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Abstract

One of the traditional ways of solving the maximum common induced subgraph
problem is by reduction to a maximum clique problem. The two input graphs, in
which the maximum common subgraph is to be found, are multiplied to form a
product graph, which is then input to the maximum clique algorithm. The result of
the latter are used to identify the nodes of the input graphs that form the maximum
common subgraph. Although the maximum clique problem can be solved by a
modern branch-and-bound based algorithm for general graphs, such approach is
far from optimal. Some special properties of the product graph can be exploited
to guide the maximum clique search. Namely, the modern state-of-the-art clique
search programs use coloring as auxiliary algorithm, but finding a good coloring
of a graph itself a hard task. In this article, we use the exploit the nature of the
product graph to provide the maximum clique algorithm with a very good initial
coloring or multiple such colorings. We perform experiments on a large database
of small to medium sized graphs and demonstrate the efficiency of the proposed
method against a state of the art method for solving maximum common subgraph
problem.

1 Introduction

1.1 Background

Given two finite simple graphs G and H. The mathematical problem we consider is to

decide if G has an induced subgraph G′, which is isomorphic to H. The problem called as

isomorphic embedding problem as H can be isomorphically injected into G. This problem
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seems to be a pure abstract mathematical problem. However, its relevance to chemical

computations is a well established, well documented fact. As a matter of fact the chemical

importance of the problem is the main motivation behind, to find efficient and practical

algorithm to the problem. We say confidently that the chemical applications are the real

motivation behind the definition of this present abstract mathematical problem.

A more general problem formulation of the above is the maximum common induced

subgraph problem. In this problem we are looking for an induced subgraph G′ of G,

and an induced subgraph H ′ of H, where G′ is isomorphic to H ′. We are interested to

find big subgraphs to optimality. The maximum common induced subgraph problem is

used in chemistry as a means of comparing shapes of molecules, either as 3D scans or

molecular graphs, which represent the structural formula directly [1, 2]. An example of

such use is in prediction of protein function. The characteristic of proteins, which allows

them to function within an organism, is their ability to bind other molecules. They bind

to other molecules similarly as jigsaw puzzle fit together, by matching their shape to the

shape of target molecule. The function of unknown protein can therefore be estimated by

comparing its shape to shapes of known proteins with known functions.

One of the traditional ways of solving the maximum common subgraph problem is by

reduction to a maximum clique problem, using auxiliary product graph. The two input

graphs, in which the maximum common subgraph is to be found, are multiplied to form

a product graph, which is then input to the maximum clique algorithm. The result of

the latter are used to identify the nodes of the input graphs that form the maximum

common subgraph. Although the maximum clique problem can be solved by a modern

branch-and-bound based algorithm for general graphs, such approach is far from optimal.

Some special properties of the product graph can be exploited to guide the maximum

clique search. Namely, the modern state-of-the-art clique search programs use coloring as

auxiliary algorithm, but finding a good coloring of a graph itself a hard task.

The product graph method mentioned above is a versatile method and can be adjusted

to different scenarios. As an example, we must point out, that the graphs representing

chemical molecules as a rule have labels assigned to nodes and sometimes to edges rep-

resenting different atoms and bond types. One can produce the product graph just the

same way only by limiting the possible pairs of labels, that is atoms and edges, that is

the bonds. We will detail this difference when describing the product graph later.
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In this article, we exploit the properties of the auxiliary product graph to provide

the maximum clique algorithm with a set of very good initial colorings. We call these

colorings hereditary. We perform experiments on a database of small to medium sized

graphs and demonstrate the efficiency of the proposed method against a state of the art

method for solving maximum common subgraph problem.

There are indications that when using these colorings, solving some of currently hard

problems would become feasible.

Definition 1 Let G = (V,E) be a finite simple graph. Let D be a subset of V and let

∆ be the subgraph of G induced by D. The subgraph ∆ is called a clique in G if any two

distinct elements of D are adjacent in G. If the set D has k elements, then we call ∆ a

k-clique in G. A k-clique in G called maximum clique, if there is no clique of size k + 1

in G. The size of a maximum clique in G is referred as the clique number of G, and it is

denoted by ω(G).

