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Abstract

miRNAs are small about 22-base pair long, RNA molecules are of significant
biological importance. Like other longer RNA molecules, messages in miRNAs are
words in an alphabet consists of only four nucleotide bases. However, just like
words in any language, not all combinations of these alphabets are not meaningful.
In fact, we find that the distributions of nucleotides bases in human miRNAs show
significant deviation from randomness. First, a miRNA sequence containing four
bases are mapped into a binary string with three kinds of classifications according
to their chemical properties. Our analyses based on some statistical measurement
clearly demonstrate that the purines-pyrimidines class of nucleotide bases resembles
all the human miRNAs. Then, we propose a simple nearest neighbor model (Ising
model) to understand the statistical variations in human miRNAs. One the way,
we also discuss the limitations of a mean-field model.

∗Joint first authors
†Corresponding authors: dasjayantakumar89@gmail.com (Jayanta Kumar Das), pallab-

basu@gmail.com (Pallab Basu)

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 83 (2020) 357-372
                         

                                          ISSN 0340 - 6253 



1 Introduction

Micro-RNAs (miRNAs) are small non-coding RNA molecules. They are made of the

different permutations of nucleotide bases A, U, G and C. The number of bases in the

miRNA is conserved across the species and they vary around 22 nucleotides (mostly).

They play important role as the regulators of gene expression and they target some of

messenger-RNAs (mRNAs) [2, 6, 9, 22, 32]. Mainly, the function of miRNAs is to down-

regulate gene expression [10]. In recent years, the effects of miRNAs are also found in

malignant cells; the miRNAs influence numerous cancer-relevant processes in a malignant

cell [11, 12]. The set of miRNAs and their organization follow some kind of conservative

patterns [13, 16, 17, 23], but their functional behaviour are very complex which is clearly

evident in the studies of miRNAs in various diseases. Therefore, in-depth analysis of

the scope and diversity of these rapidly regulatory molecules would definitely help the

cutting-edge medical therapies of tomorrow.

There may be three possible grouping of nucleotide base pairing based on their chem-

ical properties [13]. Each of the groups has important role that are observed over various

datasets [7, 8, 18–21]. It will be worthy if the governing role of miRNAs could be ap-

prehended from nucleotide bases and their chemical properties. The recent study have

demonstrated how the miRNAs of five species are distributed on the basis of purine-

pyrimidine bases utilizing different mathematical parameters [7, 8, 13]. To have a deeper

understanding of the nature of miRNAs, here we study a few statistical properties of the

miRNAs and propose some simple physics-inspired models to account for their ensemble

properties. As we will discuss, our results may shade some light on how the miRNAs are

produced in the cell.

It is to be mentioned that models motivated by statistical physics have varied inter-

disciplinary applications. For an example, the Ising model has been used to model the

long-range correlations, the kinetics of compaction and decompaction in DNA [24, 25],

evolutionary processes and its relation to statistical biophysics and evolutionary genet-

ics [26, 27], functional phylogeneies and gene regulation [28–31].

The rest of the paper is organized in the following manner. The Section 2 is the results

and discussion that provides mathematical analysis of the datasets of human miRNA

sequences in different subsections serially. Here we have discussed the variation of base

pairing of nucleotide over miRNAs, their deviations from randomness, nearest neighbour
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model fittings and clustering probabilities. The Section 3 is the concluding remarks.

2 Results and Discussions

2.1 Dataset specification

The whole miRNA sequences (for Human, Hominidae family) are accessable through

the website (a miRNA database: http://www.mirbase.org/). Their variation within

mature miRNAs might be critical for normal miRNA regular activity and also important

for understanding the structure and functions [23]. In human, 2588 mature miRNAs

sequences are reported in release version 21. Their lengths vary from 16 to 28 nucleotide

bases, but mostly within the range of 20-24 bases (Figure 1(a)).

(a) The frequency of different length miRNAs. (b) The frequency distribution of four nu-
cleotides bases (A, G, U and C).

Figure 1. The length variations and average frequency distribution of four nu-
cleotides of 2588 miRNAs.

2.2 Individual variation of nucleotides bases

Let L be the data set containing 2588 number of miRNAs i.e. L = 2588. Say, Lm is the

average (or mean) length of each miRNA calculated over 2588, and we find Lm = 21.588.

There are only four ribonucleotide bases which are distributed over the miRNAs. Here,

we will see their distribution in terms of the probability measure.

Let, Pr(X) is the probability of a nucleotide X (X ∈ {A,G,U,C}) to be present in the

2588 miRNAs, then

Pr(X) =
fX
Lm

(1)

where fX is the average number of occurrence of the nucleotide X over 2588 miRNAs.
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The average frequency distribution of all 2588 miRNAs are shown in Figure 1(b).

