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Abstract

Let G be a graph of order n with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G), and d(vi) be the degree of the vertex vi. The geometric-arithmetic matrix of

G is the matrix of order n whose (i, j)-entry is equal to
2
√
d(vi)d(vj)

d(vi)+d(vj)
if vivj ∈ E(G),

and 0 otherwise. The geometric-arithmetic energy of G is the sum of the absolute

values of the eigenvalues of its geometric-arithmetic matrix. In 2019, Y. Shao et

al. [1] conjectured that the path Pn has the maximal geometric-arithmetic energy

among all trees of order n ≥ 4. In this paper, we prove that the conjecture is true,

and in fact, the result holds also for n = 1, 2, 3.

1 Introduction

Let G be a graph of order n with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G). For i = 1, 2, . . . , n, denote by dG(vi) (or d(vi) for short) the degree of the vertex vi

in G. A edge vivj ∈ E(G) is called a pendent edge of G if dG(vi) = 1 or dG(vj) = 1. Let

T be a tree. A vertex v is called a branched vertex of T if dT (v) ≥ 3.

The geometric-arithmetic (or GA, for short) index of a graph G, introduced by

Vukičević and Furtula as a topological index ( [2]), is defined as GA(G) =
2
√
d(vi)d(vj)

d(vi)+d(vj)
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if vivj ∈ E(G). In [3, 4], Rodŕıguez and Sigarreta introduced the GA matrix and GA

energy of a graph. Let G be a graph of order n. The GA matrix of G, denoted by M(G),

is the matrix of order n whose (i, j)-entry is equal to
2
√
d(vi)d(vj)

d(vi)+d(vj)
if vivj ∈ E(G), and 0 oth-

erwise. The characteristic polynomial of M(G), denoted by φGA(G, x) = |xI −M(G)|, is

called the GA characteristic polynomial of G. The n roots of the equation φGA(G, x) = 0,

denoted by µ1(G), µ2(G), . . . , µn(G), are called the GA eigenvalues of G. Since M(G) is

real and symmetric, all GA eigenvalues of G are real. The GA energy of G is defined as

EGA(G) =
n∑
i=1

|µi(G)|.

In [1], Shao and Gao studied the maximal GA energy of trees of order n. They proved

that the path of order n has the maximal geometric-arithmetic energy among all trees of

order n with at most two branched vertices, and conjectured the result also hold for all

trees of order n.

Theorem 1.1 ( [1]) Let T be a tree of order n ≥ 4 with at most two branched vertices.

Then

EGA(T ) ≤ EGA(Pn).

Equality holds if and only if T is isomorphic to the path Pn.

It is clear that the result holds also for n = 1, 2, 3.

Conjecture 1.2 ( [1]) Let T be a tree of order n ≥ 4. Then

EGA(T ) ≤ EGA(Pn).

Equality holds if and only if T is isomorphic to the path Pn.

In this paper, we prove that this conjecture is true, and in fact, the result holds also

for n = 1, 2, 3.

2 Preliminaries

For a graph G, we useMk(G) to denote the set of all k-matchings of G. If e = vivj ∈

E(G), then we denote

GAG(e) = GAG(vivj) =

(
2
√
d(vi)d(vj)

d(vi) + d(vj)

)2

,
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and we say that GAG(e) is the GA value of the edge e. If αk = {e1, e2, . . . , ek} ∈

Mk(G), we call that
k∏
i=1

GAG(ei) is the GA value of matching αk, and write GAG(αk) =

k∏
i=1

GAG(ei).

Let T be a tree T of order n with GA matrix M(T ). Then the GA characteristic

polynomial of T can be written as ( [1])

φGA(T, x) = |xI −M(T )| =
bn
2
c∑

k=0

(−1)kb(M(T ), k)xn−2k

where b(M(T ), 0) = 1, and b(M(T ), k) =
∑

αk∈Mk(T )

GAG(αk) for 1 ≤ k ≤ bn
2
c.

Lemma 2.1 ( [1]) Let T1 and T2 be two trees of order n, and their GA characteristic

polynomials be

φGA(T1, x) =

bn
2
c∑

k=0

(−1)kb(M(T1), k)xn−2k, φGA(T2, x) =

bn
2
c∑

k=0

(−1)kb(M(T2), k)xn−2k,

respectively. If b(M(T1), k) ≥ b(M(T2), k) for all k ≥ 0, and there is a positive integer k

such that b(M(T1), k) > b(M(T2), k), then

EGA(T1) > EGA(T2).

Lemma 2.2 ( [5]) Let T be a tree of order n. Then |Mk(T )| ≤ |Mk(Pn)| for 1 ≤ k ≤

bn
2
c.

