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Abstract 
In this work the hybrid algorithm, ANN-AGDC, is used for the determination of activation 

thermodynamic parameters (ATPs) of diverse chemical reactions by means of the treatment of non-
isothermal experimental kinetic data. 

The hybrid algorithm consists of two different algorithms that are sequentially applied, the artificial 
neural networks (ANN) method and the algorithm of mathematical optimization AGDC. The ANN 
method is used to determine the ATPs in the chemical reactions and the obtained values are utilized as 
initial estimations for the second stage that consist of a mathematical optimization process by the AGDC 
algorithm. The applicability of the algorithm for the determination of activation thermodynamic 
parameters has been proven by the treatment of synthetic data generated for different reaction 
mechanisms which have been provided with an error in the order of the experimental. The treatment of 
synthetic data has allowed to successfully obtain the ATPs thus, in this work we apply the hybrid 
algorithm for the treatment of non-isothermal experimental kinetic data from the isomerization reaction 
of the steroid 5-cholesten-3-ona to 4-cholesten-3-ona catalyzed by sodium ethoxide and from the 
kinetics for the breakdown of the trinuclear chromium acetate cluster with a series of monoprotic and 
diprotic amino acid ligands. In both cases the ATPs involved in the Arrhenius and Eyring equations have 
been directly determined from the non-isothermal experimental kinetic data: activation energy (E), pre-
exponential factor (A), activation enthalpy (∆𝐻#) and the activation entropy (∆𝑆#). The application of 
hybrid algorithm has a great advantage because it is not necessary to give out the initial ATPs 
estimations, since the ANN method, first stage of the method, does not need these values unlike the 
mathematical optimization methods.  
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1  Introduction 
The determination of the activation thermodynamic parameters (ATPs) of a chemical 

reaction can be carried out either from isothermal kinetic data (isothermal method) or non-

isothermal kinetic data (non-isothermal method).  

The isothermal method first determines the values of the rate constants k(T) from 

isothermal experimental kinetic data obtained in kinetic experiments at different temperatures. 

From the k(T) values the ATPs are determined by linearization of the Arrhenius and Eyring 

equations [1]. The values of the pre-exponential factor (A) and the activation energy (E) are 

determined for each step of the reaction mechanism from each individual value of k(T) from 

Arrhenius equation and the activation enthalpy (∆𝐻#) and the activation entropy (∆𝑆#) from 

the Eyring’s equation.  

In the case of a system formed by “r” chemical reactions with rate constants kr(T), the 

system of differential equations is established (ODE) and solved to obtain the explicit 

mathematical expressions of the concentrations of all the species involved in the kinetic system 

as a function of kr(T) and time, t [2]. The values of kr(T) can be calculated by fitting the 

isothermal kinetic data obtained at different temperatures to these explicit functions and the 

ATP’s values are determined from the pairs of values kr/T. Sometimes, the ODE system doesn’t 

provide exact mathematical solutions, so the kr(T) cannot be directly obtained and, therefore, 

the values of the ATPs cannot be determined. Approximate methods can be used to determine 

the rate constants but in this case the values of the ATPs obtained are not exact. In addition, this 

methodology requires a large amount of experimental work at the laboratory which is needed 

to determine a reduced collective pair of values kr/T. 

The non-isothermal method does not need to previously determine the values of the rate 

constants, but it is necessary to obtain experimental data from a single non-isothermal kinetic 

experience where the temperature changes over time in the course of the reaction, which implies 

introducing one more variable (temperature). This method provides a more numerous set of 

data and more accurate final results. 

The determination of the parameters involved in mathematical functions is usually 

carried out by means of mathematical optimization methods applying numeric second order 

gradient algorithms [3]. The computational methods found in the bibliography that use different 

optimization algorithms, need initial estimates of the parameters to be determined. Sometimes 

the order of magnitude of the parameters is unknown, which causes many problems. In many 

cases, only if the initial estimates are very close to the real values of the parameters, the 
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optimization process is carried out correctly.  If the initial estimates are far from the real values 

the process may become divergent, leading the optimization process to fail. Taking into account 

the importance of the initial estimates, it is convenient to use a method that provides values 

which approximate to the global minimum and then use such results as a starting point to apply 
a robust gradient method that will guarantee the success of the mathematical optimization of 

parameters. 

