
Graphs of Maximal Energy with Fixed
Maximal Degree

Octavio Arizmendia, Jorge Fernandez Hidalgob

aCentro de Investigación en Matemáticas Guanajauto, Mexico
octavius@cimat.mx

bUniversidad Nacional Autónoma de Mexico Mexico City, Mexico
jorgefernandez@ciencias.unam.mx

(Received January 17, 2019)

Abstract

We give a bound for the graph energy with given maximal degree in terms of the
second and fourth moments of a graph. In the case in which the graph is d-regular
we obtain the bound that is given in Van Dam, E. et al. (2014). through elementary
methods.

1 Introduction and Statement of Results

In this paper we study the energy of a graph as defined by Gutman [3]. For a graph G

on n vertexes with adjacency eigenvalues λ1, . . . , λn, the energy of the graph G is given

by sum of the absolute value of its adjacency eigenvalues,
n∑

i=1

|λi|.

Several results on bounds for the energy of a graph have been considered in the theory.

e.g. [6, 8, 12], a tool to give general bounds is given by the so-called spectral moments of

a graph [4, 5, 7, 9, 10, 13]. The k-th spectral moment of a graph is given by

Mk(G) =
n∑

i=1

λk
i .
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The usefulness of these quantities comes from the fact that, when k is an integer, Mk

has a combinatorial interpretation: Mk(G) is the trace of the k’th power of the adjacency

matrix of G, and consequently, is given by the number of closed walks of length i in G.

Here we present a simple but effective method to bound the energy of a graph in terms

of its spectral moments which we describe in Lemma 3.1.

A direct application of this method provides upper and lower bounds for the energy

of a graph with n vertexes, and maximum degree ∆, in terms of the second and fourth

moments.

To state this result, we shall use the notation

A =
M4

∆3
, B =

M2

∆
, C = ∆n. (1.1)

Our main theorem is as follows.

Theorem 1.1. Let G be a connected graph with at least 2 vertexes,

E(G) ≤ −B2 +B
√
−A+B

√
−B + C − C(A+

√
−A+B

√
−B + C)

A− 2B + C
(1.2)

with equality if and only if G is a complete graph Kn, a strongly regular graph with λ = µ

or the incidence graph of a symmetric 2− (v, k, λ) design.

For regular graphs one can see that (1.2) is decreasing in A (see Lemma 3.6), and thus

the above theorem subsumes the main theorem of Van Dam et al. [11].

Theorem 1.2 ( [11]). For a regular graph G one has

E(G) ≤ n
d+ (d2 − d)

√
d− 1

d2 − d+ 1

with equality if and only if G is the incidence graph of a symmetric 2− (v, d, 1) design.

We must mention that the above result was derived originally by very different methods

from the ones in this paper and we do not know if the methods from [11], may be applied

to show our main theorem.

Apart from the introduction, the paper has two more sections. Section 2 gives the

basic preliminaries needed for this paper and the proofs of the main results are given in

Section 3.
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2 Preliminaries on graphs

2.1 Basic definitions

Throughout this paper, we shall work exclusively with simple finite graphs. We shall

denote the number of vertexes of the graph G by n and the number of edges by m. We

will denote the vertexes of a graph G using v1, . . . , vn. We say vertex vi is a neighbour

of vj if vi and vj are adjacent (in other words if (vi, vj) is an edge of G). We define the

degree of a vertex vi as its number of neighbours and we denote this quantity by di. The

maximum degree over all vertexes of the graph will be denoted by ∆, while the minimum

degree will be denoted by δ. If ∆ = δ = d we say that G is a d-regular graph.

Given a graph G, the adjacency matrix of G is the n×n symmetric matrix A such that

Aij is 1 if i and j are adjacent and Ai,j is 0 otherwise. Being a symmetric matrix, A has

n real eigenvalues, counted with multiplicity, which are called the adjacency eigenvalues

of the graph G, we shall sometimes simply refer to them as the eigenvalues of G.