Lemma 2.3 Let f(x, y) =
2
√
xy

x+y
.

(1) For x = 1 and y ≥ 1, f(1, y) is a monotonically decreasing function on y.

(2) For x ≥ 1 and y ≥ 1, f(x, y) ≤ 1, and equality holding if and only if x = y.

3 Main result

In this section, we will prove the following main theorem, it implies that Conjecture

1.2 holds.

Theorem 3.1 Let T be a tree of order n ≥ 1. Then

EGA(T ) ≤ EGA(Pn).

Equality holds if and only if T is isomorphic to the path Pn.
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Proof. For n = 1, 2, 3, it is clear that the result holds. For n ≥ 4, by Theorem 1.1, we

only need to prove that EGA(T ) < EGA(Pn) for any tree T of order n with at least three

branched vertices.

Let T be a tree of order n with at least three branched vertices. Then there are at

least two pendent edges which have no common vertex. This fact implies that T is a tree

as depicted in Figure 3.1, where T1 is a tree of order n− 2, and v2, vn−1 ∈ V (T1).

Consider the tree T ′ which is obtained from T by replacing T1 with the path of order

n − 2. Clearly, T ′ is a path of order of n as depicted in Figure 3.2. For 1 ≤ i < j ≤ n,

use Pvi,vj to denote the path of T ′ from vi to vj. We will prove that EGA(T ) < EGA(T ′).

��
��
T1• • • •

v1 v2 vn−1 vn

Figure 3.1 Tree T

• • • • • •
v1 v2 v3 · · · vn−2 vn−1 vn

Figure 3.2 Tree T ′

Let the GA characteristic polynomials of T and T ′ be

φGA(T, x) =

bn
2
c∑

k=0

(−1)kb(M(T ), k)xn−2k, φGA(T ′, x) =

bn
2
c∑

k=0

(−1)kb(M(T ′), k)xn−2k,

respectively.

By Lemmas 2.2, and 2.3, for 1 ≤ i < j ≤ n,

GAT (vivj) ≤
{

2
√
2

3
< 1, if vivj is a pendent edge of T,

1, otherwise,

GAT ′(vivj) =

{
2
√
2

3
< 1, if i = 1 or j = n,

1, otherwise,
,

and for any positive integer `,∑
α′`∈M`(Pv2,vn−1 )

GAT ′(α
′
`) = |M`(Pv2,vn−1)| ≥

∑
α`∈M`(T1)

GAT (α`),

∑
α′`∈M`(Pv3,vn−1 )

GAT ′(α
′
`) = |M`(Pv3,vn−1)| ≥

∑
α`∈M`(T1−v2)

GAT (α`),

∑
α′`∈M`(Pv2,vn−2 )

GAT ′(α
′
`) = |M`(Pv2,vn−2)| ≥

∑
α`∈M`(T1−vn−1)

GAT (α`),

∑
α′`∈M`(Pv3,vn−2 )

GAT ′(α
′
`) = |M`(Pv3,vn−2)| ≥

∑
α`∈M`(T1−v2−vn−1)

GAT (α`).

Since there are at least three pendent edges of T , it is clear that

b(M(T ), 1) =
∑

e∈E(T )

GAT (e) <
∑

e∈E(T ′)

GAT (e) = b(M(T ′), 1).
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For 2 ≤ k ≤ bn
2
c,

b(M(T ′), k)

=
∑

α′k∈Mk(T ′)

GAT ′(α
′
k)

=
∑

α′k∈Mk(Pv2,vn−1 )

GAT ′(α
′
k) +GAT ′(v1v2)

∑
α′k−1∈Mk−1(Pv3,vn−1 )

GAT ′(α
′
k−1)

+GAT ′(vn−1vn)
∑

α′k−1∈Mk−1(Pv2,vn−2 )

GAT ′(α
′
k−1)

+GAT ′(v1v2)GAT ′(vn−1vn)
∑

α′k−2∈Mk−2(Pv3,vn−2 )

GAT ′(α
′
k−2)

≥
∑

αk∈Mk(T1)

GAT (αk) +GAT (v1v2)
∑

αk−1∈Mk−1(T1−v2)

GAT (αk−1)

+GAT (vn−1vn)
∑

αk−1∈Mk−1(T1−vn−1)

GAT (αk−1)

+GAT (v1v2)GAT (vn−1vn)
∑

αk−2∈Mk−2(T1−v2−vn−1)

GAT (αk−2)

= b(M(T ), k).

By Lemma 2.1, EGA(T ) < EGA(T ′) = EGA(Pn). So the theorem now follows. �
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