In previous works we have designed a new hybrid algorithm (HA) that has been applied 
to different reaction mechanisms for the determination of different parameters. A hybrid 

algorithm consists of two different algorithms that solve the same problem, in this case it is 
formed by the artificial neural network method (ANN) and the AGDC optimization algorithm. 

The ANN method is a versatile “soft modeling” method that can be applied in diverse 

fields with acceptable results [4-5]. This method has been used in chemical kinetics for 

quantitative purposes for the treatment of kinetic data from simple reactions [6-8]. The ANN 
methodology provides acceptable results in the case of determining the individual rate 

constants. ANN does not need initial estimates of the parameters to determine, through a 

training process and subsequent prediction, it determines the values of the parameters. These 
values have been used as the initial estimates of a robust and efficient numeric second order 

gradient algorithm (AGDC) [9-13], which is able to reach the desired global minimum to 

guarantee the success of the final optimization of the parameters. The AGDC mathematical 

optimization algorithm is a symbolic second-order gradient method that performs a rigorous 
analysis and control of the movement vector and each of its terms. This algorithm has been 

used successfully for the determination of kinetic, analytical and thermodynamic parameters in 

different reaction mechanisms [9-13].  

The hybrid algorithm (HA) used in this work consists of a combination of ANN and 
AGDC methods and their applicability has been verified by the treatment of non-isothermal 

kinetic data synthetically generated for different reaction mechanisms [14-15]. In the first work, 

the HA is applied for the determination of activation energy and the pre-exponential factor in a 
simple chemical reaction [14]. Subsequently, it was used for the determination of ATPs in a 

system of consecutive reactions [15], in this case the number of parameters to be determined is 

increased considerably since the activation energy, the pre-exponential factor is determined in 
addition to the enthalpy and entropy of activation of both steps.  

This hybrid algorithm has been applied to determine the individual rate constants that 

correspond to three different reaction models in which several different species, the reactions 

between the species and the rate constants are involved [16]. The methodology has the capacity 
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of discrimination between the different models that are theoretically applicable to the chemical 

reaction. 

Just like we mentioned, we have verified the hybrid algorithm applicability for the 

determination of the ATPs through the treatment of kinetic data generated synthetically. In this 

work, the HA is applied for the treatment of non-isothermal experimental kinetic data from two 

reactions: the isomerization reaction of 5-cholesten-3-ona to 4-cholesten-3-ona catalyzed by 

sodium ethoxide [17-18] and the reaction based on the rupture of the trinuclear chromium 

acetate cluster with a series of monoprotic and diprotic amino acids that act as a ligand in an 

aqueous medium [19-20]. In both cases, the activation energy values, pre-exponential factor, 

enthalpy and entropy of activation of the different stages that constitute the mechanisms of 

these chemical reactions are determined.   

The application of the hybrid algorithm has a series of advantages; it is not necessary to 

previously determine the rate constants, it is not necessary provide estimated values for the 

parameters to be determined and it is possible to determine a high number of parameters. The 

treatment requires to acquire the kinetic data from non-isothermal kinetic experiments, 

imposing a controlled variation of temperature along the reaction kinetic. 
 

2  Theoretical aspects 
2.1  Chemical kinetics aspects 

In a chemical system formed by nr chemical elementary reactions where ns chemical 

species are involved, the r-th reaction can be expressed with the generic equation [21]: 

0 ='𝜈),+𝐵)

-.

)/0

 (1) 

where: 𝐵)= chemical species involved in the system of reactions; 𝑟 = (1,…, nr ) number of 

chemical reactions; j = (1,…, ns) number of chemical species; 𝑘+= kinetic rate constant of the 

r-th reaction and 𝜈),+= stoichiometric coefficient of the species Bj in the r-th reaction ( 𝜈),+< 0 

when Bj plays only the role of reactant in the r-th reaction and 𝜈),+> 0 when Bj plays only the 

role of product in the r-th reaction). 

