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Abstract

Let G be a connected graph with vertex set V (G). The Kirchhoff index of G is
defined as Kf(G) =

∑
{u,v}⊆V (G) R(u, v|G), and the degree resistance distance of G

is defined as DR(G) =
∑
{u,v}⊆V (G)[d(u|G) + d(v|G)]R(u, v|G), where R(u, v|G) de-

notes the resistance distance between vertices u and v in G, and d(u|G) denotes the
degree of the vertex u in G. In this paper, we mainly determine maximum Kirch-
hoff index and maximum degree resistance distance of n-vertex unicyclic graphs with
given maximum degree, and characterize their extremal graphs. In addition, maxi-
mum Kirchhoff index and maximum degree resistance distance of n-vertex unicyclic
graphs can be determined as corollaries, which are results in [3, 24,26].
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1 Introduction

All graphs considered in this paper are finite, simple and connected. Let G be a graph with

vertex set V (G) and edge set E(G). For u, v ∈ V (G), the (ordinary) distance between u

and v in G, denoted by d(u, v|G), is the length of a shortest path connecting them in G.

Graph invariants, based on the distances between the vertices of a graph [2], are

widely used in theoretical chemistry to establish relations between the structure and the

properties of molecules [10, 11]. Topological indices are numerical graph invariants, in

which the Wiener index is one of the oldest and the most thoroughly studied indices

[23,25]. The Wiener index of G is defined as [6, 13]

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G).

A number of modifications of the Wiener index were proposed, and the degree distance

is such a graph invariant, which is defined as [7]

D(G) =
∑

{u,v}⊆V (G)

[d(u|G) + d(v|G)]d(u, v|G),

where d(u|G) is the degree of the vertex u in G. If G is a tree on n-vertex, then the

Wiener index and the degree distance are related as [7]

D(G) = 4W (G)− n(n− 1).

In 1993 Klein and Randić [15] introduced a new distance function named resistance

distance. For u, v ∈ V (G), the resistance distance between u and v in G, denoted by

R(u, v|G), is defined as the effective resistance between nodes u and v of the electrical

network for which nodes correspond to vertices of G and each edge of G is replaced by a

resistor of unit resistance.

The Kirchhoff index of G is defined in analogy to the Wiener index as [15]

Kf(G) =
∑

{u,v}⊆V (G)

R(u, v|G).

The Kirchhoff index is also an important topological index and much studied in the

literature [4,12,17–20,22,26,28,29]. It found a lot of applications in chemistry, electrical

network, Markov chains, averaging networks and experiment design, see [1, 8, 14].

The degree resistance distance was put forward in [9], which is defined as

DR(G) =
∑

{u,v}⊆V (G)

[d(u|G) + d(v|G)]R(u, v|G).
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This quantity is sometimes referred to as the additive degree-Kirchhoff index, and more

results can be referred to [3, 5, 20, 24,27].

It is well-known [15] that

R(u, v|G) ≤ d(u, v|G)

with equality if and only if there is a unique path connecting vertices u and v in G. As an

immediate consequence, if G is a tree, then Kf(G) = W (G) and DR(G) = D(G). Thus

in the research on the Kirchhoff index and the degree resistance distance of graphs, it is

primarily of interest in the case of cycle-containing graphs. Note that |E(G)| = |V (G)|−1

for trees, and |E(G)| = |V (G)| for unicyclic graphs. In this paper, we mainly characterize

the unique unicyclic graph with maximum Kirchhoff index, which is the Theorem 1.1,

and the unique unicyclic graphs with maximum degree resistance distance, which is the

Theorem 1.2, when order n and maximum degree ∆ are given and 2 ≤ ∆ ≤ n− 1.

First, we introduce some notations and special graphs. Let U(n,∆) be the set of n-

vertex unicyclic graphs with maximum degree ∆, where 2 ≤ ∆ ≤ n − 1. Let Pn and Cn

be the path and the cycle on n vertices, respectively. For 3 ≤ ∆ ≤ n− 1, let Un,∆ be the

n-vertex unicyclic graph obtained by attaching ∆− 3 pendent vertices and a path Pn−∆

to one vertex of C3 (see Figure 1). For 3 ≤ ∆ ≤ n− 3, let U ′n,∆ be the n-vertex unicyclic

graph obtained by joining one vertex of C3 and the center of the star on ∆ vertices with

a path of length n −∆ − 2 (see Figure 1). In particular, U(n, 2) = {Cn} for ∆ = 2 and

U(n, n− 1) = {Un,n−1} for ∆ = n− 1.

,nU

n

3

1

2n

,n'U

Figure 1. The graphs Un,∆ and U ′n,∆.

Now we give the main results in this paper.

Theorem 1.1 Among the graphs in U(n,∆) with 3 ≤ ∆ ≤ n − 1, Un,∆ is the unique

graph with maximum Kirchhoff index, which is equal to

1

6
[2∆3 − (3n + 3)∆2 + (9n− 5)∆ + n3 − 11n + 6].

-673-



Let f(x) = 1
6
[2x3 − (3n + 3)x2 + (9n − 5)x + n3 − 11n + 6], where 3 ≤ x ≤ n − 1.

Denote by x1 and x2 the two roots of f ′(x) = 0, where x1 < x2. It is easy to check

that x1 < 3 and x2 > n − 1. Then f(x) is decreasing in the interval [3, n − 1] and

f(x) ≤ f(3) = 1
6
(n3 − 11n + 18). Note that Kf(Cn) < Kf(Un,3) for n ≥ 4. Thus we

obtain that Un,3 is the unique graph with maximum Kirchhoff index among all n-vertex

unicyclic graphs, which is one of the main results in [26].

Corollary 1 [26] For n-vertex unicyclic graph G with n ≥ 4,

Kf(G) ≤ 1

6
(n3 − 11n + 18)

with equality if and only if G = Un,3.