Finding cliques in a given graph is an important problem in discrete applied mathematics

with many applications inside and outside of mathematics. For further details see [3–8].

We formally state the following two clique search problem.

Problem 1 Given a finite simple graph G and given a positive integer k. Decide if G

contains a k-clique.

Problem 2 Given a finite simple graph G find the biggest positive integer k, such that G

contains a k-clique.

Many practical clique search algorithms employ coloring to speed up the computation

by reducing the search space. Finding optimal or nearly optimal colorings is itself a com-

putationally demanding problem. For this reason, the computationally less demanding

greedy algorithms are used to construct suboptimal colorings in the above computations.

It is customary to color the nodes of a graph G satisfying the following conditions.

• Each node of G receives exactly one color.

• Adjacent nodes in G cannot receive the same color.

This is the most commonly encountered coloring of the nodes of a graph and it is

referred to as legal coloring of the nodes. It is well known that coloring can be used for
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estimating clique size. For each finite simple graph G there is a well defined nonnegative

integer k such that the nodes of G admit a legal coloring with k colors but the nodes of

G cannot be colored legally using k − 1 colors. This number k is called the chromatic

number of the graph G and it is denoted by χ(G). Let us suppose that ∆ is an l-clique in

G and let us suppose that the nodes of G have a legal coloring with k colors. Then l ≤ k

holds.

The two problems related to coloring can be formally stated as follows.

Problem 3 Given a finite simple graph G and given a positive integer k. Decide if the

nodes of G have a legal coloring using k colors.

Problem 4 Given a finite simple graph G find the biggest positive integer k such as the

nodes of G have a legal coloring using k colors.

Problems 1 and 3 are decision problems. From the complexity theory of computations

we know that these problems belong to the NP-complete complexity class. Problems 2

and 4 are optimization problems and it can be easily seen that they are computationally

as challenging as the previous NP-complete problems. That means that these problems

belong to the NP-hard complexity class.

Definition 2 Let G = (V,E) be a finite simple graph and let s be a positive integer such

that s ≥ 2. A subset U of V is called an s-free set if the graph induced by U in G does

not contain any s-clique. A partition U1, . . . , Ur of V is called an s-clique free partition

of V if Ui is an s-clique free subset of V for each i, 1 ≤ i ≤ r.

We can look at this partitioning as basis for an alternative coloring method and we

call it s-clique free coloring [9].

1.2 Product graphs and their colorings

In this paper we are interested in some special problems. We assume that these prob-

lems can be reduced to k-clique search or maximum clique search on the given product

graph. The problems of graph isomorphism and induced subgraph isomorphism are rep-

resentatives of this type of problems so we will use the induced subgraph isomorphism

problem to illustrate the method. Other problems can be dealt with by similar means.

Induced subgraph isomorphism has important applications for example in drug design,
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chemical database problems, artificial intelligence or pattern recognition. Let us state the

maximum common induced subgraph isomorphism problem more formally:

Problem 5 Let G = (V,E), G′ = (V ′, E ′) be finite simple graphs. We are looking for the

induced subgraph G0 in G and induced subgraph G′
0 in G′ such that G0 is isomorphic to

G′
0. In other words, is there a G0 = (V0, E0) : V0 ⊆ V where v1, v2 ∈ V0 and {v1, v2} ∈ E

then and only then {v1, v2} ∈ E0 and is there a G′
0 = (V ′

0 , E
′
0) : V ′

0 ⊆ V ′ where v1, v2 ∈ V ′
0

and {v1, v2} ∈ E ′ then and only then {v1, v2} ∈ E ′
0 such that G0

∼= G′
0? The problem is

to find the biggest possible number k = |V0| and the corresponding subgraph G0 fulfilling

this property.

A special version of the above problem occurs when G0 is isomorphic to the G′ itself.

We will call this problem as the isomorphic embedding problem to distinguish it from the

previous problem.