2.2 Spectral moments

The spectral moments of the graph G are the quantities Mk = Tr(Ak). Since A is normal

then Tr(Ak) =
n∑

i=1

λk
i . Let us note that the 0-th, first and second moments are given by

M0 = n, M1 = 0, and M2 = 0,

let us denote the number of 4-cycles in G, by Q and use Z for the Zagreb index given by

Z =
n∑

i=1

d2i , then

M4 = 2Z − 2m+ 8Q.

Hence, with the notation of the introdution, we have,

A =
2Z − 2m+ 8Q

∆3
, B =

2m

∆
, C = ∆n. (2.1)

2.3 Graphs with few eigenvalues

Finally, we describe the graphs which satisfy the equality in Theorems 1.1 and 1.2.

We say that a graph is strongly connected with parameters λ, µ if it is regular and it

satisfies: the following properties

• Every two adjacent vertexes have λ common neighbours.
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• Every two non adjacent vertexes have µ common neighbours.

The spectrum of a strongly connected graph with n vertexes and common degree d is:

• d with multiplicity 1.

• 1
2
[(λ− µ) +

√
(λ− µ)2 + 4(d− µ)] with multiplicity 1

2
[(v − 1)− 2k+(v−1)(λ−µ)√

(λ−µ)2+4(d−µ)
],

• 1
2
[(λ− µ)− sqrt(λ− µ)2 + 4(d− µ)] with multiplicity 1

2
[(v − 1) + 2k+(v−1)(λ−µ)√

(λ−µ)2+4(d−µ)
].

We refer to a symmetric 2− (v, k, λ) design as a set X with v elements, along with a

family F consisting of v subsets of X (called blocks) such that each block has k elements

and for any two points x and y in X there are exactly λ blocks that contain both.

We define the incidence graph of a symmetric 2 − (v, k, λ) design as the graph with

vertexes F ∪X such that there is an edge between a block B ∈ F and a point x ∈ X if

and only if x ∈ B.

The spectrum of the incidence graph of a symmetric 2− (v, k, λ) design is:

• ±k, each with multiplicity 1.

• ±
√
k − λ, each with multiplicity v − 1.

3 Bounds for the energy of a graph using moments

3.1 A general bound for the energy of a graph

The main idea comes from the following observation. Let P (x) = amx
m + · · · + a0 be a

polynomial such that P (x) ≥ |x| for all x ∈ [−ρ, ρ], then

E(G) =
n∑

i=1

|λi| ≤
n∑

i=1

P (λi) =
m∑
i=0

amMm.

Here we emphasize that in order to find useful bounds for E(G) we only need to take into

consideration x ∈ [−ρ, ρ] and not in all R. Since obtaining ρ directly from combinatorial

properties of the graph is, in general hard we use instead ∆, obtaining the following

lemma, which includes analogous lower bounds for E(G).

Lemma 3.1. Let G be a graph with maximum degree ∆.

1) For any polynomial P (x) = amx
m + · · ·+ a0 a polynomial such that P (x) ≥ |x| on

x ∈ [−∆,∆] we have

E(G) ≤
m∑
i=0

amMm. (3.1)
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2) For any polynomial Q(x) = amx
m + · · · + a0 be a polynomial Q(x) ≤ |x|, on

x ∈ [−∆,∆] we have

E(G) ≥
m∑
i=0

amMm. (3.2)

Moreover, equality in (3.1) (resp. (3.2)) occurs if and only if P (λi) = |λi| (resp. Q(λi) =

|λi|) for all i.

The strength of the previous lemma comes from the freedom of choosing the above

polynomials, and using the information of the class of graphs studied is very helpful as

we will see in the next sections.

3.2 Upper bounds in terms of second and fourth moments

Let us consider the case where P is a polynomial of degree 4. Since the absolute value is

an even function considering x or x3 in the polynomial will produce one of the sides to

tilt which will worsen our approximation. Thus we assume that P is even. Then we are

led consider a polynomial of the form P (x) = ax4 + bx2 + c.