From the data set, we find fA = 4.77, fG = 6.21, fU = 5.55 and fC = 5.53. So,

Pr(A) = 0.22, Pr(G) = 0.28, Pr(U) = 0.26 and Pr(C) = 0.24. It is observed that

Pr(A) 6= Pr(G) 6= Pr(U) 6= Pr(C). Therefore, we find the individual variations of each

nucleotide base over the 2588 miRNAs. And the order is Pr(A) < Pr(C) < Pr(U) <

Pr(G).

2.3 Grouping of nucleotide bases and transformations into bi-
nary

The four-letter alphabets (A/G/U/C) may be mapped onto two-letter (binary) alpha-

bets in three distinct possible ways. As it turns out, these three classifications may be

understood on the basis of chemical properties of nucleotide bases [1]. These are:

• Purine-Pyrimidine classification: The bases A/G and U/C are the purine and

pyrimidine (Pu-Py) groups respectively.

• Strong-Week H-bond classification: The bases C/G and A/U are the strong

H-bond and week H- bond (St-We) groups respectively.

• Amino-Keto classification: The bases A/C and G/U are the amino and keto

(Am-Ke) groups respectively.

Among the three classifications, the purine-pyrimidine class is possibly the most impor-

tant one [5, 7, 8]. Purines are the most widely occurring nitrogen-containing heterocyclic

compounds in nature. In order to form DNA and RNA, both purines and pyrimidines

are needed by the cell in approximately equal quantities. But, this may not hold true for

miRNAs.

For all of these three groupings, we can assign the bits 1’s and 0’s to the respec-

tive members of any of the aforementioned classifications. For example, for the purine-

pyrimidine class we may have the following rule:

X =

{
1, if X ∈ {A,G}

0, if X ∈ {U,C}
(2)

We calculate mean occurrence for all the different classification. From the dataset, we

get M(Pu) = 10.99 and M(Py) = 10.59 for purine-pyrimidine grouping, M(St) = 11.27
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(a) The occurrence distribution. (b) The cumulative distribution function plot.

Figure 2. The occurrence distribution and cumulative distribution function (cdf)
plot of Purine (A/G), Strong (C/G) and Amino (A/C) classes.

and M(We) = 10.31 for strong-week H-bond grouping, M(Am) = 9.84 and M(Ke) =

11.74 for amino-keto grouping. The occurrence distribution of Pu, St and Am is shown in

Figure 2(a). The cumulative distribution function for these three groupings are plotted

in Figure 2(b).

Interestingly, for all three categories, the distribution of occurrence of 0 (or 1) in the bi-

nary string representation of miRNAs fits well to a normal distribution. The group-specific

distributions of the nucleotide base pairs vary significantly from each other. However, we

observe that the mean occurrence of any member (Pu or Py) in the Purine-Pyrimidine

classification is the closest to the occurrence averaged over all the members of all the

three classifications (10.79), as compared to other two groupings. The mean and variance

for each members of all the classifications are provided in the Table 1. The question

that naturally arises is: which kind of model best describes the observed variances in the

distribution of nucleotide bases?

2.4 Positional correlations in miRNAs and limitations of a bi-
nomial model

The simplest model is to start with is a binomial model. This is an iid ( independent

and identically distributed) model. In a binomial model, there is no correlation between

locations in the string and probability of occurrence of a 0 (or 1) at each location is

determined by an independent coin-toss with a probability p (or q) with p+ q = 1. Hence

in a binomial model, Pu (Py) s may occur at each location independently and occurrence

of a base in one location does not affect any other part of the micro-RNA.

The mean and the variance in a binomial distribution are related. The mean of an
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binomial distribution is given np, where ‘n’ is the number of trial (or coin toss). The

binomial distribution has a simple property that variance is npq (Theoretical/Expected).

Hence from the data we can estimate the mean and p, and check if the variance calculated

from the data is close to the observed variance. (Here, n = Lm = 21.588). The details of

Expected variance and observed variance for the bases of each classifications are shown

in Table 1.

Table 1. Expected variance and observed variance in three classes.

