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Abstract

The geometric-arithmetic index GA of a graph G is the sum of ratios, over all edges
of G, of the geometric mean to the arithmetic mean of the end vertices degrees
of an edge. The spectral radius λ1 of G is the largest eigenvalue of its adjacency
matrix. These two parameters are known to be used as molecular descriptors in
chemical graph theory. In the present paper, we compare GA and λ1 of a connected
graph with given order. We prove, among other results, upper and lower bounds
on the ratio GA/λ1 as well as a lower bound on the ratio GA/λ21. In addition, we
characterize all extremal graphs corresponding to each of these bounds.

1 Introduction and definitions

We begin by recalling some definitions. In this paper, we consider only simple, undirected

and finite graphs, i.e, undirected graphs on a finite number of vertices without multiple

edges or loops. A graph is denoted by G = G(V,E), where V is its vertex set and E its

edge set. The order of G is the number n = |V |, its size is the number m = |E|. For two

vertices u and v (u, v ∈ V ), if uv ∈ E, we say u and v are adjacent in G. The degree of

a vertex u, denoted du, is the number of vertices adjacent to it in G. A graph G is said

to be regular of degree d, or d-regular if du = d for every vertex u in G. The minimum,
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average and maximum degrees in a graph G are denoted δ, d and ∆, respectively. As

usual, Pn, Sn and Kn denote path, cycle and complete graph on n vertices, respectively.

Molecular descriptors play a very important role in mathematical chemistry especially

in QSAR (quantitative structure-activity relationship) and/or in QSPR (quantitative

structure-property relationship) related studies. Among those descriptors, a special in-

terest is devoted to so-called topological indices. They are used to understand physic-

ochemical properties of chemical compounds in a simple way, since they sum up some

of the properties of a molecule in a single number. During the last decades, a large

number of topological indices were introduced and found some applications in chemistry,

see e.g., [19, 20, 37]. The study of topological indices goes back to the seminal work by

Wiener [39] in which he used the sum of all shortest-path distances, nowadays known as

the Wiener index, of a (molecular) graph for modeling physical properties of alkanes.

Another very important molecular descriptor, was introduced by Randić [29]. It is called

the Randić (connectivity) index and defined as

Ra = Ra(G) =
∑
uv∈E

1√
dudv

where du denotes the degree (number of neighbors) of u in G. The Randić index is

probably the most studied molecular descriptor in mathematical chemistry. Actually,

there are more than two thousand papers and five books devoted to that index and its

generalizations (see, e.g., [18, 22–25] and the references therein).

Motivated by the definition of Randić connectivity index, Vukičević and Furtula [38] re-

cently proposed the geometric-arithmetic index. It is so-called since its definition involves

both geometric and arithmetic means of the endpoints degrees of the edges in a graph.

For a simple graph G with edge set E, the geometric-arithmetic index GA of a graph G

is defined [38] by

GA = GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

where du denotes the degree of u in G.

It is noted in [38] that the predictive power of GA for physico-chemical properties is

somewhat better than the predictive power of the Randić connectivity index. In [38],

Vukičević and Furtula gave lower and upper bounds for GA, identified the trees with

the minimum and the maximum GA indices, which are the star Sn and the path Pn,

respectively. In [40] Yuan, Zhou and Trinajsić gave lower and upper bounds for the GA

index of molecular graphs using the numbers of vertices and edges. They also determined
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the n-vertex molecular trees with the minimum, the second, and the third minimum values

of GA, as well as its second and third maximum values. The chemical applicability of

the geometric-arithmetic index was highlighted in [14, 17, 38]. Lower and upper bounds

on the geometric-arithmetic index in terms of order n, size m, minimum degree δ and/or

maximum degree were proved in [30]. Also in [30], GA was compared to other well

known topological indices such as the Randić index, the first and second Zagreb indices,

the harmonic index and the sum connectivity index. Other lower and upper bounds,

on the geometric-arithmetic index, involving the order n the size m, the minimum and

the maximum degrees and the second Zagreb index were proved in [13]. In [1], several

bounds and comparisons, involving the geometric-arithmetic index and several other graph

parameters, are proved. The problem of lower bounding GA over the class of connected

graphs with fixed number of vertices and minimum degree was discussed in [15,33].

The adjacency matrix A of G is a 0–1 n × n–matrix indexed by the vertices of G and

defined by aij = 1 if and only if ij ∈ E. The (adjacency) eigenvalues of G are those of

its adjacency matrix A. According to Hückel’s molecular orbital (HMO) theory, energy

levels of electrons in a molecule correspond to the eigenvalues of the graph representing the

molecule. Many chemical properties, such as stability, of a molecule are closely connected

to its corresponding eigenvalues (see e.g. [11, ch. 8] and [21]). The largest eigenvalue of the

adjacency matrix A of a graph G is called the spectral radius of G and denote λ1 = λ1(G).