Theorem 1.2 Among the graphs in U(n,∆) with 3 ≤ ∆ ≤ n− 1,

(i) if ∆ = 3, 4, 5, n− 2, n− 1, or ∆ ≥ 6 and n < ∆ + 4 + 9
∆−5

, then Un,∆ is the unique

graph with maximum degree resistance distance, which is equal to

1

3
[4∆3 − (6n + 3)∆2 + (12n− 7)∆ + 2n3 − 10n− 6];

(ii) if ∆ ≥ 6 and n > ∆ + 4 + 9
∆−5

, then U ′n,∆ is the unique graph with maximum degree

resistance distance, which is equal to

1

3
[4∆3 − (6n + 9)∆2 + (18n− 1)∆ + 2n3 − 40n + 60];

(iii) if ∆ ≥ 6 and n = ∆ + 4 + 9
∆−5

(i.e.,∆ = 6, n = 19; ∆ = 8, n = 15; ∆ = 14, n = 19),

then Un,∆ and U ′n,∆ are the unique graphs with maximum degree resistance distance,

which is equal to 38331
3

for ∆ = 6 and n = 19, 1358 for ∆ = 8 and n = 15, and

15531
3

for ∆ = 14 and n = 19.

Let f1(x) = 1
3
[4x3 − (6n + 3)x2 + (12n− 7)x + 2n3 − 10n− 6], where 3 ≤ x ≤ n− 1.

Let f2(x) = 1
3
[4x3 − (6n + 9)x2 + (18n − 1)x + 2n3 − 40n + 60], where 3 ≤ x ≤ n − 3.

By similar arguments about f(x) as above, we have f1(x) and f2(x) are respectively

decreasing in the interval [3, n− 1] and [3, n− 3], and so f1(x) ≤ f1(3) = 2
3
(n3− 14n+ 27)

and f2(x) ≤ f2(3) = 2
3
(n3 − 20n + 42). Note that f2(3) < f1(3) and DR(Cn) < DR(Un,3)

for n ≥ 4. Thus we obtain that Un,3 is the unique graph with maximum degree resistance

distance among all n-vertex unicyclic graphs, which is one of the main results in [3, 24].

Corollary 2 [3, 24] For n-vertex unicyclic graph G with n ≥ 4,

DR(G) ≤ 2

3
(n3 − 14n + 27)

with equality if and only if G = Un,3.
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2 Preliminaries

Note that R(v, v|G) = d(v, v|G) = 0 for v ∈ V (G). Let

Kf(v|G) =
∑

u∈V (G)

R(u, v|G) =
∑

u∈V (G)\{v}

R(u, v|G),

DR(v|G) =
∑

u∈V (G)

d(u|G)R(u, v|G) =
∑

u∈V (G)\{v}

d(u|G)R(u, v|G).

Then Kf(G) = 1
2

∑
v∈V (G) Kf(v|G) and DR(G) =

∑
v∈V (G) d(v|G)

∑
u∈V (G) R(u, v|G).

Let Pn(u, v) be the n-vertex path from the vertex u to the vertex v. Then

Kf(u|Pn(u, v)) = Kf(v|Pn(u, v)) =
1

2
n(n− 1),

Kf(Pn) = W (Pn) =
1

6
n(n− 1)(n + 1),

DR(u|Pn(u, v)) = DR(v|Pn(u, v)) = (n− 1)2,

DR(Pn) = D(Pn) = 4W (Pn)− n(n− 1) =
1

3
(2n3 − 3n2 + n).

Let Cn = v1v2 · · · vnv1 be the n-vertex cycle with vertices labeled consecutively by

v1, v2, . . . , vn. Then it is known that [26]

R(vi, vj|Cn) =
(j − i) · [n− (j − i)]

n
,

where 1 ≤ i < j ≤ n and R(vi, vj|Cn) is increasing for 1 ≤ j − i ≤ bn
2
c. And from [9]

Kf(Cn) =
n3 − n

12
, DR(Cn) = 4Kf(Cn) =

n3 − n

3
,

Kf(vi|Cn) =
n2 − 1

6
, DR(vi|Cn) = 2Kf(vi|Cn) =

n2 − 1

3
for 1 ≤ i ≤ n.

Let Cl(T1, T2, . . . , Tl) be the unicyclic graph with cycle Cl = v1v2 · · · vlv1 such that the

deletion of all edges on Cl results in l vertex-disjoint trees T1, T2, . . . , Tl with vi ∈ V (Ti),

and we say Ti is a branch at vi for i = 1, 2, . . . , l. Then any n-vertex unicyclic graph G

with a cycle on l vertices is of the form Cl(T1, T2, . . . , Tl), where
∑l

i=1 |V (Ti)| = n. In

particular, if Ti = P|V (Ti)| and vi is one end vertex of P|V (Ti)|, then we denote Ti as P|V (Ti)|

for 1 ≤ i ≤ l. Obviously, if Ti is trivial, then Ti = P1 for 1 ≤ i ≤ l.

For a subset S of V (G) (E(G), respectively), G− S denotes the graph obtained from

G by deleting the vertices in S and their incident edges (the edges in S, respectively). For

a subset S∗ of the edge set of the complement of G, G + S∗ denotes the graph obtained

from G by adding the edges in S∗.
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For a graph G with x ∈ V (G) and a graph W that is vertex-disjoint with G, a graph

obtained by attaching W at its vertex y to the vertex x is such a graph obtained from G

and W by adding an edge xy. In particular, if we attach a path at its one end vertex to

the vertex x of G, then we simply say attaching the path to the vertex x.

For a graph G with a vertex x of degree at least three, a pendant path at the vertex x

is a path in G connecting the vertex x and a pendant vertex such that all internal vertices

(if exist) in this path have degree two.

The following Lemmas 2.1-2.3 are some basic properties about resistance distance,

Kirchhoff index and degree resistance distance.

Lemma 2.1 [15] Let x be a cut vertex of a graph G, and let u and v be vertices occurring

in different components which arise upon deletion of x. Then

R(u, v|G) = R(u, x|G) + R(x, v|G).

Lemma 2.1 has the following important application.

Lemma 2.2 [9,28] Let G1 and G2 be connected graphs with disjoint vertex sets, with n1

and n2 vertices, and with m1 and m2 edges, respectively. Let x1 ∈ V (G1) and x2 ∈ V (G2).

Construct the graph G by identifying the vertices x1 and x2, and denote the obtained vertex

by x. Then

(i)

Kf(G) = Kf(G1) + Kf(G2) + (n2 − 1)Kf(x|G1) + (n1 − 1)Kf(x|G2),

DR(G) = DR(G1) + DR(G2) + (n2 − 1)DR(x|G1) + (n1 − 1)DR(x|G2)

+2m2Kf(x|G1) + 2m1Kf(x|G2);

(ii) in particular, for G2 = P2,

Kf(G) = Kf(G1) + Kf(x|G1) + n1,

DR(G) = DR(G1) + DR(x|G1) + 2Kf(x|G1) + 2m1 + n1 + 1.