Class n p q Mean
(np)

Variance
(npq)

Observed
Variance

Pu-Py 21.59 0.509 0.491 10.988 5.40 11.7
St-We 21.59 0.522 0.478 11.268 5.39 8.48
Am-Ke 21.59 0.455 0.544 9.839 5.35 8.26

So, from the above results we find that the observed variance is greater than the vari-

ance obtained from the binomial model. However, the discrepancy in variance for the

Pu-Py classification is much larger than that for the other classifications. For all other

classes the expected variance is much closer to the observed variance. So, there are pat-

terns of miRNAs where one group (Pu or Py) is more frequent than what is expected from

chance alone. Therefore, it is interpreted that miRNAs have a stronger interdependency

with respect to the purine-pyrimidine class. This means that the occurrence of Pu-Py

group at different sites are correlated. To be noted is that, the existence of positional

correlation also shows up in the direct computation of cluster probabilities, which we have

performed in the Subsection 2.5.3.

To have a better statistical understanding of our claim that observed mean is different

from the mean calculated from observed variance assuming binomial distribution, we

performed one-sample t-test (h) with the null hypothesis that two observed mean are

equal. We performed the t-test separately for all three cases and calculated the p-value.

In all three cases we can reject the null hypothesis with high significance (Table 2).

2.5 Modeling the positional interactions in MiRNAs

In the previous subsection we have observed that the variance of the data is more than

what is expected of the independent, binomially distributed binary strings. It is natural

to guess that our assumption of independence was wrong and occurrence of elements at

different positions in the strings are correlated. Physically, this discrepancy indicates that
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Table 2. Observed mean, Expected mean, p-value of each class for different cases.

Class Cases Observed mean
(Om)

Expected mean
(Em)

p- value Om

Em

Pu-Py 00c 5.54 4.96 0.0024 1.12
01c 4.55 5.14 0.0000 0.89
10c 4.47 5.14 0.0000 0.87
11c 6.02 5.33 0.0000 1.13

St-We 00c 4.06 4.7 0.0000 0.86
01c 5.75 5.14 0.0000 1.12
10c 5.61 5.14 0.0000 1.09
11c 5.71 5.61 0.0000 1.02

Am-Ke 00c 6.48 6.12 0.0000 1.06
01c 4.68 5.12 0.0000 0.91
10c 4.76 5.12 0.0000 0.93
11c 4.66 4.26 0.0000 1.09

there could be interactions present within the elements of a string. These interactions

may have a mean-field nature where every element of a binary string interacts with every

other element within the same string with equal strength (all-to-all connected topology).

In a mean field model, the occurrence of a Pu (or Py) at a position in the string increases

the probability of occurrence of Pu (or Py) in other positions equally. A mean field model

is blind to how 0 (or 1) is clustered in a string and probability that a string would contain

N zeros (or ones) is only a function N . In contrast with the mean field model, there might

be a strong localized interaction instead of a mean-field one. Accordingly, in a localized

model, the occurrence of a Pu (or Py) at a position in the string affects the probability of

occurrence of Pu (or Py) only in nearby positions . We would discuss the localized model

in the subsection.

2.5.1 Testing Mean field models with miRNA data

First let us check how likely is the mean-field model given the observed data. We start

with a null hypothesis (H0): data is well described by a mean-field model. . To test that

hypothesis we implement of bootstrap method. We calculate and compare the probabili-

ties of finding 2-clusters (i.e., like-pairs) of Purines and Pyrimidines in the binary strings

obtained from the data (shown in Table 4) and the same obtained by the bootstrap

method. In the bootstrap method we shuffle the elements of each binary string multiple

times keeping the numbers of Purines and Pyrimidines constant. We then calculate the

probabilities of a 2-cluster in the shuffled strings and obtain a distribution of them. The
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catch is that, probabilities calculated from a mean field model is invariant under shuffling.

Hence, if the probabilities obtained from the data falls under the bootstrap distribution,

preferably close to the pick of the distribution, then one can infer that shuffling does not

change the cluster-probabilities, and a mean-field picture is enough to model the statisti-

cal properties of the miRNA sequences. The distributions and the values calculated from

the data are shown in Figures 3(a) and 3(b).

(a) Purines. (b) Pyrimidines.

Figure 3. Distribution of probability of 2-clusters of Purines and Pyrimidines from
bootstrap method and from the data.

A statistically significant difference between the observed means and values obtained

in the bootstrap analysis rules out our null hypothesis and indicates that there are strong

position dependent correlations on how Pu (Py) are positioned in a miRNAs. Their

special arrangements, therefore, suggest that they have a rather strong position dependent

interaction.