In particular, Lovász and Pelikán [26] suggested the spectral radius of a molecular graph

as a measure of branching of the underlying molecule (see also [10, 12]). Many papers

and books were devoted to the study of mathematical properties and application of the

spectral radius of a graphs. Among these publications, we cite the books [11, 34, 35] and

the papers [2, 5–7,9, 12, 16, 26,27, 36] as well as the references therein. For results related

to spectral properties of the geometric-arithmetic index see [31,32].

Note that all results proved in the present paper were first obtained as conjectures, or at

least tested, with the help of the conjecture-making system in graph theory AutoGraphiX

[3,4, 8].

2 Main results

We first prove an upper bound on the ratio GA/λ1, over the class of all connected graphs,

in terms of the order n.

Proposition 2.1. For any connected graph G on n ≥ 3 vertices with spectral radius λ1

-475-



and geometric-arithmetic index GA,

GA

λ1
≤ n

2

with equality if and only if G is regular.

Proof : Using the fact that λ1 ≥ d with equality if and only if G is regular (see e.g. [11]),

we have

GA

λ1
≤ GA

d
=

∑
ij∈E

2
√
didj

di+dj
2
n

∑
ij∈E 1

≤
∑

ij∈E 1
2
n

∑
ij∈E 1

=
n

2
.

Equality being reached if and only if di = dj for all edges ij ∈ E, i.e., if and only if G is

regular.

The next bound we prove, which is an improvement of the above proposition, involves

the well-known molecular descriptor called Randić (connectivity) index.

Proposition 2.2. For any connected graph G with spectral radius λ1, Randić index Ra

and geometric-arithmetic index GA,

GA

λ1
≤ Ra

with equality if and only if G is regular.

Proof : It is proved in [16] that λ1 · Ra ≥ m. Also, it is easy to see that GA ≤ m with

equality if and only if G is regular.

Combining these two inequalities, we get

GA

λ1
≤ m

λ1
≤ Ra,

which proves the bound.

Equality implies GA = m, i.e, G is a regular graph.

Note that Proposition 2.2 is an improvement of Proposition 2.1 since for any graph G on

n ≥ 2 vertices, Ra ≤ n/2 with equality if and only if G is regular (see e.g. [28]).

To prove our next result, we need the following Lemma from [27].

Lemma 2.3 ( [27]). If G is a graph on n vertices and m edges with spectral radius λ1,

then λ1 ≤
√

2m− n+ 1 with equality if and only if G is the star graph Sn or the complete

graph Kn.

We next prove a lower bound on the ratio GA/λ1 in terms of the number of vertices n.

We also characterize the extremal graphs.
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Theorem 2.4. For any connected graph G = (V,E) on n ≥ 3 vertices with spectral radius

λ1 and geometric-arithmetic index GA,

GA

λ1
≥ 2(n− 1)

n

with equality if and only if G is the star Sn.

Proof : We know that (see e.g. [38]) for any edge vivj in G

2
√
didj

di + dj
≥ 2
√
n− 1

n
.

Combining this with Lemma 2.3, we get

GA(G)

λ1
≥ 1√

2m− n+ 1

∑
ij∈E

2
√
n− 1

n
=

2m√
2m− n+ 1

·
√
n− 1

n
.

Now, consider the function f(x) = 2x/
√

2x− n+ 1. It is increasing (using the derivative)

for all x ≥ n− 1, thus reaches its minimum for x = n− 1. Therefore

GA(G)

λ1
≥ 2(n− 1)

n

with equality if and only if m = n− 1 and λ1 =
√

2m− n+ 1.

From Lemma 2.3, G is the star Sn.

We now use λ21 instead of λ1, and prove an upper bound on the ratio of the geometric-

arithmetic index GA to the spectral radius squared λ21. We also characterize the extremal

graphs.

Theorem 2.5. For any connected graph G on n ≥ 7 vertices with spectral radius λ1 and

geometric-arithmetic index GA,
GA

λ21
≤ n

4

with equality if and only if G is the cycle Cn. Moreover if 2 ≤ n ≤ 6, we have

GA

λ21
≤
n− 3 + 4

√
2

3

4 cos2 π
n+1

with equality if and only if G is the path Pn.

Proof : If m ≥ n, where m denotes the number of edges in G, using the inequality

GA ≤ m, and the well-known result (see e.g. [11]) λ1 ≥ 2m/n with equality if and only if

G is regular, we have
GA

λ21
≤ m

(2m/n)2
=
n

4
· n
m
≤ n

4
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with equality if and only if m = n and G is regular, ı.e., G is the cycle Cn.