Lemma 2.3 For an n-vertex unicyclic graph G with a pendant path P at a vertex y and

a pendant vertex x of the path P , let R(x, y|G) = a. Then

Kf(x|G)−Kf(y|G) = a(n− a− 1)

and

DR(x|G)−DR(y|G) = 2a(n− a).
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Proof. It is easy to see that

Kf(x|G)−Kf(y|G) = Kf(x|Pa+1(x, y)) + Kf(x|G− V (Pa+1(x, y)))

−Kf(y|Pa+1(x, y))−Kf(y|G− V (Pa+1(x, y)))

= Kf(x|G− V (Pa+1(x, y)))−Kf(y|G− V (Pa+1(x, y)))

= a(n− a− 1).

Let y′ be the neighbor of y on the pendant path Pa+1(x, y) in G. In particular, if

a = 1, then y′ = x. So

DR(x|G)−DR(y|G) = DR(x|Pa+1(x, y)) + DR(x|G− V (Pa+1(x, y)))

−DR(y|Pa+1(x, y))−DR(y|G− V (Pa+1(x, y)))

= a · d(y|G)− a · d(x|G) + a ·
∑

v∈V (G)\V (Pa+1(x,y))

d(v|G)

= a · 2|E(G− V (Pa(x, y
′)))| = 2a(n− a) .

The result follows easily.

The following Lemmas 2.4-2.8 are some useful transformations of graphs and numerical

comparisons of their Kirchhoff index and degree resistance distance, which will used in

the proof of Theorems 1.1 and 1.2.

Lemma 2.4 Let W1 and W2 be vertex-disjoint connected graphs with n1 ≥ 2 and n2 ≥ 2

vertices, and with m1 ≥ 1 and m2 ≥ 1 edges, respectively. Let x1 ∈ V (W1) and x2 ∈

V (W2). Construct the graph G1 by joining x1 and x2 with a path of length r ≥ 1. And

construct the graph G2 by identifying x1 and x2, which is denoted by x, and attaching a

path Pr to x. Then Kf(G1) > Kf(G2) and DR(G1) > DR(G2).

Proof. In G1, x2 is a cut vertex, and let G11 = G1 − (V (W2) \ {x2}) and G12 = W2. In

G2, x is a cut vertex, and let G21 = G2− (V (W2) \ {x}) and G22 = W2. Obviously, G11 =

G21, G12 = G22, Kf(x2|G12) = Kf(x|G22), Kf(x1|W1) = Kf(x|W1), DR(x2|G12) =

DR(x|G22) and DR(x1|W1) = DR(x|W1). Let x′1 be the neighbor of x1 on the path

Pr+1(x1, x2) in G1. In particular, if r = 1, then x′1 = x2. Let y be the pendant vertex of

the pendant path Pr+1 at x in G2. Note that R(x1, x2|G1) = R(x, y|G2) = r. Then by

Lemma 2.2 (i) and Lemma 2.3, we have

Kf(G1)−Kf(G2) = (n2 − 1)[Kf(x2|G11)−Kf(x|G21)] = r(n1 − 1)(n2 − 1) > 0,
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and

DR(G1)−DR(G2)

= (n2 − 1)[DR(x2|G11)−DR(x|G21)] + 2m2[Kf(x2|G11)−Kf(x|G21)]

= 2r[m1(n2 − 1) + m2(n1 − 1)] > 0,

implying that Kf(G1) > Kf(G2) and DR(G1) > DR(G2). The result follows.

Lemma 2.5 For fixed integers i, j and l with 1 ≤ i < j ≤ l, let Gai,aj = Cl(T1, . . . , Ti,

. . . , Tj, . . . , Tl) be an n-vertex unicyclic graph, where Ti = Pai+1 and Tj = Paj+1 with ai,

aj ≥ 1, and all branches not at vi and vj are fixed. For ai, aj ≥ 1, let x (y, respectively)

be the pendant vertex of Ti (Tj, respectively), and v′i (v′j, respectively) the neighbor of vi

(vj, respectively) in Ti (Tj, respectively). In particular, if ai = 1 (aj = 1, respectively),

then x = v′i (y = v′j, respectively). Then

Kf(Gai,aj) < max{Kf(Gai+aj ,0), Kf(G0,ai+aj)}

and

DR(Gai,aj) < max{DR(Gai+aj ,0), DR(G0,ai+aj)}.

Proof. Note that Gai+aj ,0 = Gai,aj−{vjv′j}+{xv′j} and G0,ai+aj = Gai,aj−{viv′i}+{yv′i}.

For Gai,aj , vi and vj are cut vertices, and let G11 = Gai,aj − (V (Paj+1) \ {vj}), G12 =

Paj+1, G21 = Gai,aj − (V (Pai+1) \ {vi}) and G22 = Pai+1. Note that |V (G12)| = aj + 1,

|E(G12)| = aj, |V (G22)| = ai + 1 and |E(G22)| = ai. Then by Lemma 2.3, we have

Kf(x|G11)−Kf(vi|G11) = ai(n− ai − aj − 1),

Kf(y|G21)−Kf(vj|G21) = aj(n− ai − aj − 1),

DR(x|G11)−DR(vi|G11) = 2ai(n− ai − aj),

and

DR(y|G21)−DR(vj|G21) = 2aj(n− ai − aj).

Note that

Kf(vi|G21) = Kf(vi|G11)−
∑

v∈V (Pai (v
′
i,x))

R(v, vi|G11) +
∑

v∈V (Paj (v′j ,y))

R(v, vi|G21),

Kf(vj|G21) = Kf(vj|G11)−
∑

v∈V (Pai (v
′
i,x))

R(v, vj|G11) +
∑

v∈V (Paj (v′j ,y))

R(v, vj|G21),
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DR(vi|G21) = DR(vi|G11)− d(vj|G11)R(vj, vi|G11)−
∑

v∈V (Pai (v
′
i,x))

d(v|G11)R(v, vi|G11)

+ d(vj|G21)R(vj, vi|G21) +
∑

v∈V (Paj (v′j ,y))

d(v|G21)R(v, vi|G21),

and

DR(vj|G21) = DR(vj|G11)− d(vi|G11)R(vi, vj|G11)−
∑

v∈V (Pai (v
′
i,x))

d(v|G11)R(v, vj|G11)

+ d(vi|G21)R(vi, vj|G21) +
∑

v∈V (Paj (v′j ,y))

d(v|G21)R(v, vj|G21).