2.5.2 Nearest Neighbor Model : Ising Model

Next we would explore models with localized interactions. The simplest among these

class of models is a Nearest Neighbour (NN) model. An NN model assumes pair-wise

interaction between any two nearest neighbour elements. There is no other interactions

present in a NN model. In a NN model, the probability of occurrence of a particular

string of length N with r zeros would be given by,

P ∝ prqN−r exp(−J00N00 − J11N11 − J01N01 − J10N10) (3)

where ‘J’s are the strength of nearest neighbour interactions. The above definition of

probabilities may be understood as a binomial model modified with nearest neighbour

interaction. Now, the only the ratios of probabilities matter. Hence the parameters in
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our model is p/q and difference between various J ′ s. We would further assume J00 = J11

and J01 = J10. And define new parameters as µ = 1
2

log(p− q) and J = 1
2
(J00 − J01). In

the physics literature a NN model is known as Ising model. Such models have already

been used for various nucleotide sequencing data [4]. In principle one may consider a NN-

model, where probability of occurence of each element at different position is different. In

the context of Ising model, this is like turning on a position dependent magnetic field. As

our miRNAs data is chiefly homogeneous, we won’t take that complication into account.

There may be multiple approaches to fit NN model to the observed miRNA data. We

would consider two. One is to calculate the mean and variance of the occurrence of 0 (or

1). This approach is equivalent to looking at the microRNA strings from a holistic point

of view. The other approach is to calculate exactly the probabilities of n-clusters of a

particular state and fit them to the observed values. However, first we would motivate

our model by investigating occurrences of various two-clusters (00, 01, 10, 11) in the data.

Table 3. Observed frequency and respective probability of each class for four cases.

Class Cases Frequency Pr(00/01/10/11)
Pu-Py 00c 14341 0.27

01c 11783 0.22
10c 11575 0.22
11c 15583 0.29

St-We 00c 10497 0.20
01c 14881 0.28
10c 14524 0.27
11c 13380 0.25

Am-Ke 00c 16772 0.31
01c 12112 0.23
10c 12331 0.23
11c 12067 0.23

From Table 3 we observe that P00 ≈ P11 and P01 ≈ P10 for all 3 types of classifica-

tions. This indicates that it might be sufficient to club the four different interactions to

interactions between similar elements and those between the different elements. Also, we

know that P0 6= P1 (from Table 1) and P00 6= P01 (from Table 3) for all of the different

classification schemes. These observations together suggest that a NN model can possibly

be a good candidate to fit and explain the observed data.

As mentioned, in Physics literature the nearest neighbour model is called the Ising

model and is relatively well studied. Historically, the Ising model was created/used to

describe the paramagnetic to ferromagnetic transition in 1-dimension. It is a semi-classical
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model which, in simple terms, assumes that the magnetic moments (spins) of atoms in

a 1-d atomistic chain can assume only +1
2

(↑) and −1
2

(↓) values in some suitable unit

system along a particular (say, Z) axis. We would use results from physics literature to

find out the cluster probabilities and other statistics of our NN model.

2.5.3 Cluster probabilities

As mentioned earlier, we can verify the exactness of our model by checking the probabil-

ities for high order clusters (11 and 00, 111 and 000 and so on). This is shown in Table

4. (Pu, St, Am) for 1’s and (Py, We, Ke) for 0’s. And the corresponding 2-D line plot is

shown in Figure 4 in two different styles for (Pu, St, Am) and (Py, We, Ke). The Pr(r)

values (r > 4) for Pu-Py class is more than the other classes.

Table 4. The calculated probability (Pr(r)) for different lengths strings, where r
is the string of 1’s or 0’s.

Pr(r)
r= 1 11 111 1111 11111 111111 1111111 11111111
Pu 0.509 0.292 0.173 0.104 0.062 0.038 0.025 0.016
St 0.522 0.251 0.122 0.061 0.032 0.019 0.012 0.008
Am 0.455 0.226 0.112 0.056 0.028 0.015 0.008 0.005
r= 0 00 000 0000 00000 000000 0000000 00000000
Py 0.491 0.269 0.157 0.097 0.061 0.039 0.027 0.019
We 0.478 0.197 0.091 0.043 0.019 0.008 0.004 0.002
Ke 0.545 0.314 0.179 0.102 0.059 0.014 0.020 0.012

Figure 4. The probability distribution for the different lengths (1 to 8) strings of
ones and zeros.

If the length (N) of the string is large, the 1-cluster probability becomes (For the

derivation and closed form expressions for higher-order clusters see App. A.2),
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P0 = 0.5

(
e2J (e2µ − 1)√

e4(J+µ) − 2e4J+2µ + e4J + 4e2µ
+ 1

)
(4)

with

P11.. = lim
µ→−µ

P00..

Equations 4 and 18 (see App. A.2) are solved with the observed probabilities for

Pu-Py classification which give, µ = −0.0143414 and J = 0.113675. Feeding these values

in eqn.s 19 and 20 we find, P000 = 0.147573 (6% deviation from the observed value)

and P0000 = 0.0809581 (16.5% deviation from the observed value). However, doing the

same thing with equations and probabilities for 1-clusters gives, P111 = 0.167168 (3.4%

deviation from the observed value) and P1111 = 0.0957027 (8% deviation from the observed

value).

