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Abstract

The degree distance of a connected hypergraph G is defined as

DD(G) =
∑

u∈V (G)

duDu,

where du is the degree of u, and Du is the sum of distance between u and all
other vertices of G. We determine the unique not necessarily uniform hypertree
with the smallest (largest, respectively) degree distance among hypertrees with n
vertices and m edges, where 1 ≤ m ≤ n − 1. We also determine the unique not
necessarily uniform hypertrees with the first three smallest (largest, respectively)
degree distances among hypertrees on n ≥ 5 vertices. To obtain these results, we
propose several local transformations on a hypergraph that decrease or increase the
degree distance.

1 Introduction

A hypergraph G is an ordered pair (V (G), E(G)), where V (G) is the vertex set and

E(G) is a family of subsets of V (G), called the edge set of G. In this paper, |e| ≥ 2

for e ∈ E(G). If every edge of G has size k for some integer k, then G is k-uniform. A

2-uniform hypergraph is just a graph. The degree of a vertex v in G, denoted by dG(v)

or dv, is the number of edges of G containing v.

Hypergraph theory found applications in chemistry [14, 20, 21]. The study in [20]

indicated that the hypergraph model gives a higher accuracy of molecular structure de-

scription: the higher the accuracy of the model, the greater the diversity of the behavior

of its invariants.
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For u, v ∈ V (G), a path from u to v in G is defined to be an alternating sequence of

vertices and edges (v0, e1, v1, . . . , vp−1, ep, vp) with all vi distinct and all ei distinct such

that for i = 1, . . . , p, {vi−1, vi} ⊆ ei, and if j > i + 1, then ei ∩ ej = ∅, where v0 = u

and vp = v. A cycle in G is defined to be an alternating sequence of vertices and edges

(v0, e1, v1, . . . , vp−1, ep, vp) with p ≥ 2, all vi distinct except v0 = vp and all ei distinct

such that for i = 1, . . . , p, {vi−1, vi} ⊆ ei, and if |i− j| > 1 with {i, j} 6= {1, p− 1} , then

ei ∩ ej = ∅. The number of edges in a path or a cycle is its length. If there is a path from

u to v for any u, v ∈ V (G), then we say that G is connected. A hypertree is a connected

hypergraph with no cycle. A k-uniform hypertree with m edges always has 1 + (k − 1)m

vertices.

Let G be a connected hypergraph. For u, v ∈ V (G), the distance between u and v

is the length of a shortest path from u and v in G, denoted by dG(u, v). In particular,

dG(u, u) = 0. The diameter of G is the maximum distance between all vertex pairs of G.

The degree distance of G is defined as

DD(G) =
∑

{u,v}⊆V (G)

(dG(u) + dG(v))dG(u, v).

That is
DD(G) =

∑
u∈V (G)

dG(u)DG(u),

where, for u ∈ V (G), DG(u) denotes the sum of distance between u and all other vertices

of G, i.e., DG(u) =
∑

v∈V (G)

dG(u, v). For an ordinary connected graph, the degree distance

was put forward by Dobrynin and Kochetova [6] and has been studied extensively, see,

e.g., [1,2,6–8,10,16,22,25,26]. Note that Schultz [24] introduced a graph invariant called

molecular topological index, defined as the sum of the degree distance and the first Zagreb

index (defined as the sum of the squares of the degrees), see, e.g. [12,17,18,24].

The Wiener index of a connected hypergraph is defined as W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

We mention that the Wiener index of a graph or hypergraph has been thoroughly studied,

see, e.g. [3–5, 9, 11, 13, 15, 23, 27]. If G is a k-uniform hypertree with n vertices, where

2 ≤ k ≤ n, Guo and Zhou [10] showed that (k − 1)DD(G) = 2kW (G) − n(n − 1),

extending the well known relation between the degree distance and the Wiener index of a

tree, established in [12, 18]. Thus, the ordering of uniform hypertrees by degree distance

coincides with the ordering by Wiener indices. But for general hypertrees that are not

necessarily uniform, there is no such a relation between the degree distance and the Wiener
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index. For a connected hypergraph G, there is exactly one connected graph Gσ such that

V (Dσ) = V (G) and two vertices in Gσ are adjacent if and only if they belong to some

edge of G. In this way, W (G) = W (Gσ), but if one edge has size at least three, then

DD(G) 6= DD(Gσ).

In this paper, we study the degree distance of hypertrees that are not necessarily uni-

form. We determine the unique hypertree with the smallest (largest, respectively) degree

distance among hypertrees with n vertices and m edges, where 1 ≤ m ≤ n − 1. We also

determine the unique hypertrees with the first three smallest (largest, respectively) degree

distances amon hypertrees on n ≥ 5 vertices. To obtain these results, we propose several

local transformations on a hypergraph that decrease or increase the degree distance.