Then by Lemma 2.2 (i), we have

Kf(Gai+aj ,0)−Kf(Gai,aj)

= (|V (G12)| − 1)[Kf(x|G11)−Kf(vj|G11)]

= (|V (G12)| − 1)[Kf(x|G11)−Kf(vi|G11) + Kf(vi|G11)−Kf(vj|G11)]

= aj[ai(n− ai − aj − 1) + Kf(vi|G11)−Kf(vj|G11)].

Let A = ai(n − ai − aj − 1) and B = Kf(vj|G11) − Kf(vi|G11). If A > B, then
Kf(Gai+aj ,0) > Kf(Gai,aj). Otherwise, if B ≥ A, then we have

Kf(G0,ai+aj )−Kf(Gai,aj ) = (|V (G22)| − 1)[Kf(y|G21)−Kf(vi|G21)]

= ai[Kf(y|G21)−Kf(vj |G21) + Kf(vj |G21)−Kf(vi|G21)]

= ai[aj(n− ai − aj − 1) + Kf(vj |G21)−Kf(vi|G21)]

≥ ai(ai + aj)[n− ai − aj − 1−R(vi, vj |Cl)]

≥ ai(ai + aj)[n− ai − aj − 1− d(vi, vj |Cl)] > 0,

implying that Kf(G0,ai+aj) > Kf(Gai,aj).
Similarly, by Lemma 2.2 (i), we have

DR(Gai+aj ,0)−DR(Gai,aj )

= (|V (G12)| − 1)[DR(x|G11)−DR(vj |G11)] + 2|E(G12)|[Kf(x|G11)−Kf(vj |G11)]

= aj [DR(x|G11)−DR(vi|G11) + DR(vi|G11)−DR(vj |G11)]

+2aj [Kf(x|G11)−Kf(vi|G11) + Kf(vi|G11)−Kf(vj |G11)]

= aj [2ai(2n− 2ai − 2aj − 1) + DR(vi|G11) + 2Kf(vi|G11)−DR(vj |G11)− 2Kf(vj |G11)].

+ Let C = 2ai(2n − 2ai − 2aj − 1) and D = DR(vj|G11) + 2Kf(vj|G11) −DR(vi|G11) −
2Kf(vi|G11). If C > D, then DR(Gai+aj ,0) > DR(Gai,aj). Otherwise, if D ≥ C, then we
have

DR(G0,ai+aj )−DR(Gai,aj )

= (|V (G22)| − 1)[DR(y|G21)−DR(vi|G21)] + 2|E(G22)|[Kf(y|G21)−Kf(vi|G21)]

= ai[DR(y|G21)−DR(vj |G21) + DR(vj |G21)−DR(vi|G21)]

+2ai[Kf(y|G21)−Kf(vj |G21) + Kf(vj |G21)−Kf(vi|G21)]

= ai[2aj(2n− 2ai − 2aj − 1) + DR(vj |G21) + 2Kf(vj |G21)−DR(vi|G21)− 2Kf(vi|G21)]
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≥ 2ai(ai + aj)[2(n− ai − aj −R(vi, vj |Cl))− 1]

≥ 2ai(ai + aj)[2(n− ai − aj − d(vi, vj |Cl))− 1] > 0,

implying that DR(G0,ai+aj) > DR(Gai,aj).

Now the result follows.

Lemma 2.6 For any unicyclic graph W with w ∈ V (W ), let W (a1, a2, . . . , at) be the

graph obtained from W by attaching t ≥ 2 paths Pa1 , Pa2 , . . . , Pat to w, where 0 ≤ a1 ≤

a2 ≤ · · · ≤ at. For fixed k = a1 + a2 + · · ·+ at, if 1 ≤ a1 ≤ a2 ≤ · · · ≤ at, then

Kf(W (a1, a2, . . . , at)) ≤ Kf(W (1, . . . , 1, k − t + 1))

and

DR(W (a1, a2, . . . , at)) ≤ DR(W (1, . . . , 1, k − t + 1))

with either equality if and only if at = k − t + 1 and ai = 1 for i = 1, 2, . . . , t− 1.

Proof. Let G1 = W (a1, a2, . . . , at) with 1 ≤ a1 ≤ a2 ≤ · · · ≤ at. First assume that there

is some i such that ai ≥ 2 with 1 ≤ i ≤ t− 1. Let G2 = W (b1, b2, . . . , bt) with bi = ai− 1,

bt = at + 1 and bj = aj for j 6= i, t. Let x, y be respectively the pendant vertices of the

path Pat and Pai , and z the neighbor of y in G1. Then G2 = G1 − {zy} + {xy}. Let

G3 = G1 − {zy}+ {wy} and G0 = G1 − {y} = G2 − {y} = G3 − {y}. By Lemma 2.3, we

have

Kf(x|G0)−Kf(w|G0) = at(|V (G0)| − at − 1),

Kf(w|G0)−Kf(z|G0) = −(ai − 1)(|V (G0)| − ai),

DR(x|G0)−DR(w|G0) = 2at(|V (G0)| − at),

DR(w|G0)−DR(z|G0) = −2(ai − 1)(|V (G0)| − ai + 1).