For this polynomial P (x) = ax4 + bx2 + c we have

Tr(P (A)) =
n∑

i=1

P (λi) = aM4 + bM2 + cM0 = 2aZ + 8aQ+ 2(b− a)m+ cn. (3.3)

Moreover, we see that

Tr(P (A)) = aM4 + bM2 + cM0 = a(2(
n∑

i=0

d2i )− 2m+ 8Q) + bm+ cn (3.4)

= a8Q+ (b− 2)m+ (c+ ad2)n = a8Q+

(
c+ ad2 +

bd

2
− d

)
n.

We note for further reference that when G is d-regular we have 2m = dn and Z = nd2

which gives us
n∑

i=1

P (λi) = 2and2 + 8aQ+ (b− a)nd+ cn. (3.5)

Now our goal is to choose a, b and c which minimize the left-hand side of (3.4) restricted

to the condition that P (x) ≥ x for ∆ ≥ x ≥ 0. For this we seek for polynomials that are

tangent to f(x) = x.

Lemma 3.2. Given 0 < r < 1 there is a unique polynomial Pr = ax4 + bx2 + c such that

Pr(r) = r, Pr(1) = 1 and Pr(x) ≥ x for x ∈ [0, 1].
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Proof. We shall call the desired polynomial Pr = ax4+ bx2+ c. Since Pr must be tangent

to the absolute value function at r the following equations must be satisfied

Pr(r) = ar4 + br2 + c = r,

Pr(1) = a+ b+ c = 1,

P ′
r(r) = 4ar3 + 2br = 1.

The solution to this system of equations is unique and gives us

a = − 1

2r(r + 1)2
, b =

3r2 + 2r + 1

2r(r + 1)2
, c =

r2(2r + 1)

2r(r + 1)2
. (3.6)

First we show that Pr(x) > x for all 0 < x < 1 with x 6= r. Consider for this, the

function Q(x) = P (x)−x. Its second derivative is given by 12ax2−2b, which is decreasing

and thus Q(x) is convex on (0, r0) and concave on (r0, 1), where r0 =
√

3r2+2r+1
6

is the

unique solution to Q′′(x) = 0. Since r ∈ (0, 1), then r < r0 < 1. Since in the interval

[0, r0] the function is convex it reaches its minimum at the point such that Q′(x) = 0.

This point is r and we have Q(r) = 0. In the interval [r0, 1] the function is concave and

therefore reaches its minimum at one of r0 and 1. We have Q(r0) > Q(r) = 0 and we

have Q(1) = 0. So indeed Pr is as desired.

Thus from Lemma 3.1 we obtain the following bound.

Theorem 3.3. Let r ∈ (0, 1). For G a graph with maximum degree ∆ the energy of G is

bounded by

E(G) ≤ −1

2r(r + 1)2
2Z − 2m+ 8Q

∆3
+ (

3r2 + 2r + 1

2r(r + 1)2
)
2m

∆
+ n∆

r2(2r + 1)

2r(r + 1)2

Proof. Let P (x) be as in Lemma 2.2. Then Pr(x) ≥ |x| for x ∈ [−1, 1]. Now let Pr,∆(x) =

∆Pr(x/R), be the dilation by ∆ of the polynomial Pr. Then Pr,∆(x) ≥ |x| for x ∈ [−∆,∆].

By part 1) of Lemma 2.1 we conclude.

For the following we recall the notation

A =
2Z − 2m+ 8Q

∆3
, B =

2m

∆
, C = ∆n

We want to minimize for r. For this, we claim that A ≤ B ≤ C and that 0 ≤ B−A
C−B

≤ 1.