2 Preliminaries

For a hypergraph G and X ⊆ V (G) with X 6= ∅, let G[X] be the subhypergraph induced

by X, i.e., G[X] has vertex set X and edge set {e ∈ E(G) : e ⊆ X}. For v ∈ V (G), G−v

denotes the hypergraph with V (G − v) = V (G) \ {v} and E(G − v) = E(G) \ {e : e ∈

E(G) and v ∈ e}.

For a k-uniform hypertree G with V (G) = {v1, . . . , vn}, if E(G) = {e1, . . . , em} with

n − 1 = m(k − 1), where ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k} for i = 1, . . . ,m, then we

call G a k-uniform loose path, denoted by Pn,k. Denote Pn = Pn,2.

For a k-uniform hypertree G on n vertices, if there is a disjoint partition of the vertex

set V (G) = {v0} ∪ V1 ∪ . . . ∪ Vm such that |V1| = · · · = |Vm| = k − 1, and E(G) =

{{v0} ∪ Vi : 1 ≤ i ≤ m}, then we call G a k-uniform hyperstar (with center v0), denoted

by Sn,k. In particular, Sk,k is a hypergraph with a single edge.

A path (v0, e1, v1, . . . , vs−1, es, vs) in a k-uniform hypergraph G is called a pendant

path at v0, if dG(v0) ≥ 2, dG(vi) = 2 for 1 ≤ i ≤ s − 1, dG(v) = 1 for v ∈ ei \ {vi−1, vi}

with 1 ≤ i ≤ s, and dG(vs) = 1. An edge e = {w1, . . . , wk} in G is called a pendant edge

at w1 if dG(w1) ≥ 2, and dG(wi) = 1 for 2 ≤ i ≤ k.

If P is a pendant path of length s at u in a hypergraph G, we say G is obtained from

H by attaching a pendant path of length s at u, where H = G[V (G) \ (V (P ) \ {u})]. If

P is a pendant path of length 1 at u in G, then we also say that G is obtained from H

by attaching a pendant edge at u.

Let r be a positive integer and G a hypergraph with u, v1, . . . , vr ∈ V (G) and e1, . . . , er
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∈ E(G) such that u /∈ ei, vi ∈ ei, and e′i /∈ E(G) for 1 ≤ i ≤ r, where e′i = (ei \{vi})∪{u}

and v1, . . . , vr are not necessarily pairwise distinct. LetG′ be the hypergraph with V (G′) =

V (G) and E(G′) = (E(G) \ {e1, . . . , er}) ∪ {e′1, . . . , e′r}. Then we say that G′ is obtained

from G by moving edges e1, . . . , er from v1, . . . , vr to u.

LetG be a hypergraph with e1, e2 ∈ E(G) and u1, . . . , us ∈ V (G) such that u1, . . . , us 6∈

e1 and u1, . . . , us ∈ e2, where |e2| − s ≥ 2. Let e′1 = e1 ∪ {u1, . . . , us} and e′2 = e2 \

{u1, . . . , us}. Suppose that e′1, e
′
2 6∈ E(G). Let G′ be the hypergraph with V (G′) = V (G)

and E(G′) = (E(G) \ {e1, e2}) ∪ {e′1, e′2}. Then we say that G′ is obtained from G by

moving vertices u1, . . . , us from e2 to e1.

For k ≥ 3, let e = {w1, . . . , wk} be an edge of a hypergraph G. Let e1 = {w1, w2} and

e2 = e\{w2}. Suppose that e1, e2 6∈ E(G). Let G′ be the hypergraph with V (G′) = V (G)

and E(G′) = (E(G) \ {e})∪ {e1, e2}. Then we say that G′ is obtained from G by moving

vertex w2 from e and adding an edge {w1, w2}.

3 Local transformations and degree distance

In this section, we propose some local transformations on a hypergraph that decrease or

increase the degree distance. Two different vertices are adjacent in a hypergraph if there

is an edge containing both of them. For a vertex u of a hypergraph G, let NG(u) be the

set of vertices adjacent to u in G.

Theorem 1. Let G be a hypergraph with connected induced subhypergraphs G0, H1 and H2

such that there are two adjacent vertices w1 and w2 in G0 with NG0(w1)\{w2} = NG0(w2)\

{w1}, dG0(w1) = dG0(w2) and V (Hi) ∩ V (G0) = {wi} for i = 1, 2, V (H1) ∩ V (H2) = ∅

and E(G) = E(G0) ∪ E(H1) ∪ E(H2). Suppose that |V (Hi)| ≥ 2 for i = 1, 2. Let G′ be

the hypergraph obtained from G by moving all edges containing w2 except edges in E(G0)

from w2 to w1. Then DD(G′) < DD(G).