The concentration of each species involved in the mechanism of the reaction varies with 

respect to the time i, this variation is given by a general differential equation:  

d4Bj7
dt ='𝑘+𝜈),+

-9

+/0

:[𝐵<]>?	l,r>
ns

l=1	

 (2) 
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where: kr=rate constant of the reaction r; 𝜈<,+=stoichiometric coefficient of the species Bl in the 

reaction r and [Bl]=concentration of the species that act as reagents in the reaction r (𝜈<,+< 0). 

The different species involved in the mechanism of the reaction provide a differential 

equation and therefore we have a system of differential equations (ODEs) whose resolution 

provides the concentration of each of species with respect to time ([𝐵)]GH	
	 ).  

The chemical reactions that have been studied in the present work can be expressed 

schematically according to the following models: 

Model I      𝐁𝟏
𝐤𝟏𝟐MN 𝐁𝟐 

In a non-isothermal process, the rate constants of each of the stages that constitutes a 

mechanism (𝑘+(𝑇)) are functions of the temperature and consequently of time, therefore; the 

variation of the reactant concentration is given by: 

−
𝑑[𝐵0]
𝑑𝑡

= 𝑘0T(𝑇)[𝐵0] (3) 

 

Separating variables and integrating the first member of the equation, we have:   

− lnU
[𝐵1]
[𝐵1]0

V = W 𝑘12(𝑇)𝑑𝑡
𝑡

0
 (4) 

where: [𝐵1]0	= initial concentration of B1, [𝐵1]	= concentration at time t and k12(T) = rate 

constant, function of the temperature T in non-isothermal conditions.  

Considering the remaining molar fraction of the reactant B1 (𝛼0) given by equation 5 

and according to the Arrhenius equation, we obtain equation 6: 

𝛼0 	= 	
[𝐵0]
[𝐵0]Z

 (5) 

 

−𝑙𝑛𝛼1 	= 	W 𝐴12𝑒_
𝐸12
𝑅𝑇 𝑑𝑡

𝑡

0
 (6) 

where E12 is the activation energy and A12 is the pre-exponential factor. This procedure allows 

the determination of the activation parameters E12 and A12. 

In non-isothermal conditions, the second member of equation 6 cannot be integrated 

since there are two dependent variables (T=f(t)). It is very important to establish the variation 

of the temperature with the time because the mathematical method of resolution of the 

differential equation 6 will be different. Temperature vs time function (T vs t) must 

correspond to a continuous, monotonous increasing function and responding to a profile 
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variation according to adequate temporary dependence of temperature, since it is necessary to 

monitor it in the laboratory. We consider two possibilities for the function T=f(t) in order to 

choose the variation temperature vs time: 

a) Hyperbolic variation, in this case the inverse function of temperature corresponds to the 

hyperbolic branch: 
1
𝑇 =

1
𝑇Z
− 𝑚𝑡 (7) 

 

Then substituting in the equation 6 we have: 

−𝑙𝑛𝛼1 = W 𝐴12𝑒
−𝐸12	𝑅 c 1𝑇0

−𝑚𝑡d	𝑑𝑡
𝑡

0
 (8) 

 

Solving this integral, the exact mathematical solution is obtained: 

𝑙𝑛 𝛼0 = 	−	
𝐴0T𝑅
𝑚𝐸0T

𝑒_
efg
hij c𝑒

kefg
h G − 1d (9) 

   

Representing the equation explicitly will remain as: 

𝛼0 = 𝑒_	
lfgh
kefg

m
nofgpqj(m

rofg
p s_0) (10) 

 

The explicit function of α1 is not simple and it is necessary the application of a method 

of sufficiently robust treatment for the determination of the thermodynamic parameters E12 and 