To show that B ≤ C we simply notice 2m ≤ ∆n∆2n, and to prove A ≤ B we see it is

equivalent to M4 ≤ 2m∆2. Now, notice that for every oriented edge u, v there can be at

most ∆2 closed walks of length 4 starting with u, v.
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By elementary calculus one sees that subject to the restriction A ≤ B and B ≤ C.

The minimum value of the function −1
2r(r+1)2

A + (3r
2+2r+1

2r(r+1)2
)B + r2(2r+1)

2r(r+1)2
C for r ∈ (0, 1) is

reached at
√
B−A√
C−B

, giving the value

−B2 +B
√
B − A

√
C −B − C(A+

√
B − A

√
C −B)

A− 2B + C
. (3.7)

Thus we arrive to the following theorem.
Theorem 3.4. For any graph G one has

E(G) ≤ −B2 +B
√
−A+B

√
−B + C − C(A+

√
−A+B

√
−B + C)

A− 2B + C

with equality if and only if the spectrum of the graph is contained in {±
√
B−A√
C−B

,±∆}
Proof. The inequality follows from the considerations above. In order to have equality, the

polynomial P√
B−A√
C−B

,∆
(x) and the function Abs(x) := |x| should coincide for all eigenvalues

of G. This is only possible for the set {±
√
B−A√
C−B

,±∆}.

The following propositon characterizes the graphs for which equality is reached and

thus completes the main theorem of this paper.

Proposition 3.5. The only connected graphs with at least 2 vertexes for which equality

is attained are the complete graphs Kn, strongly regular graphs with λ = µ and incidence

graphs of symmetric 2− (v, k, λ) designs.

Proof. Equality occurs if and only if the spectra of G is contained in {±
√
B−A√
C−B

,±∆}.

If ∆ is not an eigenvalue of G then −∆ is not an eigenvalue either, so G has exactly

two eigenvalues. This implies G is complete, however complete graphs have ∆ as an

eigenvalue. We conclude ∆ is an eigenvalue, meaning G is regular.

If −∆ is an eigenvalue then G is bipartite and therefore has symmetric spectra. If G

has exactly 2 eigenvalues then G is complete and bipartite (So G = K2). If G has exactly

4 eigenvalues then G is a regular bipartite graph with exactly 4 eigenvalues and must

therefore be the incidence graph of a symmetric 2− (v, k, λ) design, as shown in [1].

If −∆ is not an eigenvalue then G must have exactly 3 eigenvalues or exactly 2

eigenvalues. The only connected regular graphs with exactly 3 eigenvalues are the strongly

regular graphs, as is show in [2]. Moreover λ = µ is required so that one eigenvalue is the

negative of the other. Finally, if G has only two eigenvalues it must be a complete graph.

It should be clear that equality is indeed achieved in all these cases, as a polynomial

Pr,∆(x) can be found such that P (x) = |x| for all eigenvalues x of G.
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To minimize (3.7) we notice the following.

Lemma 3.6. The expression given in (3.7) is decreasing in A.

Proof. Note that the formula −1
2r(r+1)2

A+(3r
2+2r+1

2r(r+1)2
)B+ r2(2r+1)

2r(r+1)2
C is decreasing in A for every

value of r ∈ (0, 1). The result follows since (3.7) is the the minimum of the expression

over all r ∈ (0, 1) and thus should also be decreasing on A.

Thus, from (2.1), one should expect that having quadrangles should decrease the

energy.

3.3 d-regular graphs

Finally, we may recover the result in [11]. Indeed, for the case of regular graphs we have

A =
2nd2 + nd+ 8Q

d2
, B = n, C = nd.

Lemma 3.6 shows that, for n and d are fixed, (3.7) is decreasing in Q and then Q = 0

gives a bound for all regular graphs. In this case the minimum value simplifies and is

reached at 1
d

√
d− 1.

Corollary 3.7. For a regular graph G one has

E(G) ≤ n
d+ (d2 − d)

√
d− 1

d2 − d+ 1

with equality if and only if G is the incidence graph of a symmetric 2− (v, d, 1) design.
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