Together with Lemma 2.2 (ii), we have

Kf(G2)−Kf(G1) = Kf(G2)−Kf(G3) + Kf(G3)−Kf(G1)

= Kf(x|G0)−Kf(w|G0) + Kf(w|G0)−Kf(z|G0)

= (at − ai + 1)(|V (G0)| − at − ai) > 0

and

DR(G2)−DR(G1) = DR(G2)−DR(G3) + DR(G3)−DR(G1)
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= DR(x|G0)−DR(w|G0) + 2[Kf(x|G0)−Kf(w|G0)]

+DR(w|G0)−DR(z|G0) + 2[Kf(w|G0)−Kf(z|G0)]

= 2(at − ai + 1)(2|V (G0)| − 2at − 2ai + 1) > 0,

implying that Kf(G2) > Kf(G1) and DR(G2) > DR(G1). Repeating the above transfor-

mation from G1 to G2, we can finally have Kf(W (a1, a2, . . . , at)) ≤ Kf(W (1, . . . , 1, k −

t+ 1)) and DR(W (a1, a2, . . . , at)) ≤ DR(W (1, . . . , 1, k− t+ 1)) with either equality if and

only if at = k − t + 1 and ai = 1 for i = 1, 2, . . . , t− 1. Then the result follows.

For 3 ≤ l ≤ n, let U l
n = Cl(Pn−l+1, P1, . . . , P1). In particular, U3

n = Un,3 and Un
n = Cn.

It was shown in [3, 26] that

Kf(U l
n) =

1

12
[3l3 − (4n + 6)l2 + (6n + 3)l + 2n3 − 4n]

and

DR(U l
n) =

1

3
[3l3 − (4n + 3)l2 + 3nl + 2n3 − n].

And we have

Kf(vb l
2
c+1|U

l
n) =

{
1
2
(n− l)(n− l + 1) + l2−1

6
+ l(n−l)

4
if l is even

1
2
(n− l)(n− l + 1) + l2−1

6
+ (l2−1)(n−l)

4l
if l is odd,

DR(vb l
2
c+1|U

l
n) =

{
(n− l)2 + l2−1

3
+ l(n−l)

2
if l is even

(n− l)2 + l2−1
3

+ (l2−1)(n−l)
2l

if l is odd.

Lemma 2.7 For fixed integers a, l and i with a ≥ 0, l ≥ 3 and 2 ≤ i ≤ b l
2
c + 1, let

Gi(a, l) = Cl(T1, T2, . . . , Tl) be the n-vertex unicyclic graph, where T1 is fixed, Ti is Pa+1

with end vertex vi, and all branches not at v1 and vi are P1. Let G(a, l) = Gb l
2
c+1(a, l)

and k = a + l. Then for fixed k ≥ 4,

Kf(Gi(a, l)) < max{Kf(G(k − 3, 3)), Kf(G(k − 4, 4))}

and

DR(Gi(a, l)) < max{DR(G(k − 3, 3)), DR(G(k − 4, 4))}

with l = 4 and i = 2, or l ≥ 5.

Proof. First, we claim that Kf(Gi(a, l)) ≤ Kf(G(a, l)) and DR(Gi(a, l)) ≤ DR(G(a, l))

with equalities if and only if Gi(a, l) = G(a, l). If |T1| = 1 or a = 0, then Gi(a, l) = G(a, l).

Assume that |T1| ≥ 2, a ≥ 1, and Gi(a, l) 6= G(a, l), i.e., 2 ≤ i ≤ b l
2
c. In G(a, l), vb l

2
c+1
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is a cut vertex, and let G11 = G(a, l) − (V (Tb l
2
c+1) \ {vb l

2
c+1}) and G12 = Tb l

2
c+1. In

Gi(a, l), vi is a cut vertex, and let G21 = Gi(a, l)−(V (Ti)\{vi}) and G22 = Ti. Obviously,

G11 = G21, G12 = G22, Kf(vb l
2
c+1|G12) = Kf(vi|G22) and DR(vb l

2
c+1|G12) = DR(vi|G22).

By Lemma 2.2 (i), we have

Kf(G(a, l))−Kf(Gi(a, l)) = a[Kf(vb l
2
c+1|G11)−Kf(vi|G21)]

= a(|V (T1)| − 1)[R(v1, vb l
2
c+1|Cl)−R(v1, vi|Cl)] > 0

and

DR(G(a, l))−DR(Gi(a, l)) = a[DR(vb l
2
c+1|G11)−DR(vi|G21)]

+2a[Kf(vb l
2
c+1|G11)−Kf(vi|G21)]

= 4a|E(T1)|[R(v1, vb l
2
c+1|Cl)−R(v1, vi|Cl)] > 0,

implying that Kf(G(a, r)) > Kf(Gi(a, r)) and DR(G(a, r)) > DR(Gi(a, r)). This proves

the claim.

If l = 4 and i = 2, then k = a + 4, G2(a, 4) 6= G3(a, 4) = G(k − 4, 4), and thus by the

above claim,

Kf(G2(a, 4)) < Kf(G(k − 4, 4)) ≤ max{Kf(G(k − 3, 3)), Kf(G(k − 4, 4))}

and

DR(G2(a, 4)) < DR(G(k − 4, 4)) ≤ max{DR(G(k − 3, 3)), DR(G(k − 4, 4))}.

Assume that l ≥ 5. By the above claim, we only need to show that

Kf(G(a, l)) < max{Kf(G(k − 3, 3)), Kf(G(k − 4, 4))}

and

DR(G(a, l)) < max{DR(G(k − 3, 3)), DR(G(k − 4, 4))}.

Note that the vertex v1 in G(a, l)(G(a + 2, l − 2), respectively) is just the vertex vb l
2
c+1

(vb l
2
c, respectively) in U l

l+a(U
l−2
l+a , respectively). By Lemma 2.2 (i) and the expressions of

Kf(U l
n), Kf(vb l

2
c+1|U l

n), DR(U l
n) and DR(vb l

2
c+1|U l

n), we have

Kf(G(a + 2, l − 2))−Kf(G(a, l))

= Kf(U l−2
l+a )−Kf(U l

l+a) + (|V (T1)| − 1)[Kf(vb l
2
c|U

l−2
l+a )−Kf(vb l

2
c+1|U

l
l+a)]
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=


1
6
(−nl + 9na + 16n− 9a2 − 30a− 27) if l is even

1
6
(−l2 + 16l + 8al − 14a− 27)

+(n− a− l)
(

6a−2l+11
3

+ l3−(a+4)l2+(2a+3)l−a
2l(l−2)

)
if l is odd,

and

DR(G(a + 2, l − 2))−DR(G(a, l))

= DR(U l−2
l+a )−DR(U l

l+a) + (|V (T1)| − 1)[DR(vb l
2
c|U

l−2
l+a )−DR(vb l

2
c+1|U

l
l+a)]

+2|E(T1)|[Kf(vb l
2
c|U

l−2
l+a )−Kf(vb l

2
c+1|U

l
l+a)]

=


2
3
(−nl + 9na + 13n− 9a2 − 24a− 18) if l is even

2
3
(−l2 + 13l + 8al − 11a− 18)

+2(n− a− l)
(

12a−4l+19
3

+ l3−(a+4)l2+(2a+3)l−a
l(l−2)

)
if l is odd.