A12 [14]. In addition, it is necessary to consider the great difference in the magnitude order of 

both parameters that complicates extraordinarily the success in the application of the method 

of treatment. On the other hand the experimental points (T/t) must satisfy this hyperbolic func-

tion and therefore, it is necessary to reproduce the profile of the curve of the function (T/t) with 

the points obtained in the laboratory. 

b) Polynomial variation of n-th degree: 

𝑇 =' 𝑎)𝑡)
)/-

)/Z
 (11) 

 

In this case substituting in the equation 6 we have: 

−ln𝛼0 = 	W 𝐴0T	𝑒
_efg

hu∑ wxGx
xyz
xyj {|

𝑑𝑡
G

Z
 (12) 
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The differential equation 12 has no exact mathematical solution, so it is necessary to 

resort to other treatments such as numerical integration or numerical resolution of differential 

equation 3 expressed in terms of Arrhenius’ equation: 

𝑑[𝐵0] = −[𝐵0]𝐴0T𝑒_
efg

hi} 𝑑𝑡 (13) 

If we consider that the variation of k12 with T is given by Eyring’s equation and we 

substitute that variation on equations 3 and 4, we can determine the enthalpy and entropy of 

activation ( ∆𝐻0T# 	and	∆𝑆0T# ): 

𝑑[𝐵0] = −[𝐵0] c
𝑘�
ℎ d 𝑇𝑒

_∆�fg� 	
hi 𝑒

∆�fg� 	
h 	𝑑𝑡 (14) 

 

− 𝑙𝑛 𝛼0 = W c
𝑘�
ℎ d𝑇𝑒

_∆�fg� 	
hi 𝑒

∆�fg� 	
h 	𝑑𝑡

G

Z
 (15) 

 

The integral’s solution depends on the explicit function 𝑇 = 𝑓	(𝑡), in this case we 

exclusively consider the polynomic function of n degree (equation 11) since in the temperature 

inverse function’s case (equation 7) the integral does not possess an exact mathematical 

solution. The treatment to be performed is identical in the Arrhenius’ equation case considering 

two possibilities: the numerical integration of the equation using formulas of appropriate 

quadrature or by performing the numerical resolution of the differential equation 15 by means 

of the application of suitable methods for the treatment of stiff systems. 

Model II      	𝐁𝟏 
𝐤𝟏𝟐MN 𝐁𝟐 

𝐤𝟐𝟑MN 𝐁𝟑 

The system of ordinary differential equations for this mechanism can be expressed as: 
𝑑[𝐵0]
𝑑𝑡

= −𝑘0T(𝑇)[𝐵0]	

𝑑[𝐵T]
𝑑𝑡

= 𝑘0T(𝑇)[𝐵0] − 𝑘T�(𝑇)[𝐵T]	

𝑑[𝐵�]
𝑑𝑡

= 𝑘T�(𝑇)[𝐵T] 

(16) 

 

The first stage of model II corresponds to model I, so the treatment for the determination 

of the activation thermodynamic parameters (E12, A12, ∆𝐻0T# 	and		∆𝑆0T# ) which is similar to the 

one seen for model I. The resolution of the differential equations 16 in isothermal conditions, 

provide the following equations: 

[𝐵0] = [𝐵0]Z𝑒_�fg(i)G (17) 
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[𝐵T] =
[𝐵0]Z𝑘0T
𝑘T� − 𝑘0T

�𝑒_�fg(i)G − 𝑒_�g�(i)G� (18) 

 

[𝐵�] = [𝐵0]Z c1 −
𝑘T�

𝑘T� − 𝑘0T
𝑒_�fg(i)G +

𝑘0T
𝑘T� − 𝑘0T

𝑒_�g�(i)Gd (19) 

 