Proof. Let h1 = |V (H1)| and h2 = |V (H2)|. As we pass from G to G′, the distance

between a vertex of V (H2) \ {w2} and a vertex of V (H1) is decreased by 1, the distance

between a vertex of V (H2) \ {w2} and w2 is increased by 1, and the distance between any

other vertex pair remains unchanged. Note also that for any x ∈ V (G0) \ {w1, w2}, we
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have dG0(x,w1) = dG0(x,w2) as NG0(w1) \ {w2} = NG0(w2) \ {w1}. Thus

DG′(x)−DG(x) =


−(h2 − 1) if x ∈ V (H1),

−(h1 − 1) if x ∈ V (H2) \ {w2},
h2 − 1 if x = w2,

0 if x ∈ V (G0) \ {w1, w2}.

Note that dG′(x) = dG(x) for x ∈ V (G) \ {w1, w2}. Let a = dG(w1), b = dG(w2) and

t = dH2(w2). Then dG′(w1) = a+ t and dG′(w2) = b− t. Therefore

DD(G′)−DD(G)

=
∑

u∈V (H1)\{w1}

dG(u)(DG′(u)−DG(u)) +
∑

v∈V (H2)\{w2}

dG(v)(DG′(v)−DG(v))

+(a+ t)DG′(w1)− aDG(w1) + (b− t)DG′(w2)− bDG(w2)

= −(h2 − 1)
∑

u∈V (H1)\{w1}

dG(u)− (h1 − 1)
∑

v∈V (H2)\{w2}

dG(v)

+(a+ t)(DG(w1)− h2 + 1)− aDG(w1)

+(b− t)(DG(w2) + h2 − 1)− bDG(w2)

< (a+ t)(DG(w1)− h2 + 1)− aDG(w1)

+(b− t)(DG(w2) + h2 − 1)− bDG(w2)

= −ah2 + a+ tDG(w1)− th2 + t+ bh2 − b− tDG(w2)− th2 + t

= (b− a)(h2 − 1) + t(DG(w1)−DG(w2))− 2th2 + 2t.

As

DG(w1)−DG(w2) = DG0(w1) +DH1(w1) +DH2(w2) + h2 − 1

− (DG0(w2) +DH2(w2) +DH1(w1) + h1 − 1)

= h2 − h1,

and b− a = dG(w2)− dG(w1) = dH2(w2)− dH1(w1) = t− dH1(w1) ≤ t− 1, we have

DD(G′)−DD(G) < (b− a)(h2 − 1) + t(h2 − h1)− 2th2 + 2t

= (b− a− t)(h2 − 1)− t(h1 − 1)

< 0,

implying that DD(G′) < DD(G).
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Theorem 2. For k− 2 ≥ r ≥ 1, let G be a connected hypergraph with two pendant edges

e1 = {u,w1, . . . , wk} and e2 = {u, v1, . . . , vr}. Let G′ be the hypergraph obtained from G

by moving vertex w1 from e1 to e2. Then DD(G′) > DD(G).

Proof. As we pass from G to G′, the distance between w1 and a vertex of e1 \ {u,w1} is

increased by 1, the distance between w1 and a vertex of e2 \ {u} is decreased by 1, and

the distance between any other vertex pair remains unchanged. Thus

DG′(w1)−DG(w1) = k − r − 1,

DG′(wi)−DG(wi) = 1 if 2 ≤ i ≤ k,

DG′(vj)−DG(vj) = −1 if 1 ≤ j ≤ r,

DG′(x)−DG(x) = 0 if x ∈ V (G) \ ((e1 ∪ e2) \ {u}).

Therefore

DD(G′)−DD(G) =
k∑
i=1

(DG′(wi)−DG(wi)) +
r∑
j=1

(DG′(vi)−DG(vi))

= k − r − 1 + (k − 1) · 1 + r · (−1)

= 2(k − r − 1) > 0,

i.e., DD(G′) > DD(G).

Theorem 3. For k ≥ 3, let e = {w1, w2, . . . , wk} be an edge of a connected hypergraph

G. Let G′ be the hypergraph obtained from G by moving vertex w2 from e and attaching

an edge {w1, w2} to w1. Suppose that w2 and some vertex in e \ {w1, w2} are not adjacent

in G′. Then DD(G′) > DD(G).