Problem 6 Let G = (V,E), G′ = (V ′, E ′) be finite simple graphs. Is there a induced

subgraph G0 in G such that G0 is isomorphic to G′. In other words is there a G0 = (V0, E0)

: V0 ⊆ V where v1, v2 ∈ V0 and {v1, v2} ∈ E then and only then {v1, v2} ∈ E0 such that

G0
∼= G′?

A possible method of solving these problems is to construct an auxiliary graph Γ =

(W,F ) where |W | = |V ||V ′|. The nodes of the graph Γ are labeled by ordered pairs of

nodes from G and G′. That is if a a1 ∈ V , b1 ∈ V ′ then (a1, b1) ∈ W . The edges of

the graph Γ are constructed as follows. Let us consider (a1, b1), (a2, b2) as two distinct

nodes of Γ. We put an edge between them if {a1, a2} ∈ E and {b1, b2} ∈ E ′. We also

put and edge between them if {a1, a2} /∈ E and {b1, b2} /∈ E ′ for a1 6= a2 , b1 6= b2. This

means that a1, a2 and b1, b2 both should be connected or both should not be connected.

A k-clique where k = |V0| in the graph Γ represents the function f : V0 → V ′
0 such that

b1 = f(a1), b2 = f(a2), {a1, a2} ∈ E ⇔ {f(a1), f(a2)} ∈ E ′. This means that finding the

maximum clique in Γ will solve the maximum common induced subgraph isomorphism

problem, and finding a k-clique in Γ, where k = |V ′| will solve the isomorphic embedding

problem.

In case of labeled graph we limit the nodes of Γ = (W,F ). Instead of using all possible

pairs of input nodes, that is V ×V ′, we use only those pairs where the labels are the same.
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If we have label functions ln : V → N, l′n : V ′ → N and a1 ∈ V , b1 ∈ V ′, ln(a1) = l′n(b1)

then (a1, b1) ∈ W . Also, we consider labeling for edges if one is present. Consider that

the labeling of edges are le : E → N, l′e : E ′ → N. We put an edge between two distinct

nodes of Γ (a1, b1), (a2, b2) if in both cases there is an edge with the same label, that is

{a1, a2} ∈ E and {b1, b2} ∈ E ′ and l({a1, a2}) = l′({b1, b2}). We also put and edge between

them if there is no edge present in both cases, that is {a1, a2} /∈ E and {b1, b2} /∈ E ′ for

a1 6= a2 , b1 6= b2.

It is well known, that the k-clique and maximum clique search algorithm can be sped

up by using a good coloring of the given graph. We will describe several coloring schemes

in the following subsections. We called these colorings hereditary because of the fact that

they derive solely from the two input graphs and the constructing method of the auxiliary

product graph.

1.3 First hereditary coloring scheme

Note that the nodes (a1, b1), (a1, b2), (a1, b3), . . . , (a1, b|V ′|) of the graph Γ form an inde-

pendent set. Intuitively this means that the node a1 can only be paired with one of the

nodes from V ′ at the same time. Thus we can define |V | number of color classes in Γ

where the nodes labeled by the same node from G fall into one color class. That is, the

first color class will consist of nodes (a1, b1), (a1, b2), (a1, b3), . . ., the second will consist of

nodes (a2, b1), (a2, b2), (a2, b3), . . ., the third of nodes (a3, b1), (a3, b2), (a3, b3), . . ., and so

on.

Similarly, the nodes (a1, b1), (a2, b1), (a3, b1), . . . , (a|V |, b1) of the graph Γ form an inde-

pendent set. Thus we can define |V ′| number of color classes in Γ where the nodes labeled

by the same node from G′ fall into one color class.

Note that if there is a solution to the isomorphic embedding problem then the second

coloring defines also a “best” coloring, since it uses the number of colors equal to the

chromatic number, because k = |V ′| = χ(Γ).

We also should point out an interesting phenomenon from real life. If one constructs

a product graph for a given problem, then the nodes of this product graph will be listed

in such order that they will be also listed by color classes by one of the above scheme.