In non-isothermal conditions, if we introduce the dependence of 𝑘0T(𝑇) and 𝑘T�(𝑇)	in 

equations 16 as a function of the parameters of the Arrhenius and Eyring equations, we obtain 

a system of differential equations that lacks an exact mathematical solution. Therefore there are 

non-explicit equations of 𝛼0(𝑡�), 𝛼T(𝑡�) and 𝛼�(𝑡�) that depend on the activation 

thermodynamic parameters and time. The solutions of the differential equations 16 are 

exclusively numerical, which means that we will only obtain discreet values of	𝛼0(𝑡�),  𝛼T(𝑡�) 

and 𝛼�(𝑡�) for each value of time. For this reason, it is necessary to determine 𝑘0T(𝑇�) and 

𝑘T�(𝑇�)	for each value of 𝑇�, substituting the values of 𝑡�	in the following equations:  

𝑘0T(𝑇�) = 𝐴0T	𝑒
_efg

h ∑ wxGH
xxyz

xyj
|

= c
𝑘�
ℎ d'𝑎)𝑡�

)
)/-

)/Z

𝑒
_∆�fg� 	
h ∑ wxGH

xm
∆�fg
�
pxyz

xyj  (20) 

 

𝑘T�(𝑇�) = 𝐴T�	𝑒
_eg�

h ∑ wxGH
xxyz

xyj
|

= c
𝑘�
ℎ d'𝑎)𝑡�

)
)/-

)/Z

𝑒
_∆�g�� 	
h ∑ wxGH

xm
∆�g�
�
pxyz

xyj  (21) 

 

The values of 𝐴0T, 𝐸0T, ∆𝐻0T# 	and	∆𝑆0T# 		involved in the equation 20 can be previously 

determined and should be constant in the subsequent determination and optimization processes 

of 𝐴T�, 𝐸T�, ∆𝐻T�# 	and	∆𝑆T�#  through the application of the HA to the equation 21. At last, the 

numerical values of 𝛼T(𝑡�) and 𝛼�(𝑡�) will be determined from equations 22 and 23: 

𝛼T(𝑡�) =
𝑘0T(𝑇�)

𝑘T�(𝑇�) − 𝑘0T(𝑇�)
(𝑒−𝑘12(𝑇𝑖)𝑡𝑖 − 𝑒−𝑘23(𝑇𝑖)𝑡𝑖) (22) 

 

𝛼�(𝑡�) = �1 −
𝑘T�(𝑇�)

𝑘T�(𝑇�) − 𝑘0T(𝑇�)
𝑒−𝑘12(𝑇𝑖)𝑡𝑖 +

𝑘0T(𝑇�)
𝑘T�(𝑇�) − 𝑘0T(𝑇�)

𝑒−𝑘23(𝑇𝑖)𝑡𝑖 		� (23) 

 

These two pairs sets of kinetic values [𝛼T(𝑡�)/𝑡�] and [𝛼�(𝑡�)/𝑡�] constitute the data for 

the application of the hybrid algorithm (ANN-AGDC), which will allow us to simultaneously 
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establish the values of the eight activation thermodynamics parameters (𝐴0T, 𝐸0T, 

∆𝐻0T# , 	∆𝑆0T,# 	𝐴T�, 𝐸T�, ∆𝐻T�# 	and	∆𝑆T�# ). 

 

2.2  Hybrid Algorithm (ANN-AGDC) 
In this paper we utilize a hybrid algorithm (HA) designed in our laboratory to determine 

the activation thermodynamics parameters (ATPs) in two reaction mechanisms. A hybrid 

algorithm is one in which two or more different algorithms are combined in order to solve the 

same mathematical problem. The HA utilized in this paper [14-16], utilizes two methods based 

on different mathematical principles and it is applied sequentially in two steps. First the 

methodology soft-modelling based on artificial neural networks (ANN) and later the AGDC 

mathematical optimization algorithm is applied. The ANN methodology has a great advantage, 

since it is not necessary to provide initial estimates of the parameters to determine. The results 

obtained with ANN (output matrix), are the initial estimates used to start the optimization 

process with the AGDC optimization algorithm, continuing with the second step in the 

treatment.  
 