Proof. We may assume that w2 and w3 are not adjacent inG′. As we pass fromG toG′, the

distance between w2 and w3 is increased by 1, and the distance between any other vertex

pair is increased or remains unchanged. That is, DG′(x) ≥ DG(x) for x ∈ V (G)\{w1, w2},

and DG′(w1) = DG(w1), DG′(w2) ≥ DG(w2) + 1. Note also that dG′(x) = dG(x) for

x ∈ V (G) \ {w1}. Thus

DD(G′)−DD(G) ≥ (dG(w1) + 1)DG′(w1)− dG(w1)DG(w1)

+dG′(w2)DG′(w2)− dG(w2)DG(w2)

≥ DG(w1) + dG(w2) > 0,

i.e., DD(G′) > DD(G).
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Theorem 4. Let t be an integer with t ≥ 3 and G a hypergraph consisting of t connected

subhypergraphs G1, . . . , Gt such that |V (Gi)| ≥ 2 for i = 1, . . . , t and V (Gi)∩V (Gj) = {u}

for 1 ≤ i < j ≤ t. Let e1 = {u, v1, . . . } ∈ E(G1), e2 = {u, v2, . . . } ∈ E(G2). Let

G′ (G′′, respectively) be the hypergraph obtained from G by moving all the edges con-

taining u in Gi for all i = 3, . . . , t from u to v1 (v2, respectively). Then DD(G) <

max{DD(G′), DD(G′′)}.

Proof. Let gi = |V (Gi)| for i = 1, . . . , t. As we pass from G to G′, the distance between

a vertex of
t⋃
i=3

V (Gi) \ {u} and a vertex of V (G1) \ {u} is decreased by at most 1, the

distance between a vertex of
t⋃
i=3

V (Gi) \ {u} and a vertex of V (G2) is increased by 1, and

the distance between any other vertex pair remains unchanged. Thus

DG′(x)−DG(x) ≥



−
t∑
i=3

(gi − 1) if x ∈ V (G1) \ {u},
t∑
i=3

(gi − 1) if x ∈ V (G2),

g2 − (g1 − 1) if x ∈
t⋃
i=3

V (Gi) \ {u}.

Let a = dG(u) and ` =
t∑
i=3

dGi
(u). Then dG′(u) = a− ` and dG′(v1) = dG(v1) + `. Note

that dG′(x) = dG(x) for x ∈ V (G) \ {u, v1}. Let δi =
∑

x∈V (Gi)\{u}
dG(x) for i = 1, . . . , t.

Therefore

DD(G′)−DD(G)

=
∑

x∈V (G1)\{u,v1}

dG(x)(DG′(x)−DG(x)) +
∑

x∈V (G2)\{u}

dG(x)(DG′(x)−DG(x))

+
∑

x∈
t⋃

i=3
(V (Gi)\{u})

dG(x)(DG′(x)−DG(x)) + (a− `)DG′(u)− aDG(u)

+(dG(v1) + `)DG′(v1)− dG(v1)DG(v1)

≥ −
∑

x∈V (G1)\{u,v1}

dG(x)
t∑
i=3

(gi − 1) +
∑

x∈V (G2)\{u}

dG(x)
t∑
i=3

(gi − 1)

+
∑

x∈
t⋃

i=3
(V (Gi)\{u})

dG(x)(g2 − (g1 − 1)) + a
t∑
i=3

(gi − 1)− `DG′(u)

−dG(v1)
t∑
i=3

(gi − 1) + `DG′(v1) = −(δ1 − dG(v1))
t∑
i=3

(gi − 1) + δ2

t∑
i=3

(gi − 1)
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+

(
t∑
i=3

δi

)
(1 + g2 − g1) + a

t∑
i=3

(gi − 1)

−dG(v1)
t∑
i=3

(gi − 1) + `(DG′(v1)−DG′(u))

= (−δ1 + δ2 + a)
t∑
i=3

(gi − 1) +

(
t∑
i=3

δi

)
(1 + g2 − g1)

+`(DG′(v1)−DG′(u)).

Note that

DG′(v1)−DG′(u) =
∑

w∈V (G)\V (G2)

(dG′(v1, w)− dG′(u,w))

+
∑

w∈V (G2)

(dG′(v1, w)− dG′(u,w))

≥
∑

w∈V (G)\V (G2)

(−1) +
∑

w∈V (G2)

1

= −(g1 − 1)−
t∑
i=3

(gi − 1) + g2

= −
t∑
i=3

(gi − 1) + 1 + g2 − g1.

Therefore

DD(G′)−DD(G) ≥ (−δ1 + δ2 + a− `)
t∑
i=3

(gi − 1)

+

(
`+

t∑
i=3

δi

)
(1 + g2 − g1).