For even l ≥ 6, let g1(l) = −nl + 9na + 16n − 9a2 − 30a − 27 and g2(l) = −nl + 9na +

13n− 9a2 − 24a− 18 be two functions of the variable l. Then

g1(6) = (9a + 10)n− 9a2 − 30a− 27 ≥ (9a + 10)(a + 6)− 9a2 − 30a− 27

= 34a + 33 > 0

and

g2(6) = (9a + 7)n− 9a2 − 24a− 18 ≥ (9a + 7)(a + 6)− 9a2 − 24a− 18

= 37a + 24 > 0 .

Let l10 and l20 be respectively the roots of g1(l) and g2(l). Thus g1(l) ≥ 0 when 6 ≤ l ≤ l10,

and g1(l) < 0 when l > l10. And g2(l) ≥ 0 when 6 ≤ l ≤ l20, and g2(l) < 0 when l > l20.

If k is even, then l ≤ k. Thus Kf(G(a, l)) is maximum only if (a, l) = (k − 4, 4) for

k ≤ l10, and (a, l) = (k − 4, 4) or (0, k) for k > l10. And DR(G(a, l)) is maximum only if

(a, l) = (k − 4, 4) for k ≤ l20, and (a, l) = (k − 4, 4) or (0, k) for k > l20. Note that v1 is a

cut vertex in G(k − 4, 4) and G(0, k). By Lemma 2.2 (i), we have

Kf(G(k − 4, 4))−Kf(G(0, k)) =
1

12
(k3 − 43k + 108) +

1

6
(n− k)(2k2 − 15k + 28)

≥ 1

12
(k3 − 43k + 108) > 0

and

DR(G(k − 4, 4))−DR(G(0, k)) =
1

3
(k3 − 52k + 144) +

1

3
(n− k)(4k2 − 33k + 68)
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≥ 1

3
(k3 − 52k + 144) > 0,

implying that Kf(G(k − 4, 4)) > Kf(G(0, k)) and DR(G(k − 4, 4)) > DR(G(0, k)). Sim-

ilarly, if k is odd, then l ≤ k − 1, Kf(G(a, l)) and DR(G(a, l)) are maximum only if

(a, l) = (k− 4, 4) or (1, k− 1), and we have by direct calculations that Kf(G(k− 4, 4)) >

Kf(G(1, k− 1)) and DR(G(k− 4, 4)) > DR(G(1, k− 1)). Thus Kf(G(a, l)) < Kf(G(k−

4, 4)) and DR(G(a, l)) < DR(G(k − 4, 4)).

For odd l ≥ 5, by similar arguments as above, we have Kf(G(a, l)) < Kf(G(k−3, 3))

and DR(G(a, l)) < DR(G(k − 3, 3)). Then the result follows.

For integers a ≥ 1, b ≥ 0 and l = 3, 4, let U l
n(a, b) be the n-vertex unicyclic graph

obtained by attaching n− a− b− l pendant vertices and a path Pa to v1 ∈ V (W ), where

W is C3(P1, P1, Pb+1) for l = 3 and C4(P1, P1, Pb+1, P1) for l = 4. Let k = n − a − b − l.

Note that v1 is a cut vertex in U l
n(a, b). Let G1 = U l

n(a, b)− (V (T1) \ {v1}) and G2 = T1

in U l
n(a, b). By Lemma 2.2 (i), we have

Kf(U l
n(a, b)) =

1

6
(a + 1)(a + 2)(a + 3k) + k(k − 1)

+

{
1
6
[(b + 4)3 − 22b− 34] + 1

2
(b + 3)(a2 + a + 2k) + 1

2
(a + k)(b2 + 3b + 5) if l = 4

1
6
[(b + 3)3 − 11b− 15] + 1

2
(b + 2)(a2 + a + 2k) + 1

2
(a + k)(b2 + 7

3
b + 8

3
) if l = 3

and

DR(U l
n(a, b)) =

2

3
a(a + 1)(a + 2) + 2k(a + 1)(a + 2) + 4k(k − 1)− (a + k)(a + k + 1)

+


1
3 [2(b + 4)3 − 53b− 68] + (a + k)(2b2 + 5b + 10)

+b(2a2 + a + 3k) + 7a2 + 4a + 11k if l = 4
1
3 [2(b + 3)3 − 28b− 30] + (a + k)(2b2 + 11

3 b + 16
3 )

+b(2a2 + a + 3k) + 5a2 + 3a + 8k if l = 3.

Lemma 2.8 For integers a ≥ 1, b ≥ 0 and l = 3, 4, let s = a + b ≥ 2 and k = n− s− l.

Then

Kf(U l
n(a, b)) ≤ Kf(U l

n(s, 0))

and

DR(U l
n(a, b)) ≤ DR(U l

n(s, 0))

with either equality if and only if U l
n(a, b) = U l

n(s, 0).

Proof. For U l
n(a, b), let x be the pendant vertex of the path attached to v1, y the pendant

vertex of Pb+1 if b ≥ 1, and z a pendant neighbor of v1 if k ≥ 1. Let G1 = U l
n(a, b). Let
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w be the neighbor of x in G1. For a ≥ 2, let G2 = G1 − {wx}+ {yx} = U l
n(a− 1, b + 1),

G3 = G1 − {wx} + {v3x}, G4 = G1 − {wx} + {v1x} and G0 = G1 − {x} = G2 − {x} =

G3 − {x} = G4 − {x}. Then by Lemma 2.2 (ii) and Lemma 2.3, we have

Kf(U l
n(a− 1, b + 1))−Kf(U l

n(a, b))

= Kf(G2)−Kf(G1)

= Kf(G2)−Kf(G3) + Kf(G3)−Kf(G4) + Kf(G4)−Kf(G1)

= Kf(y|G0)−Kf(v3|G0) + Kf(v3|G0)−Kf(v1|G0) + Kf(v1|G0)−Kf(w|G0)