It is because one lists the nodes of the product graph by a double nested for loop listing

the nodes of one graph and the nodes of the other graph. From this it follows that pro-
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grams that are using sequential greedy coloring as the initial coloring may result in the

best possible coloring and will run extremely fast comparing to other programs which use

other coloring methods. By our knowledge, this phenomenon was not detected previously.

Perhaps this is because the initial coloring is nearly always performed only after the ver-

tices have been sorted in descending order according to their degrees, since this produces

superior coloring results on average, that is on all graph types, not only product graphs.

1.4 Second hereditary coloring scheme

We take an independent set I ⊆ V from G and a clique K ⊆ V ′ from G′. Note that nodes

of Γ (a, b) ∈ W,a ∈ I, b ∈ K form an independent set. This follows from the fact that all

the nodes of I are independent, while all the nodes of K are connected. Thus no (a1, b1)

and (a2, b2) pair can be connected as {a1, a2} /∈ E and {b1, b2} ∈ E ′. If we partition the

nodes from G into i independent sets and partition the nodes of G′ into k cliques then

we can define i × k color classes in Γ, where the color classes are formed by pairs of an

independent set from G and a clique from G′.

Obviously we can partition G into cliques and G′ into independent sets as well.

The described method can be used with many different partitioning resulting in several

different colorings. We cannot guarantee though the number of resulting color classes

opposed to the first coloring scheme.

1.5 Third hereditary coloring scheme

Similarly to the previous method we partition the set of nodes of G and G′ graphs. But

instead of independent sets in G we shall use s-clique free set Is, and instead of cliques in

G′ – that is equivalent to an independent set in the Ḡ′ complement graph – we shall use

an r-clique free set Kr in Ḡ′. Using nodes from these two sets, a ∈ Is, b ∈ Kr the nodes

(a, b) in Γ form an (s+ r − 1)-clique free set. For further details on s-clique free coloring

in clique search see [9].

1.6 Other hereditary coloring scheme

Note, that the previous hereditary schemes involve invariant transformations of the graph.

Thus other invariances similarly can be of use, for example such as a distance between

two nodes. In this case, following the notation of previous subsections, I can be a set

of nodes of G, where the smallest distance between two nodes is at least k for a given
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number k. While K shall be a set of nodes in G′, where the smallest distance between

two nodes is less than k. Note that k = 2 gives us the second scheme described above.

This scheme probably can be well used in chemical compound similarity search, where

the distances between the constituent atoms bear more relevant information than the

connection between them.

2 Algorithm

An algorithm is proposed for finding maximum clique. For the initial experiments for

exploration of hereditary coloring schemes, we select the first coloring scheme. A parallel

program for solving the maximum clique problem [10] is taken as a starting point, which

implements a state of the art branch and bound maximum clique algorithm. Ideas from

[11] were also included.

First, the program is modified for solving maximum common subgraph problems. A

new initial step is constructed, which performs graph multiplication, and maximum clique

algorithm is then executed on the product graph. Thus a procedure is created, that is

very similar to the one used in ProBiS [1, 2] a program for local comparison of protein

structures.

Next, the algorithm is modified to use the first of the presented coloring schemes for

pruning the search tree.

2.1 Implementation of the hereditary coloring scheme

To use the hereditary coloring scheme, the following items are of most importance:

• Coloring has to be applied when the product graph is being constructed, since

afterwards, the details of the original input graphs are lost.

• The maximum clique algorithm must be multiple-colorings aware, that is, if multiple

colorings are used, then the algorithm must use and modify them simultaneously in

all the operations that would otherwise use the single coloring.

In the initial step, when the product graphs is constructed, either one or two heredi-

tary colorings are applied. Note that the all state-of-the-art graph-based maximum clique

algorithms include an initial coloring phase, which cannot be used when coloring is exter-

nally provided as it is in our case and is therefore skipped in the proposed algorithm. The
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resulting product graph and its colorings are fed to the maximum clique algorithm that

is multiple-colorings aware. To be able to use two distinct colorings, the algorithm keeps

them both in memory and uses them as appropriate. Since the colorings are initially also

optimal, no re-coloring is performed within the clique search.