Similarly,

DD(G′′)−DD(G) ≥ (−δ2 + δ1 + a− `)
t∑
i=3

(gi − 1)

+

(
`+

t∑
i=3

δi

)
(1 + g1 − g2).

Thus

DD(G′)−DD(G) +DD(G′′)−DD(G) ≥ 2(a− `)
t∑
i=3

(gi − 1)

+2

(
`+

t∑
i=3

δi

)
> 0,

implying that DD(G) < max{DD(G′), DD(G′′)}.
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Theorem 5. Let t be an integer with t ≥ 3 and G a hypergraph with an edge e =

{w1, . . . , wt} such that G− e consists of vertex-disjoint connected subhypergraphs H1, . . . ,

Ht, each containing exactly one vertex of e. Let e ∩ V (Hi) = {wi} for i = 1, . . . , t.

Let w1 ∈ e1 ∈ E(H1), w2 ∈ e2 ∈ E(H2). Let G′ (G′′, respectively) be the hypergraph

obtained from G by moving w3, . . . , wt from e to e1 (e2, respectively). Then DD(G) <

max{DD(G′), DD(G′′)}.

Proof. Let hi = |V (Hi)| for i = 1, . . . , t. As we pass from G to G′, the distance between a

vertex of
t⋃
i=3

V (Hi) and a vertex of V (H1) is decreased by at most 1, the distance between

a vertex of
t⋃
i=3

V (Hi) and a vertex of V (H2) is increased by 1, and the distance between

any other vertex pair remains unchanged. Then DG′(x)−DG(x) ≥ −
t∑
i=3

hi for x ∈ V (H1),

DG′(x)−DG(x) =
t∑
i=3

hi for x ∈ V (H2), and DG′(x)−DG(x) ≥ h2− (h1−1) = 1+h2−h1

for x ∈
t⋃
i=3

V (Hi). Note that dG′(x) = dG(x) for x ∈ V (G). Let δi =
∑

x∈V (Hi)

dG(x) for

i = 1, . . . , t. Thus

DD(G′)−DD(G) =
∑

x∈V (H1)

dG(x)(DG′(x)−DG(x))

+
∑

x∈V (H2)

dG(x)(DG′(x)−DG(x))

+
∑

x∈
t⋃

i=3
V (Hi)

dG(x)(DG′(x)−DG(x))

≥ δ1(−
t∑
i=3

hi) + δ2

t∑
i=3

hi +

(
t∑
i=3

δi

)
(1 + h2 − h1)

= (δ2 − δ1)
t∑
i=3

hi +

(
t∑
i=3

δi

)
(1 + h2 − h1).

Similarly,

DD(G′′)−DD(G) ≥ (δ1 − δ2)
t∑
i=3

hi +

(
t∑
i=3

δi

)
(1 + h1 − h2).

Thus

DD(G′)−DD(G) +DD(G′′)−DD(G) ≥ 2
t∑
i=3

δi > 0,

implying that DD(G) < max{DD(G′), DD(G′′)}.
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4 Hypertrees with small degree distances

For 1 ≤ m ≤ n − 1, let Smn be the hyperstar on n vertices with m − 1 pendant edges of

size 2 and one pendant edge of size n−m+ 1 (at its center).

Theorem 6. Let T be a hypertree on n vertices with m edges, where 1 ≤ m ≤ n − 1.

Then

DD(T ) ≥ n2 + (3m− 4)n− (m+ 3)(m− 1)

with equality if and only if T ∼= Smn .

Proof. By direct calculation, we have DD(Smn ) = m(n− 1) + 1 · (1 + 2(n− 2)) · (m− 1) +

1 · (n−m+ 2(m− 1)) · (n−m) = n2 + (3m− 4)n− (m+ 3)(m− 1).

If m = 1, then it is evident that T ∼= S1
n with DD(T ) = n(n− 1) = n2−n, and so the

result follows.

Suppose that m ≥ 2. Let T be a hypertree on n vertices with m edges that minimizes

the degree distance.

Suppose that there is an edge e ∈ E(T ) containing two vertices, say w1 and w2,

of degree at least two. Let T ′ be the hypertree obtained from T by moving all edges

containing w2 except e from w2 to w1. By Theorem 1, DD(T ) > DD(T ′), a contradiction.

Thus all the m edges of T are pendant edges at a common vertex, i.e., T is a hyperstar.

Let a1, . . . , am be the sizes of the m edges of T . Obviously,
m∑
i=1

ai = n+m−1. Assume

that a1 ≥ · · · ≥ am ≥ 2. Suppose that a2 ≥ 3. Let e1 and e2 be two edges of T with

|e1| = a1 and |e2| = a2. Let T ′′ be the hypertree obtained from T by moving a vertex of

degree one in e2 from e2 to e1. By Theorem 2, DD(T ) > DD(T ′′), a contradiction. Thus

a2 = 2 and a1 = n−m+ 1. That is, T ∼= Smn .