= b(n− b− 2) +
2(l − 2)

l
(a− b + k − 1)− (a− 1)(n− a− 1)

=

{
(1− a + b)(k + 2) + k if l = 4

(1− a + b)(k + 4
3
) + 2k

3
if l = 3

and

DR(U l
n(a− 1, b + 1))−DR(U l

n(a, b))

= DR(G2)−DR(G1)

= DR(G2)−DR(G3) + DR(G3)−DR(G4) + DR(G4)−DR(G1)

= DR(y|G0)−DR(v3|G0) + DR(v3|G0)−DR(v1|G0) + DR(v1|G0)−DR(w|G0)

+2[Kf(y|G0)−Kf(v3|G0) + Kf(v3|G0)−Kf(v1|G0) + Kf(v1|G0)−Kf(w|G0)]

= 2b(n− b− 1) +
4(l − 2)

l
(a− b + k − 1)− 2(a− 1)(n− a)

+2b(n− b− 2) +
4(l − 2)

l
(a− b + k − 1)− 2(a− 1)(n− a− 1)

=

{
2(1− a + b)(2k + 5) + 4k if l = 4

2(1− a + b)(2k + 11
3

) + 8k
3

if l = 3.

If l = 3, then Kf(U3
n(a− 1, b + 1)) ≥ Kf(U3

n(a, b)) if and only if a− b ≤ 1 + 2k
3k+4

< 2

and DR(U3
n(a−1, b+1)) ≥ DR(U3

n(a, b)) if and only if a−b ≤ 1+ 4k
6k+11

< 2, implying that

Kf(U3
n(a, b)) and DR(U3

n(a, b)) are maximum only if (a, b) = (1, s−1) or (s, 0). Similarly,

if l = 4, then Kf(U4
n(a, b)) and DR(U4

n(a, b)) are maximum only if (a, b) = (1, s − 1) or

(s, 0). By the expressions of Kf(U l
n(a, b)) and DR(U l

n(a, b)), we have

Kf(U l
n(s, 0))−Kf(U l

n(1, s− 1)) =

{
2(s− 1) > 0 if l = 4
1
3
(k + 4)(s− 1) > 0 if l = 3,

DR(U l
n(s, 0))−DR(U l

n(1, s− 1)) =

{
10(s− 1) > 0 if l = 4
1
3
(4k + 22)(s− 1) > 0 if l = 3.

Then the result follows.
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3 Proof of Theorems 1.1 and 1.2
At this stage, we are ready to present the proofs of Theorems 1.1 and 1.2.

Proof. The case ∆ = n − 1 is trivial. Assume that 3 ≤ ∆ ≤ n − 2. Let G1 =

Cl(T1, T2, . . . , Tl) (G2 = Cl(T1, T2, . . . , Tl), respectively) be a graph with maximum Kirch-

hoff index (degree resistance distance, respectively) in U(n,∆). Obviously, 3 ≤ l ≤ n− 1.

Claim 1. If there exists one vertex of maximum degree ∆ on the cycle Cl in G1 (G2,

respectively), then G1 = Un,∆ (G2 = Un,∆, respectively).

Suppose without loss of generality that v1 is one vertex of maximum degree ∆ on Cl.

By Lemma 2.4, the vertices outside Cl are of degree one or two, and the vertices on Cl

different from v1 are of degree two or three. By Lemma 2.5, there is at most one vertex

on Cl different from v1 of degree three. Thus G1 (G2, respectively) is a graph obtainable

from the cycle Cl by attaching ∆− 2 paths to v1 and at most one path to another vertex

on Cl different from v1. By Lemmas 2.6 and 2.7, we have G1 = U l
n(a, b) (G2 = U l

n(a, b),

respectively) with ∆ = n − a − b − l + 3, where l = 3, 4. Then by Lemma 2.8, if l = 3,

then G1 = U3
n(n −∆, 0) = Un,∆ (G2 = U3

n(n −∆, 0) = Un,∆, respectively); if l = 4, then

G2 = U4
n(n − ∆ − 1, 0) (G2 = U4

n(n − ∆ − 1, 0), respectively). By the expressions of

Kf(U l
n(a, b)) and DR(U l

n(a, b)), we have

Kf(Un,∆) =
1

6
[2∆3 − (3n + 3)∆2 + (9n− 5)∆ + n3 − 11n + 6],

Kf(U4
n(n−∆− 1, 0)) =

1

6
[2∆3 − (3n− 3)∆2 + (3n− 5)∆ + n3 − 4n− 12],

DR(Un,∆) =
1

3
[4∆3 − (6n + 3)∆2 + (12n− 7)∆ + 2n3 − 10n− 6],

DR(U4
n(n−∆− 1, 0)) =

1

3
[4∆3 − (6n− 9)∆2 −∆ + 2n3 + n− 42].

Note that n ≥ ∆ + 2. Then it is easily checked that Kf(Un,∆) > Kf(U4
n(n −∆ − 1, 0))

and DR(Un,∆) > DR(U4
n(n − ∆ − 1, 0)). And thus G1 = Un,∆ and G2 = Un,∆, proving

Claim 1.

Claim 2. If there is no vertex of maximum degree ∆ on the cycle Cl in G1 (G2, respec-

tively), then G1 = U ′n,∆ (G2 = U ′n,∆, respectively).

Assume that there is one vertex w of maximum degree ∆ outside Cl , where 4 ≤
∆ ≤ n − 3. Suppose without loss of generality that v1 is the vertex on Cl that is

nearest to w. By Lemma 2.4, the vertices outside Cl different from w are of degree

one or two, and the vertices on Cl are of degree two or three. By Lemma 2.5, there

is at most one vertex on Cl different from v1 of degree three. By Lemma 2.6, there

is at most one pendant path at w with length at least two. Assume that there is
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such a pendant path P at w with length at least two. Then let x be the neighbor

of the pendant vertex of the path P , and t = d(w, x|G) ≥ 1. Let x1, x2, . . . , x∆−2

be the pendant neighbors of w. Let G10 = G1 − {x1, x2, . . . , x∆−2} and G′1 = G1 −
{wx1, wx2, . . . , wx∆−2}+{xx1, xx2, . . . , xx∆−2} ∈ U(n,∆) (G20 = G2−{x1, x2, . . . , x∆−2}
and G′2 = G2 − {wx1, wx2, . . . , wx∆−2}+ {xx1, xx2, . . . , xx∆−2} ∈ U(n,∆), respectively).