2.2.1  Artificial Neural Networks (ANN) 

The artificial neural networks consisting of a large number of simple processors with 

many interconnections. An ANN is constituted by a set of activation units called nodes or 

artificial neurons that are connected to each other through a network and are structured in layers 

[22]. 

There are a wide variety of ANNs, a multilayer neural network is an oriented graph in 

which the nodes represent a set of processing units (neurons) and the connections represent the 

information flow channels. Basically, they consist of inputs which are multiplied by weights 

which are computed by a mathematical function which determines the activation of the neuron. 

Another function (which may be the identity) computes the output of the artificial neuron. The 

neurons sum their inputs and since the input neurons have only one input, their output will be 

the input they received multiplied by a weight. By adjusting the weights of an artificial neuron 

using the appropriate algorithm, the desired output of the network can be obtained for specific 

inputs. This process of adjusting the weights is called learning or training. 

When MATLAB [24] is applied, the multilayer neural network uses sets of input data 

and parameters (called targets) distributed in 2 input matrices. The elements of the target matrix 

are sets of parameters (np) that give rise to the data contained in the input data matrix, where 
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one row contains a single curve and all the curves thus obtained (nc) are grouped in an input 
data matrix. In our case, the input data matrix contained the kinetic data of all curves expressed 

in 𝛼�(𝑡�) (remaining molar fraction) and the target matrix (ncxnp) contained the set of ATPs.  

The elements of the input data matrices provide the information to the neurons that form 

the first layer of a multilayer neural network and are transmitted from the i-th neuron of a layer 

to the j-th neuron of the subsequent one, with a weight wji. The bias is summed with the 

weighted inputs of the neurons and passed through the transfer function to generate the output 
of the neurons. The next layer is the hidden one, the weighted inputs of each of its neurons 

coming from the previous layer are summed with each other and added to a bias. Then, the 

result is transformed by means of a mathematical function and an output called activation of 

the neuron is obtained, which is transferred to the neurons in the next layer after another 

weighing step. In the last layer (output) the output parameters values are calculated by means 
of a suitable transformation function. This process is called training or learning of the neural 

network and it is an iterative method where after each iteration (epochs), the calculated values 

of the parameters are grouped in the output matrix (𝑏�)
��G��G) and they are compared with those 

of the corresponding curve in the target matrix (𝑏�)
Gw+�mG).  

The value of the mean squared error (MSE), expressed in absolute value, is calculated 

according to the expression: 

𝑀𝑆𝐸 = 	U
∑ 	-�
�/0 ∑ (𝑏�)

��G��G-�
)/0 −	𝑏�)

Gw+�mG)	T	
𝑛�. 𝑛�

V
½

 (24) 

where nc is the number of curves, np is the number of parameters and ncxnp are the dimensions 

of both matrices (output matrix and target matrix). During the process of training the values of 
weights and bias are modified by means of suitable mathematical optimization algorithms in 

order to minimize the calculated values of MSE in each epoch. The back-propagation algorithm 

was used in the present work [22]. The iterative process finishes when the minimum value of 

MSE is reached, after which the training process can be considered to be completed.  

The neural network has to be designed for each specific system which means search for 

the optimal architecture, that is, the optimal number of layers (structure) and the number of 

nodes in each layer (configuration).  

The steps to follow in order to establish the optimal architecture of the neural network 

are the following: 

a) Design of a network: 

i) Establish the number of layers n ((n-1) hidden + 1 output). 
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ii) Establish the number of neurons from the hidden layers. 
b) Training of the ANN, process during which the value of MSE is minimized. 

When the training has finished the errors of training, validation and final testing can be 
seen and a series of parameters (general MSE, regression between the outputs and targets 

values, number of iterations (epochs), performance, the value of the gradient vector of the 

Levenberg-Marquardt method (value of µ), number of validation checks…etc) that will allow 

us to deduct if the ANN training has been successfully carried out or not. The result is 
acceptable if the following requirements are met: The mean square error (MSE) is significantly 

small, the validation and testing errors have similar characteristics, Overtraining does not 

happen and there is a satisfactory evaluation of the ANN’s response, producing a linear 
regression between the corresponding network outputs and the targets.  