Lemma 1. If 1 ≤ m < n− 1, then DD(Smn ) < DD(Sm+1
n ).

Proof. Let T = Smn with center u and edge e of size n−m + 1. Let T ′ be the hypertree

obtained from T by moving one vertex, say w, in e \ {u} from e and adding an edge

{u,w}. Evidently, T ∼= Sm+1
n . By Theorem 3, DD(Smn ) < DD(Sm+1

n ).

Corollary 1. Let T be a hypertree on n vertices with maximum degree s or with s pendant

edges, where 1 ≤ s ≤ n− 1. Then DD(T ) ≥ DD(Ssn) with equality if and only if T ∼= Ssn.

Proof. Since |E(T )| ≥ s, we have by Theorem 6 and Lemma 1 that DD(T ) ≥ DD(S
|E(T )|
n )

≥ DD(Ssn) with equalities if and only if T ∼= S
|E(T )|
n and |E(T )| = s, i.e., T ∼= Ssn.
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For n ≥ 5, let T 2
n be the hyperstar on n vertices with one pendant edge of size 3 and

one pendant edge of size n− 2.

Theorem 7. Among hypertrees on n vertices,

• n2 − n for n ≥ 1 is the smallest degree distance, achieved uniquely by S1
n;

• n2 + 2n− 5 for n ≥ 3 is the second smallest degree distance, achieved uniquely by S2
n;

• 24 for n = 4 and n2 +4n−13 for n ≥ 5 are the third smallest degree distances, achieved

uniquely by S3
4 and T 2

n , respectively.

Proof. Let T be a hypertree on n vertices that is not isomorphic to S1
n, S

2
n. Let m be

the number of edges of T . As T 6∼= S1
n, we have m ≥ 2. Suppose that m ≥ 3. Then

n ≥ 4. If n = 4, then, as T 6∼= S1
n, S

2
n, we have T ∼= P4,2, S

3
4 , and by Theorem 1,

DD(P4,2) > DD(S3
4). If n ≥ 5, then by Theorem 6, Lemma 1 and Theorem 2, we have

DD(T ) ≥ DD(Smn ) ≥ DD(S3
n) > DD(T 2

n). If m = 2, then, as T 6∼= S2
n, we have by

by Theorem 2 that DD(T ) ≥ DD(T 2
n) with equality if and only if T ∼= T 2

n . By direct

calculation,

DD(T 2
n) = 2(2 + 2(n− 3)) + (n− 3)(4 + n− 3) + 2(n− 1)

= n2 + 4n− 13.

Thus, we have either n = 4 and DD(T ) ≥ 24 with equality if and only if T ∼= S3
4 or n ≥ 5

and DD(T ) ≥ n2 + 4n− 13 with equality if and only if T ∼= T 2
n .

Now the result follows by noting that DD(S1
n) = n2 − n and DD(S2

n) = n2 + 2n− 5.

5 Hypertrees with large degree distances

For 2 ≤ m ≤ n− 1 and 2 ≤ k ≤ r ≤ n− 1, let Pm
n (k, r) = (v0, e1, v1, e2, . . . , em, vm) be a

path on n vertices with m edges such that |e1| = k, |em| = r, |ei| = 2 for i = 2, . . . ,m− 1,

and k+ r = n−m+ 3. If r− k = 0, 1, then we write Pm
n instead of Pm

n (k, r). Obviously,

P n−1
n

∼= Pn,2. Note that Pm
n (k, r) is obtainable from the path Pm−1,2 by attaching a

pendant edge of size k to one terminal vertex and a pendant edge of size r to the other

terminal vertex.

Let P 1
n = S1

n.
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Lemma 2. For 2 ≤ k ≤ r, m ≥ 2 and n = k + r +m− 3,

DD(Pm
n (k, r)) =

1

6
m(m− 1)(9n− 5m+ 1) + 2m(k − 1)(r − 1)

+(k − 1)(k − 2) + (r − 1)(r − 2).

