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Abstract

Let G be a graph of order n with vertex set V(G) = {v1,vs,...,v,} and edge set
E(G), and d(v;) be the degree of the vertex v;. The geometric-arithmetic matrix of
G is the matrix of order n whose (i, j)-entry is equal to zdim if vu; € E(G),
and 0 otherwise. The geometric-arithmetic energy of G is the sum of the absolute
values of the eigenvalues of its geometric-arithmetic matrix. In 2019, Y. Shao et
al. [1] conjectured that the path P, has the maximal geometric-arithmetic energy
among all trees of order n > 4. In this paper, we prove that the conjecture is true,

and in fact, the result holds also for n = 1,2, 3.

1 Introduction

Let G be a graph of order n with vertex set V(G) = {v1,vs,...,v,} and edge set
E(G). Fori=1,2,...,n, denote by dg(v;) (or d(v;) for short) the degree of the vertex v;
in G. A edge vv; € E(G) is called a pendent edge of G if dg(v;) = 1 or dg(v;) = 1. Let
T be a tree. A vertex v is called a branched vertex of T if dp(v) > 3.

The geometric-arithmetic (or GA, for short) index of a graph G, introduced by

_24/d(vi)d(v;)

Vukicevi¢ and Furtula as a topological index ( [2]), is defined as GA(G) = KT cn
T A
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if vv; € E(G). In [3,4], Rodriguez and Sigarreta introduced the GA matrix and GA
energy of a graph. Let G be a graph of order n. The GA matrix of G, denoted by M (G),
is the matrix of order n whose (i, j)-entry is equal to dv(vdil dd(uj if v;v; € E(G), and 0 oth-
erwise. The characteristic polynomial of M(G), denoted by ¢pca(G,x) = |vI — M(G)], is
called the GA characteristic polynomial of G. The n roots of the equation ¢ga(G,z) = 0,
denoted by 11(G), ua(G), ..., n(G), are called the GA eigenvalues of G. Since M(G) is
real and symmetric all GA eigenvalues of G are real. The GA energy of G is defined as
Eaa(G) Z i (G)I.

In [1], Shao and Gao studied the maximal GA energy of trees of order n. They proved
that the path of order n has the maximal geometric-arithmetic energy among all trees of
order n with at most two branched vertices, and conjectured the result also hold for all

trees of order n.

Theorem 1.1 ( [1]) Let T be a tree of order n > 4 with at most two branched vertices.
Then

Eca(T) < Eqa(Py).
Equality holds if and only if T is isomorphic to the path P,.
It is clear that the result holds also for n = 1,2, 3.
Conjecture 1.2 ( [1]) Let T be a tree of order n > 4. Then
Eaa(T) < Eqa(Py).

Equality holds if and only if T is isomorphic to the path P,.

In this paper, we prove that this conjecture is true, and in fact, the result holds also

forn=1,2,3.

2 Preliminaries

For a graph G, we use M (G) to denote the set of all k-matchings of G. If e = vv; €
E(G), then we denote

GAg(e) = GAg(v;) = (WW@) ’

d(v;) + d(v;)
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and we say that GAg(e) is the GA value of the edge e. If oy, = {ey,ea,...,ex} €
k

Mi(G), we call that H GAg(e;) is the GA value of matching ay, and write GAg(ay) =

i=1

[1GAc(e).

i=1
Let T be a tree T of order n with GA matrix M (7). Then the GA characteristic

polynomial of 7' can be written as ( [1])

3]
baa(T,x) = ol — M(T)| =Y (=1)*o(M(T), k)z"~2*

k=0

[SE]

where b(M(T),0) =1, and b(M(T),k) = > GAg(ay) for 1 <k < [3].
ape€M(T)

Lemma 2.1 ( [1]) Let Ty and T be two trees of order n, and their GA characteristic
polynomials be

EY EY
baa(Tr,z) =) (=DFb(M(T)), k)z™"%*, ¢aa(Ta,z) = (=1)*6(M(Ty), k)z" 2,
k=0 k=0

respectively. If b(M(Ty), k) > b(M(T3),k) for all k > 0, and there is a positive integer k
such that b(M(T}), k) > b(M(T»), k), then

(SE}
SIE

SGA(Tl) > gGA(TQ)A

Lemma 2.2 ( [5]) Let T be a tree of order n. Then |[My(T)| < |My(B,)| for 1 <k <
L5]-

Lemma 2.3 Let f(z,y) = Qﬂ

(1) Forx =1 andy > 1, f(1,y) is a monotonically decreasing function on y.