The largest change in the algorithm is in the point of branching, i.e., the point where

the algorithm holds a candidate clique and a set of candidate nodes for exhaustion. The

process of exhaustion aims to increase the candidate clique by recursively picking the

candidate nodes, adding them to the active clique and removing their non-neighbours

from the remaining candidate nodes. At this point of the algorithm, coloring is used for

two goals.

First, the results of coloring are used in the bounding mechanism, which allows the

branching to commence only when the number of remaining colors in the candidate set

of nodes is high enough that it can theoretically lead to a maximal clique that is larger

than the largest already known clique. That is, the size difference between the largest

known clique and the candidate clique (kdiff) is used as the bounding criterion. If the

candidate nodes can be colored with less than kdiff colors, then this branch cannot lead

to a new maximal clique, the algorithm can safely prune it and then backtrack to find a

more promising branch.

Second, coloring plays a role in minimizing the branching factor [12], i.e., the number

of branching points generated by a particular candidate node. Branching factor can be

minimized by setting the exhaustion order of the candidate nodes in such a way that leads

to the largest number of branches being pruned. The number of branches pruned equals

the number of nodes that can be colored with kdiff colors. A greedy method of maximizing

this number of nodes is to exhaust nodes in the order defined by their colors, and only

exhaust the nodes that are colored with the rarest colors until only kdiff different colors

remain.

To be used efficiently for both goals, the proposed algorithm has to select a single

colorings to base this branching decisions on.

• If less than or equal to kdiff color bins remain in any of the memorized colorings,

then the bounding condition is satisfied, branching is canceled, and the algorithm

backtracks.

• If kdiff is 0, i.e., the candidate clique is also the largest clique found so far, then the
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coloring with the smaller number of colors is selected. In case of a tie, the coloring

with the rarest color (the color that is used to color the smallest number of nodes)

is selected. If there is further tie, then any coloring scheme can be selected. To

achieve repeatability of the results, we opt to always select the first coloring in such

a case.

• If more than kdiff different colors remain for all the memorized colorings, then only

the nodes that are not colored by one of the kdiff most frequent colors in both

colorings are counted. Then the coloring with the lower number of counted nodes

is selected. In case of a tie, the coloring with the rarest color is selected. If there is

further tie, again any coloring can be selected, and we opt for the first coloring.

After selecting a particular coloring, a node from candidates has to be selected for

the branching to be performed. Selection of the node is made based on its color and the

initial vertex ordering; first, the nodes with the rarest color are considered, but within

the nodes of the same color, the node with the lowest index is selected. This represents

a simple but suboptimal solution. Implementing a more elaborate selection of the node

would represent a trade-off between the added computational overhead and the possible

reduction of the search tree. We leave this topic for further work.

2.2 Effects of the multiple-coloring awareness

On one hand, the additional pruning that is made possible by the inclusion of multiple

colorings is certainly beneficial. On the other hand, the inclusion of multiple colorings

into the algorithm causes some significant overheads:

• Multiple colorings have to be stored in memory in every recursion of the algorithm.

For each recursion, the maximum clique algorithm has to hold three memory ex-

pensive variables: current clique, candidate set of vertices, and the set of colorings

of the candidates. The latter is the most expansive of the three, and each coloring

takes about k times as much memory as the candidate set of vertices, where k is the

number of colors remaining in the coloring. In practice, the memory overhead re-

sults in slower execution time, since less of the data can be stored in local processor

caches.

• Multiple colorings have to be processed in each recursion. Although always only a
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single vertex from the candidate set is selected to be added to the current clique, it

is removed from all the memorized colorings, which must then be adjusted. Adjust-

ment of colorings (i.e., removal of the selected vertex and all its non-neighbours form

the candidate set and color recount) is the most time demanding step. Selection

of a vertex for branching is also more demanding, since a non-trivial procedure for

selection of coloring is introduced. In total, increasing the number of colorings from

one to two about doubles the amount of required processing.