Proof. By direct calculation, we have

DD(Pm
n (k, r))

= (k − 1)

(
k − 2 +

m−1∑
i=1

i+ (r − 1)m

)

+(r − 1)

(
r − 2 +

m−1∑
i=1

i+ (k − 1)m

)

+2
m−1∑
j=1

(
j−1∑
i=0

i+ (k − 1)j +

m−1−j∑
i=0

i+ (r − 1)(m− j)

)

= (k − 1)

(
k − 2 +

1

2
m(m− 1) + (r − 1)m

)
+(r − 1)

(
r − 2 +

1

2
m(m− 1) + (k − 1)m

)
+

m−1∑
j=1

(j(j − 1) + 2(k − 1)j + (m− j)(m+ 2r − 3− j))

= (k − 1)(k − 2) + (r − 1)(r − 2) +
1

2
m(m− 1)(k + r − 2)

+2m(k − 1)(r − 1)

+
m−1∑
j=1

(
2j2 − 2(m− k + r)j +m(m+ 2r − 3)

)
= (k − 1)(k − 2) + (r − 1)(r − 2) +

1

2
m(m− 1)(k + r − 2)

+2m(k − 1)(r − 1)

+
1

3
m(m− 1)(2m+ 3k + 3r − 10)

=
1

6
m(m− 1)(9n− 5m+ 1) + 2m(k − 1)(r − 1)

+(k − 1)(k − 2) + (r − 1)(r − 2),

as desired.

Lemma 3. For 2 ≤ k ≤ r − 2, m ≥ 2 and n = k + r +m− 3,

DD(Pm
n (k, r)) < DD(Pm

n (k + 1, r − 1)).
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Proof. By Lemma 2, we have

DD(Pm
n (k + 1, r − 1))−DD(Pm

n (k, r))

= 2m (k(r − 2)− (k − 1)(r − 1)) + k(k − 1)

−(k − 1)(k − 2) + (r − 2)(r − 3)− (r − 1)(r − 2)

= 2m(r − k − 1) + (2k − 2)− 2r + 4

= 2(m− 1)(r − k − 1)

> 0.

So the result follows.

Lemma 4. For n > m ≥ 2,

DD(Pm
n ) =


1

6

(
3(m + 1)n2 + 3m(m− 3)n− (2m− 3)(m2 − 1)

)
if n−m is odd,

1

6

(
3(m + 1)n2 + 3m(m− 3)n− (2m− 1)(m2 −m)

)
if n−m is even.

Proof. Recall that Pm
n = Pm

n (k, r), where k + r = n−m+ 3 and r − k = 0, 1.

If n−m is odd, then k = r = 1
2
(n−m+ 3), and we have by Lemma 2 that

DD(Pm
n ) =

1

6
m(m− 1)(9n− 5m+ 1) + 2m

(
n−m+ 1

2

)2

+2 · n−m+ 1

2
· n−m− 1

2

=
1

6
m(m− 1)(9n+ 1)− 5

6
m2(m− 1)

+
m

2
(n2 +m2 + 1− 2mn+ 2n− 2m) +

1

2
(n2 − 2mn+m2 − 1)

=
1

6

(
3(m+ 1)n2 + 3m(m− 3)n− (2m− 3)(m2 − 1)

)
.

If n−m is even, then k = 1
2
(n−m+ 2), r = 1

2
(n−m+ 4), and we have by Lemma 2 that

DD(Pm
n ) =

1

6
m(m− 1)(9n− 5m+ 1) + 2m · n−m

2
· n−m+ 2

2

+
n−m

2
· n−m− 2

2
+
n−m

2
· n−m+ 2

2

=
1

6
m(m− 1)(9n+ 1)− 5

6
m2(m− 1)

+
m

2
(n2 − 2mn+m2 + 2n− 2m) +

1

2
(n2 − 2mn+m2)

=
1

6

(
3(m+ 1)n2 + 3m(m− 3)n− (2m− 1)(m2 −m)

)
.

This completes the proof.
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Theorem 8. Let T be a hypertree on n vertices with m edges, where 1 ≤ m ≤ n − 1.

Then

DD(T ) ≤


1

6
(3(m+ 1)n2 + 3m(m− 3)n− (2m− 3)(m2 − 1)) if n−m is odd

1

6
(3(m+ 1)n2 + 3m(m− 3)n− (2m− 1)(m2 −m)) if n−m is even

with equality if and only if T ∼= Pm
n .

Proof. It is trivial if m = 1.

Suppose that m ≥ 2. Let T be a hypertree on n vertices with m edges maximizing

the degree distance.

Suppose that there is a vertex u in T of degree at least three. Let dT (u) = t ≥ 3. Then

T consists of t subhypertrees T1, . . . , Tt such that |V (Ti)| ≥ 2 for 1 ≤ i ≤ t and T1, . . . , Tt

have exactly one vertex u in common. Let e1 = (u, v1, . . . ) ∈ E(T1), e2 = (u, v2, . . . ) ∈

E(T2) and let T ′ (T ′′, respectively) be the hypertree obtained from T by moving all the

edges containing u in each of T3, . . . , Tt from u to v1 (v2, respectively). Obviously, T ′ and

T ′′ also have m edges. By Theorem 4, DD(T ) < max{DD(T ′), DD(T ′′)}, a contradiction.