(2) Forx > 1 andy > 1, f(x,y) <1, and equality holding if and only if x = y.

3 Main result

In this section, we will prove the following main theorem, it implies that Conjecture

1.2 holds.

Theorem 3.1 Let T be a tree of order n > 1. Then
EGA(T) S EGA(PIL)'

Equality holds if and only if T' is isomorphic to the path P,.
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Proof. For n = 1,2,3, it is clear that the result holds. For n > 4, by Theorem 1.1, we
only need to prove that Ega(T) < Ega(P,) for any tree T of order n with at least three
branched vertices.

Let T be a tree of order n with at least three branched vertices. Then there are at
least two pendent edges which have no common vertex. This fact implies that 7" is a tree
as depicted in Figure 3.1, where T} is a tree of order n — 2, and vg, v,—1 € V(T1).

Consider the tree T" which is obtained from T by replacing T; with the path of order
n — 2. Clearly, T" is a path of order of n as depicted in Figure 3.2. For 1 <i < j < n,
use P, ,, to denote the path of T" from v; to v;. We will prove that Ega(T') < Ega(T”).

v U2 Un—1 Un U1 U2 U3 ... Un—2 Un-1 Up
*——o —0o ————0 —o o

Figure 3.1 Tree T’ Figure 3.2 Tree T”

Let the GA characteristic polynomials of T and 7" be

3] 12
baa(T,x) =Y (—=1)o(M(T),k)z""2*, ¢ea(T,x) = (=1)Fb(M(T"), k)x"*,
k=0 k=0

respectively.
By Lemmas 2.2, and 2.3, for 1 <i < j < mn,

2v2 ; :

¥= <1, if vv; is a pendent edge of T,

GAr(viv;) < 3 ) it ’
r(v Uj) - { 1, otherwise,

ifi=1orj=n,
1, otherwise,

2v2
GATI(’Uﬂ)j) = { 3 < 17 5

and for any positive integer ¢,

Yo GAr(a) = [Mu(Puw, )= Y GAr(a),

AYEeM(Pog,v,_q) ag€My(Th)

Y. GAr(e) = IMdPuu )= Y GAz(a),
a,€My(Puy v, _1) ageMy(T1—v2)

> GAp () = [Me(Pry, )| 2 > GAr (o),
ay€My(Poy,v,_s) ageM(Tr—vn-1)

Y. GAp(a)) = [Mi(Puy,)| = > GAr(ay).
ay€M(Pog,o, o) ageM(Tr—v2—vn—1)

Since there are at least three pendent edges of T', it is clear that

BM(T),1) = > GAr(e) < Y GAr(e) = b(M(T"),1).

ecE(T) ecE(T")
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For 2 <k < [%],
B(M(T'), k)
= > GAp(af)

ap eM(T')
= Z GAT/ (O‘;c) + GAT/(Ul’UQ) Z GATr(aﬁcfl)
ay €My (Pog,v,, 1) o) EMi—1(Pog v, _y)
+G Aps (V1) Z GAp(af_y)
a1 EME—1(Pog,u,_5)
+G A (0102) GAgr (v 10,) Z GAp(aj_,)

9 €My—2(Pog.vp )

Z Z GAT(Oék) + GAT(Ul’Ug) Z GAT(O(kfl)

k€M (T1) ap-1EMi_1(T1—v2)

+GAT(’Un—1Un) Z GAT (ak—l)
ap1€EMp_1(T1—vn—1)

+GAT(U11)2)GAT(’U"_1UH) Z GAT (Oék_z)

ap—2€EMp_2(T1—v2—vn—-1)

= b(M(T), k).
By Lemma 2.1, Ega(T) < Ega(T') = Ega(P,). So the theorem now follows. |
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