The benefits have to be weighted against the overheads to determine which is more pro-

nounced. The logic dictates that the very large and therefore difficult to solve cases should

benefit more, while very small cases should experience mostly overheads. Therefore, in

addition to experimenting with the hereditary coloring scheme, we prepare experiments

also to establish the problem size at which the use of multiple colorings becomes beneficial

(if at all).

To have a meaningful comparison, we make two separate implementations of the al-

gorithm. In addition to simultaneous dual-coloring algorithm (we shall refer to it as

Simultaneous coloring), we implement also an algorithm in which only one of the possible

hereditary colorings is kept while the other is discarded. This implementation leverages

the benefits of reduced memory usage and the simpler processing by the use of single

coloring throughout the algorithm. We call this flavor of the algorithm initial coloring

algorithm, since hereditary coloring on it is performed in its initial phase.

3 Experiments

We compare the proposed algorithm against the state-of-the-art reference [13], which is a

modern subgraph isomorphism algorithm that implements search via a bit-parallel maxi-

mum clique search algorithm [14]. We use the c++ code that was provided as a supplement

to the referenced article, without any changes and we compile it with same compiler (GCC

8.3) and same set of compiler switches (-O3 -march=native -std=c++14). A small note

must be made for the reference algorithm - in its implementation, the timing is performed

with the precision of milliseconds. On the smallest problem instances that is insufficient

(execution time is always reported as 1 ms) and comparison to the proposed algorithms

on those problem instances is therefore limited.

Of the proposed algorithm, we prepared two flavors:
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• initial coloring, which uses a simpler algorithm that supports only one coloring,

which must be selected at the beginning, and

• simultaneous coloring, which uses two hereditary colorings throughout the algo-

rithm.

To be able to execute the large amount of experiments, we perform them on a cluster of

20 4-core Intel Xeon E5520 based computers. The experiments run in parallel, with each

one occupying a single core of a single computer. That is, to avoid any kind od interference

between program instances, we allow only one instance at a time per computer. And to

make a meaningful comparison of algorithms, not the parallel implementation, we use

sequential (single-threaded) execution.

We perform experiments on two datasets:

• A dataset of random graphs [15], from which we extract a subset of problems from

the MCS90 directory. This directory contains pairs of 2D graphs of predefined

size (both graphs are of the same size) and variable size of the common induced

subgraph. We divide the pairs into subsets according to the size (number of nodes)

of their input graphs: |V | = [10, 20, 30, 40]. Each subset contains 100 problem

instances. We do not experiment on larger problems, since execution on several of

the included problem instances already takes more than a week to complete. Note

that for the hardest of instances execution time of the selected problem instances

already surpasses one week.

• A dataset of 857 small molecule structures from Drugbank [16]. We use molecules

with accession numbers in the range of [DB00000−−DB01020] and with less than

60 atoms. We treat molecule structures as labelled graphs, i.e. the vertices are

atoms, therefore we used chemical elements as labels of vertices. When generating

the product graph, only Cartesian products of same chemical elements are allowed

as elements of the product graph. Since labelling reduces the size of product graph

it allowed us to use a bit larger larger input graphs, with up to 60 vertices instead

of 40 that were used in the random graph database. In contrast to the random

database, which is divided into pairs of graphs for testing, database of molecules

has no such structure. We performed experiments on all pairs, where one of the

molecules is either:
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– Pyridoxal phosphate (DB00114, 16 vertices),

– Tetrahydrofolic acid (DB00116, 32 vertices),

– Histidine (DB00117, 11 vertices),

– Ademetionine (DB00118, 27 vertices),

– Pyruvic acid (DB00119, 6 vertices),

– Phenylalanine (DB00120, 12 vertices),

– Biotin (DB00121, 18 vertices),

– Choline (DB00122, 7 vertices),

– L-Lysine (DB00123, 10 vertices),

– Arginine (DB00125, 12 vertices),

– Ascorbic acid (DB00126, 13 vertices),

– Spermine (DB00127 14 vertices),

– Aspartic acid (DB00128, 9 vertices),

– Ornithine (DB00129, 9 vertices),

– L-Glutamine (DB00130, 10 vertices), and

– Adenosine phosphate (DB00131, 23 vertices).