Thus the maximum degree of T is two.

Suppose that there is an edge in T of size at least three, whose deletion yields at least

two nontrivial components. Let e = {w1, . . . , wk} be such one edge, where k ≥ 3. For

i = 1, . . . , k, let Ti be the component in T − e containing wi. Let w1 ∈ e1 ∈ E(T1),

w2 ∈ e2 ∈ E(T2) and T ∗ (T ∗∗, respectively) be the hypertree obtained from T by moving

w3, . . . , wk from e to e1(e2, respectively). Obviously, T ∗ and T ∗∗ also have m edges. By

Theorem 5, DD(T ) < max{DD(T ∗), DD(T ∗∗)}, a contradiction. Thus, the deletion of

any edge of size at least three yields exactly one nontrivial component. That is any edge

of size at least three in T is a pendant edge. As the maximum degree of T is two, we

conclude that T ∼= Pm
n (k, r), where 2 ≤ k ≤ r. Now by Lemma 3, T ∼= Pm

n . Now the

result follows from Lemma 4.

Lemma 5. If 1 ≤ m < n− 1, then DD(Pm
n ) < DD(Pm+1

n ).

Proof. Let Pm
n = (v0, e1, v1, e2, . . . , vm−1, em, vm) such that |e1| + |em| = n − m + 3 and

|em| − |e1| = 0, 1.

Since m < n − 1, we have |em| ≥ 3. Let u ∈ em \ {vm−1, vm}, e = {vm−1, u} and

e′ = em \ {vm−1}. Let T ′ = (v0, e1, v1, e2, . . . , vm−1, e, u, e
′, vm). Obviously, T ′ ∼= Pm+1

n .
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As we pass from Pm
n to T ′, the distance between vm−1 and vm is increased by 1, and

the distance between any other vertex pair is increased or remains unchanged. Thus

DD(Pm
n ) < DD(Pm+1

n ).

For n ≥ 3, let Bn,i be the tree of order n obtained from a path Pn−1 = v0v1 . . . vn−2 by

attaching a pendant edge {vi, v}.

Theorem 9. Among hypertrees on n vertices,

• n(n− 1)(2n− 1)

3
for n ≥ 2 is the largest degree distance, achieved uniquely by Pn,2;

• 6 for n = 3 and
2n3 − 3n2 − 11n+ 36

3
for n ≥ 4 are the second largest degree distance,

achieved uniquely by S3,3 and Bn,1, respectively;

• 19 for n = 4, 45 for n = 5 and
2n3 − 3n2 − 23n+ 96

3
for n ≥ 6 are the third largest

degree distances, achieved uniquely by P 2
4 , P

3
5 and Bn,2, respectively.

Proof. The result for n = 2, 3 is trivial, as there is only one hypertree P2,2 on 2 vertices

and there are exactly two hypertrees P3,2 and S3,3 on 3 vertices with DD(S3,3) = 6.

Suppose n ≥ 4. For convenience, let

f1(n) =
n(n− 1)(2n− 1)

3
,

f2(n) =
2n3 − 3n2 − 11n+ 36

3
,

f3(n) =
2n3 − 3n2 − 23n+ 96

3
,

g(n) =
4n3 − 9n2 − 7n+ 30

6
.

Let T be a hypertree on n vertices with m edges, where 1 ≤ m ≤ n−1. If m ≤ n−2, then

by Theorem 8, DD(T ) ≤ DD(Pm
n ) with equality if and only if T ∼= Pm

n . By Lemma 5

and Theorem 8, DD(Pm
n ) ≤ DD(P n−2

n ) = g(n). If m = n− 1, then T is an ordinary tree,

and thus we have either T ∼= Pn,2, Bn,1 with

DD(Pn,2) = f1(n) > DD(Bn,1) = f2(n).

or DD(T ) ≤ f3(n) with equality if and only if T ∼= Bn,2.

If n ≥ 6, then T ∼= Pn,2, Bn,1 or

DD(T ) ≤ max{DD(P n−2
n ), DD(Bn,2)} = max{g(n), f3(n)}.
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Note that g(n) < f3(n) < f2(n) < f1(n) for n ≥ 6. Thus, the result follows if n ≥ 6.

If n = 4, 5, then T ∼= Pn,2, Bn,1 or DD(T ) ≤ DD(P 2
n) = g(n) with equality if and only

if T ∼= P n−2
n . Note that g(n) < f2(n) < f1(n) for n = 4, 5 and g(4) = 19 and g(5) = 45.

Thus, the result follows if n = 4, 5.
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