order n− k.

Lemma 3.3. Let G be a graph in Gn, k with 0 ≤ k < n− 1. If Π∗
1(G) is maximum in Gn, k

then G ∈ G(n, k).

Proof. Since Π∗
1(G) is maximum in Gn, k, all cut edges of G are pendant by Proposition

2.8. If G /∈ G(n, k), then there exist two non-adjacent vertices u and v in G whose

degrees are greater than one. Now consider the graph G′ = G+ uv. Then G′ ∈ Gn, k and

Π∗
1(G

′) > Π∗
1(G) by Lemma 2.2, so this is a contradiction.

Lemma 3.4. Let a, b and c be non-negative real numbers. If x ≥ 0 then

x+ a+ b+ c

x+ a+ c
·

x+ c

x+ b+ c
≥

a+ b+ c

a+ c
·

c

b+ c
. (9)

Proof. Let us consider a function

f(x) =
x+ a+ b+ c

x+ a+ c
·

x+ c

x+ b+ c
.

Then, we have

f ′(x) = −
b

(x+ a+ c)2
·

x+ c

x+ b+ c
+

x+ a+ b+ c

x+ a+ c
·

b

(x+ b+ c)2

=
b(x+ a+ b+ c)(x+ a+ c)− b(x+ b+ c)(x+ c)

(x+ a+ c)2(x+ b+ c)2

≥ 0

and it follows that f(x) is a non-decreasing function of x. Therefore f(x) ≥ f(0), which

proves the inequality (9).

Denote by Gn, k the graph obtained by attaching k pendant edges to a vertex of Kn−k.
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Theorem 3.5. Let G be a graph in Gn, k. Then

Π∗
1(G) ≤ [2(n− k − 1)]

(n−k−1)(n−k−2)
2 (2n− k − 2)n−k−1nk (10)

with equality holding if and only if G is isomorphic to Gn, k.

Proof. If G is isomorphic to Gn, k then one can easily see that the equality in (10) holds.

Suppose that G is not isomorphic to Gn, k and Π∗
1(G) is maximum in Gn, k. Then by Lemma

3.3 we have G ∈ G(n, k). Let v1, v2, . . . , vn−k be the vertices of the clique Kn−k and ni be

the number of pendant vertices adjacent to vertex vi in G. Without loss of generality we

can assume that v1 is maximum degree vertex of G. Since G is not isomorphic to Gn, k,

there exists a vertex vt such that vt 6= v1 and nt ≥ 1. Let x1, x2, . . . , xnt
be the pendant

neighbors of vt. Consider the graph

G′ = G− {vtx1, vtx2, . . . , vtxnt
}+ {v1x1, v1x2, . . . , v1xnt

}.

Then we have dG′(vt) = n − k − 1, dG′(v1) = dG(v1) + nt and dG′(vj) = dG(vj) for j 6= 1

and j 6= t. Now we prove that Π∗
1(G

′) > Π∗
1(G). If we set x = ni, a = n1, b = nt,

c = 2(n− k − 1) in inequality (9), then it follows that

n1 + nt + ni + 2(n− k − 1)

n1 + ni + 2(n− k − 1)
·

ni + 2(n− k − 1)

nt + ni + 2(n− k − 1)

≥
n1 + nt + 2(n− k − 1)

n1 + 2(n− k − 1)
·

2(n− k − 1)

nt + 2(n− k − 1)
(11)

by Lemma 3.4. Then by the definition of Π∗
1 and (11), we have

Π1(G
′)/Π1(G)

=
(n1 + nt + n− k)n1+nt

(n1 + n− k)n1(nt + n− k)nt

n−k
∏

i=2,i6=t

[

n1 + nt + ni + 2(n− k − 1)

n1 + ni + 2(n− k − 1)
·

ni + 2(n− k − 1)

nt + ni + 2(n− k − 1)

]

≥
(n1 + nt + n− k)n1+nt

(n1 + n− k)n1(nt + n− k)nt

n−k
∏

i=2,i6=t

[

n1 + nt + 2(n− k − 1)

n1 + 2(n− k − 1)
·

2(n− k − 1)

nt + 2(n− k − 1)

]

=
(n1 + nt + n− k)n1+nt

(n1 + n− k)n1(nt + n− k)nt

[2(n− k − 1) + n1 + nt]
n−k−2

[2(n− k − 1) + n1]n−k−2

[2(n− k − 1)]n−k−2

[2(n− k − 1) + nt]n−k−2
.

Let us consider the following functions

f(x) = [2(n− k − 1) + x]n−k−2(x+ n− k)x, x ≥ 0 (12)

and

h(x) = lnf(x) + lnf(0)− lnf(x− nt)− lnf(nt). (13)

Then, the above inequality is rewritten as

Π∗
1(G

′)

Π∗
1(G)

≥
f(n1 + nt)f(0)

f(n1)f(nt)
(14)
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and from (12) it follows that

lnf(x) = (n− k − 2)ln[2(n− k − 1) + x] + xln(x+ n− k).

Therefore,

(lnf(x))
′

=
n− k − 2

2(n− k − 1) + x
+ ln(x+ n− k) +

x

x+ n− k

and

(lnf(x))
′′

=
−(n− k − 2)

[2(n− k − 1) + x]2
+

1

x+ n− k
+

n− k

(x+ n− k)2

=
x+ 2(n− k)

(x+ n− k)2
−

n− k − 2

[2(n− k − 1) + x]2
. (15)

On the other hand, one can easily seen that

x+ 2(n− k) > n− k − 2, (x+ n− k)2 < [2(n− k − 1) + x]2 (16)

since n− k ≥ 3. Combining (15) and (16) we obtain that (lnf(x))
′′

> 0. Hence (lnf(x))
′

is an increasing function when x ≥ 0 and it follows that (lnf(x))
′

> (lnf(x − nt))
′

.

From this, h′(x) = (lnf(x) + lnf(0) − lnf(x − nt) − lnf(nt))
′

> 0 for 0 < nt ≤ x.

Thus h(x) is an increasing function when 0 < nt ≤ x from (13) and it follows that

h(x) > h(nt) = 0. So lnf(x) + lnf(0) > lnf(x − nt) + lnf(nt). If set x = n1 + nt, then

we get ln(f(n1 + nt)f(0)) > ln(f(n1)f(nt)), that is

f(n1 + nt)f(0) > f(n1)f(nt). (17)

Combining (14) and (17) we obtain Π∗
1(G

′) > Π∗
1(G) and it contradicts to the assumption

that Π∗
1(G) is maximum in Gn, g.

Theorem 3.6. Let G be a graph in Hn, k. If Π∗
1(G) is maximum in Hn, k then G is

isomorphic to Gn, k.

Proof. Suppose that G /∈ G(n, k). Then there exist two non-adjacent vertices u and v in

G whose degrees are greater than one. Let us consider the graph G′ = G + uv. Then

G′ ∈ Hn, k and Π∗
1(G

′) > Π∗
1(G) by Lemma 2.1 (i). This contradicts to the fact that Π∗

1(G)

is maximum in Hn, k. The rest of the proof is similar to the proof of Theorem 3.5. Hence,

we get the required result.
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