Thus, a set of 13712 pairs of molecules were created. Note that unlike in the

random dataset, the pairs of molecule dataset are not divided into groups, since the

in general, the two graphs from individual pair are not of equal size. To limit the

total time required for these experiments, we limit the execution time to 20 minutes

per instance.

We execute all three algorithms (one reference and two proposed flavors) on both

datasets. Raw results - execution times, are plotted in Figure 1 and Figure 2, and provide a

statistical view on the performance of the algorithms. The problem instances are sorted for

all plots by their execution time and cannot be directly compared between the plots. Note

that the reported execution time for the reference algorithm is in millisecond resolution,

which is not enough for the problem instances of the easiest subset (denoted as 10 nodes on

the graphs). The reference algorithm does seem to be faster than the simultaneous coloring
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algorithm for those problem instances though. Note also that the molecule database run

times are clamped to 1200 seconds and that for each instance where execution time is

1200 seconds is actually unsolved.
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In the next three subsections, we present the obtained results in greater detail; first

we make a comparison between the proposed and the reference algorithms, then we make

a comparison between the two proposed flavors of algorithm, and lastly we compare the

performance on the general graphs to that on labelled graphs such as the molecular

structures.

When presenting the results on molecule dataset, we only present the results where all

algorithms solved the problem instance before the timeout of 1200 seconds was reached.

Observing the statistics for individual algorithms, the number of solved problem instances

by the initial coloring flavor is 98.8 %, by the simultaneous dual coloring flavor is 96.1 %

and at by the reference algorithm is 93.4 %.

3.1 Results: hereditary versus reference

The results of the first comparison are presented as speedups of hereditary algorithms

relative to the reference algorithm. Figure 3 shows the speedup of the simultaneous

coloring and Figure 4 shows the speedup of the initial coloring.
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Figure 3. Speedup of the simultaneous coloring flavor of the proposed algorithm
relative to the reference algorithm for the three problem subsets that
produce a valid comparison. Speedup is sorted by value for easier visual-
ization. The graph line for 10 nodes is not plotted, since the comparison
could not be made accurately.
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Figure 4. Speedup of the initial coloring flavor of the proposed algorithm relative
to the reference algorithm for the three problem subsets that produce
a valid comparison. Speedup is sorted by value for easier visualization.
The graph line for 10 nodes is not plotted, since the comparison could
not be made accurately

Figure 5 shows the speedup of both flavors of the proposed algorithm relative to the

reference algorithm. Results on this figure are only sorted by speedup value and are not

further grouped.
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Figure 5. Speedup of both flavors of the proposed algorithm relative to the refer-
ence algorithm. Speedup is sorted by value for easier visualization.

On the figures, speedup of 1, i.e. identical execution time for both algorithms, is

marked by a dashed line, and speedup above 1 indicates that the proposed algorithm
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is faster than reference. Note that the results for instances with |V | = 10 on random

graph dataset are not shown, since the reference algorithm timing resolution of 1 ms is

inadequate for calculation of speedups.

The results show that the execution speed of algorithms is highly correlated with the

problem size. The proposed algorithm is slower for nearly all of the smaller problem sizes,

i.e. for input graphs of size 10 and 20, and faster for nearly all larger problem sizes, i.e.

for input graphs of sizes 30 and 40. Furthermore, the speedups for large problems get

exceptionally high for some instances, and reduce execution time from nearly unusable

(in the order of days or even weeks) down to very usable (order of minutes).

3.2 Results: simultaneous versus initial coloring

To weight the overheads of multiple colorings against their benefits, we directly compare

the two algorithm flavors. The results obtained on the random graph dataset, in form of

simultaneous coloring speedup with initial coloring as a reference are shown in Figure 6.
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Figure 6. Speedup of the multiple colorings algorithm versus a single coloring, on
the random graph dataset.

As expected, on average, multiple colorings performance is better on larger problem

instances, while initial coloring is better on smaller problem instances. The divide seems

to be between |V | = 20 and |V | = 30, the same as when comparing the multicoloring

algorithm to the reference algorithm.