If m = n− 1, it is well-known that the path Pn maximizes GA (see [38]), and minimizes

λ1 (see e.g. [11]). Recall that

GA(Pn) = n− 3 +
4
√

2

3
and λ1(Pn) = 2 cos

π

n+ 1
.

Thus
GA

λ21
≤
n− 3 + 4

√
2

3

4 cos2 π
n+1

Now we need to compare both bounds:

n

4
and

n− 3 + 4
√
2

3

4 cos2 π
n+1

.

Using the Taylor series

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

we get

cosx ≥ 1− x2

2!
+
x4

4!
− x6

6!

and therefore
n− 3 + 4

√
2

3

4 cos2 π
n+1

≤
n− 3 + 4

√
2

3

4
(

1− π2

2!(n+1)2
+ π4

4!(n+1)4
− π6

6!(n+1)6

)2 .
Using an online symbolic computational tool, such as WolframAlpha (available at

https://www.wolframalpha.com), we get

n− 3 + 4
√
2

3

4
(

1− π2

2!(n+1)2
+ π4

4!(n+1)4
− π6

6!(n+1)6

)2 < n

4

for all n ≥ 7. For 2 ≤ n ≤ 6, direct calculation shows that

n

4
<
n− 3 + 4

√
2

3

4 cos2 π
n+1

.

This completes the proof.

We next state two conjectures, obtained using AutoGraphiX.

Conjecture 1. For any connected graph G on n ≥ 13 vertices with spectral radius λ1 and

geometric-arithmetic index GA,

GA

λ21
≥ 2
√
n− 1

n

with equality if and only if G is the star Sn. Moreover, if 2 ≤ n ≤ 12, then

GA

λ21
≥ n

2(n− 1)

with equality if and only if G is the complete graph Kn.
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Note that the above conjecture is true over the class of bipartite graphs as well as for

regular graphs, as the following results show.

Proposition 2.6. Let G be a bipartite graph on n vertices. Then

GA

λ21
≥ 2
√
n− 1

n

with equality only for the star Sn.

Proof : Let λ1 ≥ λ2 ≥ · · · ≥ λn be the spectrum of G. It is well-known (see e.g. [11])

that the spectrum of bipartite graph is symmetric with respect to 0, and that (for any

graph) λ21 + λ22 + · · ·+ λ2n = 2m. Thus, we have λ21 ≤ m. In addition as mentioned above,

for any edge vivj in G

2
√
didj

di + dj
≥ 2
√
n− 1

n
.

Therefore,
GA

λ21
≥ 2m

√
n− 1

m · n
=

2
√
n− 1

n

with equality if and only if λ1 =
√
m and

2
√
didj

di + dj
=

2
√
n− 1

n

for every edge vivj in G, which corresponds to the star Sn.

Proposition 2.7. Let G be a regular graph on n vertices. Then

GA

λ21
≥ n

2(n− 1)

with equality only for the complete graph Kn.

Proof : It is well-known that for a k-regular graph λ1 = k = 2m/n and GA = m. Thus

GA

λ21
=
mn2

4m2
=

n

2k
≥ n

2(n− 1)

with equality if and only if k = n− 1, which corresponds to the complete graph Kn.

The following conjecture, if true, improves Theorem 2.5.

Conjecture 2. For any connected graph G on n ≥ 8 vertices with spectral radius λ1,

Randić index Ra and geometric-arithmetic index GA,

GA

λ21
≤ Ra

2

with equality if and only if G is the cycle Cn.
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Note that for 2 ≤ n ≤ 7, the maximum of GA/(λ21 · Ra) seems to be attained for the

path Pn. In this case, the value of the bound corresponding to the path Pn exceeds that

corresponding to the cycle Cn.

The above conjecture is true for connected cyclic graphs, that is, graphs with n vertices

and m edges such that m ≥ n. To show that, we the inequality λ1 ·Ra ≥ m proved in [16].

Proposition 2.8. For any connected graph G on n ≥ 3 vertices and m ≥ n edges with

spectral radius λ1, Randić index Ra and geometric-arithmetic index GA,

GA

λ21
≤ Ra

2

with equality if and only if G is the cycle Cn.

Proof : We have GA ≤ m and, from [16], Ra ≥ m/λ1. Combining both inequalities, we

get
GA

λ1
≤ m

λ1
≤ Ra,

therefore
GA

λ21
≤ m

λ21
≤ Ra

λ1
.

It is well know that λ1 ≥ 2m/n with equality if and only if G is regular.

Thus, the equality holds if and if G is the cycle Cn.

Then the result follows.
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