2.5.4 Higher cluster probabilities

In their paper [15] Ivanytskyi & Chelnokov have calculated the exact expression for average

occupancy number of distinct l-clusters in Ising model. The average occupancy number

can be written as,

〈nl≤N〉 =
δN,l + 2e−2J + (N − l + 1)e−4J

2(1 + e−2J)l+1
(5)

Now, the number of all distinct and non-distinct q-clusters , ñq≤N , can be related to the

number of all distinct clusters as,

ñq≤N =
N∑
l=q

(l − q + 1)〈nl≤N〉 (6)

Solving equation 6 for q = 2 and p00 from Table 4 we get, J = 0.1728697. Using this

J in equations 5 and 6 we predict p000 from this model to be 0.1714543, which deviates

from the observation (Table 4) by 1.05% only.

2.5.5 Variance and the limitations of NN model

In App. A.1 we calculate a frequently used physical quantity, known as the isothermal

susceptibility, for the Ising chain for finite N. This quantity can be argued to be identical

to the variance of difference between the population of two classes (i.e. χT ≡
σ2
n0−n1

N
). At

µ→ 0 limit this variance is given as,

χT = e2J (7)
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Solving for J with σ2
data/N = 39.8470/22 gives,

J = 0.297 (8)

which is almost double the value obtained in subsection 2.5.4.

For the strong-weak H-bond grouping, σ2
database/N = 29.4017/22 gives,

J = 0.145 (9)

whereas, J = 0.175 for the amino-keto grouping. These higher than expected values

of J shows that there are some long range interaction present in our data which is not

captured well in NN model and NN model only captures a part of the observed variance.

In short the data seems to have both NN and mean field like interactions present. As

we demonstrated, a NN model of the captures the observed variation of small clusters.

Our results indicates a more generalized hybrid model (NN+MF) is needed to take in to

account the observed variance.

3 Concluding Remarks

All-inclusive, we observe that the Ising model with nearest neighbour interactions and

chemical potential serves as a better descriptor of the miRNA data than the binomial

model. We also observe that, within the scope of Ising model, the mean-field like quantities

such as variance cannot lead us to a full description of the data. At least for the Pu-Py

classification, we observe that there is hardly any difference between the finite and large

N Ising models in describing the miRNA data. So the finite number of elements in the

string does not play an important role in our approximated description [14].
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A Appendix

A.1 Nearest neighbor model

Here we solve the finite N Ising chain using transfer matrix method [14]. The transfer

matrix in this problem is given by,

T =

(
e(J+µ) e−J

e−J e(J−µ)

)
(10)

with the partition function, Z as,

Z = λN+ + λN− (11)

where

λ± = eJ cosh(µ)±
√
e2J sinh2(µ) + e−2J (12)

At N →∞, the larger eigenvalue (λ+) dominates and the free energy density is given as,

f = − ln(λ+)

= ln(eJ cosh(µ) +

√
e2J sinh2(µ) + e−2J)

(13)

The isothermal susceptibility for this model is given by

χT = −∂
2f

∂h2

∣∣∣∣
T

=
eJ cosh(µ)√

e2J sinh2(µ) + e−2J
− e3J sinh2(µ) cosh(µ)

[e2J sinh2(µ) + e−2J ]3/2

(14)

A.2 Cluster Probabilities for large N

The cluster probabilities can be obtained using the transfer matrix method. For an n-

cluster of 00.. the probability is obtained by using

P00.. = V −1p OVp/λ
n+1
p (15)

where λp is the largest eigenvector of the transfer matrix, T, and Vp is the corresponding

eigenvector.
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For n = 2,

O =

(
e(3J+4µ) eJ+2µ

eJ+2µ e−J

)
(16)

for n = 3,

O =

(
e4J+5µ e2J+3µ

e2J+3µ eµ

)
(17)

Using these we arrive at the probabilities for n-clusters,

P00 =
e2J+3µAB

ED3
(18)

where E =
√
−2 (e4J − 2) e2µ + e4(J+µ) + e4J

A =
(
E − e2(J+µ) + e2J

)
,

G = e2J+µ
(
e2J (e2µ − 1) + E

)
,

B = (G+ 2)2,

D = E + e2(J+µ) + e2J

P000 =
8e4J+5µ(E + F )

ED4
(19)

Where F = e2J (e2µ (eµ (G+ 4)− 1) + 1),

P0000 =
16e6J+7µ(E + F )

ED5
(20)
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