The results obtained from the molecule dataset, shown on Figure 7 are less expected,

though. They show that simultaneous coloring is very rarely the more efficient algorithm.
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The experiments are performed mostly on relatively small graphs and simultaneous col-

oring performance might increase with much larger problem sizes.
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Figure 7. Speedup of the multiple colorings algorithm versus a single coloring, on
the molecule dataset.

A plot of execution times tells a similar story. A direct comparison of execution

times on random graph dataset is plotted on Figure 8 and The trend is clearly visible for

the random graph dataset; simultaneous coloring is gaining advantage as the execution

time lengthens. Although the initial coloring is faster on 258 problem instances, while the

simultaneous coloring is faster on 142 instances, the latter is much faster on average. Mean

execution time of the simultaneous coloring is 197 seconds, while the mean execution time

for initial coloring is 993 seconds. While these statistics depend mostly on the difficulty

of the presented problem instances, it shows that the simultaneous coloring is generally

not faster, but when it is, it can make a significant difference.

For molecule dataset, not much new information can be gathered from Figure 9. Exe-

cution times spread out more for the more difficult problem instances, but otherwise there

is no apparent trend in the collected data. Since on the molecule dataset, in contrast

to random graph dataset, common induced subgraph is sought between different-sized

graphs, simultaneous coloring does not bring any advantage. Recall that for simultane-

ous coloring flavor, two colorings are performed in advance, one per input graph. These

colorings are comprised of as many colors as their source input graph has vertices. Num-

ber of colors in each of these colorings corresponds to the number of vertices in first or
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second input graph. Since input graphs are of very different size, the two colorings are

therefore not equally promising in terms of helping to efficiently bound the search space

of the algorithm. Therefore, it seems, that working with both colorings, as in the case

of simultaneous coloring algorithm flavor is not beneficial at all for regular instance sizes.

For very large instances, there could still be some benefits in using simultaneous coloring.

but these might be diminishing, as due to NP complexity of the problem. The molecule

dataset is, however, more realistic than the random graph dataset. It is hardly ever ex-

pected that one would be interested in only searching for common subgraphs in molecules

or other graphs of the exactly same size.
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Figure 8. Comparison of execution times of the multiple and initial colorings al-
gorithms. Dashed line represents equal times.
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Figure 9. Comparison of execution times of the multiple and initial colorings al-
gorithms. Dashed line represents equal times.
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4 Conclusions

In this paper we propose a hereditary coloring scheme for improving the efficiency of solv-

ing problems of maximum common induced subgraph using a maximum clique algorithm.

We experiment with two flavors of algorithm, that differ in their computational complex-

ity. We observe that the proposed methodology works remarkably well when using the

first and most straight-forward of the proposed hereditary coloring schemes. Obtained

results show large speedups over the reference algorithm but also a dependence of the

results on the size of the problem. The proposed algorithm is faster than the reference

on nearly all easy problem instances, while it is faster on nearly all difficult problem

instances.

Within the two presented flavors of the proposed algorithm, the one that uses dual

coloring is faster, when solving difficult problem instances of equal input graph size. For

use in real life, the initial coloring algorithm seems to present a more viable approach,

as it offers the most performance on most real-life problem instances that are small that

solving them is attempted at all.

The implemented color scheme has room left for improvements, such as re-coloring

before branching, or a more elaborate selection of the node within a coloring bin to

branch on. Further experimentation in this area is required to determine which steps of

the algorithm should be left as simple as possible and which would benefit from additional

processing.

We expect that adding other hereditary coloring schemes would also provide good

results, on par or better than those already observed here. Primarily, they might make

simultaneous coloring less dependent on the equal size of input graphs. The other schemes

would also present some trade-offs between the complexity of the coloring procedure and

the quality of the coloring with respect to being used as the bounding criterion within the

branch-and-bound maximum clique algorithm. Therefore we expect that for various forms

of problems (regarding their complexity, e.g. input graph sizes, densities, symmetries,

labelling, etc), different combinations of hereditary coloring schemes would prove as the

best for the job. Further experiments, though, are planned for the future work.
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