Note that n−∆− t ≥ 3. By Lemma 2.2 (i), we have

Kf(G′1)−Kf(G1) = (∆− 2)[Kf(x|G10)−Kf(w|G10)]

= t(∆− 2)(n−∆− t− 1) > 0

and

DR(G′2)−DR(G2) = (∆− 2)[DR(x|G20)−DR(w|G20)]

+2(∆− 2)[Kf(x|G20)−Kf(w|G20)]

= 2t(∆− 2)(2n− 2∆− 2t− 1) > 0,

implying that Kf(G′1) > Kf(G1) and DR(G′2) > DR(G2), contradictions. Thus there is

no pendant path at w with length at least two, i.e., w has ∆− 1 pendant neighbors in G1

and G2.

Let H1 (H2, respectively) be the graph obtained from G1 (G2, respectively) by deleting

the vertices of the branch T1 except v1. By Lemma 2.7, we have G1 = G(k − 3, 3)

or G(k − 4, 4) (G2 = G(k − 3, 3) or G(k − 4, 4), respectively), where k = |W1| and

W1 = C3(P1, Pk−2, P1) or C4(P1, P1, Pk−3, P1) (k = |W2| and W2 = C3(P1, Pk−2, P1) or

C4(P1, P1, Pk−3, P1), respectively). Assume that W1 6= C3, C4 (W2 6= C3, C4, respectively).

Let y be the neighbor of v1 in T1 and z the pendant vertex in W1 (W2, respectively). Let

G′′1 = G1 − {v1y} + {zy} ∈ U(n,∆) (G′′2 = G2 − {v1y} + {zy} ∈ U(n,∆), respectively).

Note that k ≥ 4 for l = 3 and k ≥ 5 for l = 4. By Lemma 2.2 (i), we have

Kf(G′′1)−Kf(G1) = |E(T1)|[Kf(z|H1)−Kf(v1|H1)]

=

{
2(k − 4)|E(T1)| > 0 if l = 4
4
3
(k − 3)|E(T1)| > 0 if l = 3

and

DR(G′′2)−DR(G2) = |E(T1)|[DR(z|H1)−DR(v1|H1)]

+2|E(T1)|[Kf(z|H1)−Kf(v1|H1)]

=

{
10(k − 4)|E(T1)| > 0 if l = 4
22
3

(k − 3)|E(T1)| > 0 if l = 3,
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implying that Kf(G′′1) > Kf(G1) and DR(G′′2) > DR(G2), contradictions. Thus W1 = C3

or C4, and W2 = C3 or C4. For 3 ≤ ∆ ≤ n− 4, let U ′′n,∆ be the n-vertex unicyclic graph

obtained by joining a vertex of C4 and the center of the star on ∆ vertices with a path of

length n −∆ − 3. Note that v1 is a cut vertex in U ′n,∆ and U ′′n,∆. By Lemma 2.2 (i), we

have

Kf(U ′n,∆) =
1

6
[2∆3 − (3n + 3)∆2 + (9n− 5)∆ + n3 − 17n + 24],

Kf(U ′′n,∆) =
1

6
[2∆3 − (3n + 3)∆2 + (9n− 5)∆ + n3 − 28n + 60],

DR(U ′n,∆) =
1

3
[4∆3 − (6n + 9)∆2 + (18n− 1)∆ + 2n3 − 40n + 60],

DR(U ′′n,∆) =
1

3
[4∆3 − (6n + 9)∆2 + (18n− 1)∆ + 2n3 − 65n + 150].

Then it is easily checked that Kf(U ′n,∆) > Kf(U ′′n,∆) and DR(U ′n,∆) > DR(U ′′n,∆). And

thus G1 = U ′n,∆ and G2 = U ′n,∆, proving Claim 2.

Combining Claims 1 and 2, we have G1 = Un,∆ for 3 ≤ ∆ ≤ n − 1 or G1 = U ′n,∆ for

4 ≤ ∆ ≤ n − 3. If 4 ≤ ∆ ≤ n − 3, then it is easily checked that Kf(Un,∆) > Kf(U ′n,∆).

Then the result of Theorem 1.1 follows.

Similarly, we have G2 = Un,∆ for 3 ≤ ∆ ≤ n− 1 or G2 = U ′n,∆ for 4 ≤ ∆ ≤ n− 3. If

4 ≤ ∆ ≤ n− 3, then it is easily checked that

DR(Un,∆)−DR(U ′n,∆) = 2[(∆− 5)(∆− n + 4) + 9]
> 0 if ∆ = 4, 5

> 0 if ∆ ≥ 6 and n < ∆ + 4 + 9
∆−5

= 0 if ∆ ≥ 6 and n = ∆ + 4 + 9
∆−5

< 0 if ∆ ≥ 6 and n > ∆ + 4 + 9
∆−5

.

Note that if ∆ ≥ 6 and n = ∆ + 4 + 9
∆−5

, then ∆ = 6, n = 19; ∆ = 8, n = 15; ∆ = 14, n =

19. Then the result of Theorem 1.2 follows.

4 Concluding Remarks

It is worth mentioning that when we try to determine the maximum degree resistance

distance (also called additive degree-Kirchhoff index in some papers) among n-vertex

unicyclic graphs with given maximum degree, we find that the maximum Kirchhoff index

of n-vertex unicyclic graphs with given maximum degree can be determined, by using a

similar method. So compared with the method in [16], our proof would be more rational

and universal.
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More precisely, our methods are valid for the determinations of maximum values for

three types of Kirchhoff indices (Kirchhoff index, additive degree-Kirchhoff index, multi-

plicative degree-Kirchhoff index) among n-vertex unicyclic graphs with given maximum

degree. The extremal graphs of additive degree-Kirchhoff and multiplicative degree-

Kirchhoff indices are the same (Un,∆ or U ′n,∆) [21]. However, the case for Kirchhoff index

is somewhat different, which can only be Un,∆.

In our further research, we will try to get more properties of these three types of

Kirchhoff indices, especially the additive degree-Kirchhoff index.
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