The analysis of all of these factors allows to decide if the training has been successfully 

performed. If that is the case, the network is ready to carry out prediction tasks and in the 

opposite case, we can improve the results taking into account the following considerations:  

Reestablish the initial ANN and train it again, retrain, Increase the number of neurons of the 
hidden layers (different configuration), increase the number of hidden layers, increase the 

number of training vectors, modifying the experiences percentage for training, testing and 
validation or use a more robust optimization algorithm that minimizes the differences between 

the values of the outputs and targets matrices.  

When the processes of validation and testing reach satisfactory results the neural 

network training is completed. These are two control and verification processes of the iterative 
minimization method between the elements of the output and target matrices. Among the 

different curves comprising the input matrix, a random choice is made of a percentage of the 

total, established previously (5%,10%...), which gives rise to a sub-matrix of input curves that 

are subjected to iterative optimization until a minimum MSE value is reached. It is thus possible 
to verify the validity of the training process by ensuring that it is convergent, that it has an 

appropriate termination, and that there has not been any overfitting, since any possible 

overtraining has been taken into account. Validation is completed when in a given number (³6) 

of consecutive epochs the MSE remains constant or shows a slight tendency to increase. The 
testing process is similar, except that the control of the process is performed by controlling the 

computation time instead of the number of epochs.  

Once the optimal network has been obtained (network training is completed), the 

process of prediction is carried out. This process consists in the determination of the unknown 

parameters from a set of experimental data after the application of the optimal and trained neural 
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network. In the case of the prediction process, the elements of the target matrix are unknown 

and only the input data matrix is provided to the neural network. In our case, the elements of 

the input data matrix in the process of prediction are experimental kinetic values of remaining 

molar fraction of the reactant (𝛼�(𝑡�)), acquired from a system of reactions developed at the 

laboratory.  

 

2.2.2  AGDC Algorithm 

The values of the activation thermodynamic parameters (ATPs) determined by ANN 

(outputs) are used as initial estimates for the application of the following method that forms the 

hybrid algorithm. This second method is the AGDC [9-13], a mathematical optimization 

algorithm that allows the determination of different parameters by means of a second-order 

gradient method that minimizes the numerical function (SQD) given by: 

SQD(𝐗) ='uu𝛼)(𝑡�){
¢
− u𝛼)(𝑡�){

e
{
T

£¤

�/0

 (25) 

 

𝛼)(𝑡�) = 4𝐵)7� [𝐵0]Z⁄  (26) 

where X is the vector that contains the parameters to be optimized according to the reaction 

mechanism studied (E12 and A12, ∆S12≠ and ∆H12≠, E23 and A23 or ∆S23≠ and ∆H23≠). 

Initially the algorithm AGDC uses, as the movement vector, the one indicated by the 

Gauss-Newton method [9-10]:  

𝒑(k) = 	−	𝒈(k)4𝑯(k)7
_0

 (27) 

where p(m) is the movement vector, g(m)  is the gradient vector and [H(m)]-1 the inverse of the 

Hessian matrix of the iteration m, whose terms are derived from the function to be minimized 

(SQD) with respect to each of the parameters to be determined (X).  

The residuals are given by:   

𝑅𝐸𝑆� = �𝛼)�¢ − �𝛼)�e  (28) 

 

then g(m)  and  H(m) are given by: 
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⎤

 (30) 

 

The numerical derivatives are calculated by the method of central differences [23] and 

the inverse of the Hessian matrix is computed by means of the MATLAB application that 

computes the inverse of a square matrix using LU factorization [24]. The AGDC algorithm 

performs a control of the movement vector and carries out appropriate modifications if errors 

are detected, which guarantees a successful optimization. Once the optimization process has 

been completed, the errors of the optimized parameters are determined [25] and an exhaustive 

analysis of the residuals is carried out, which allows verifying the goodness of fit [26]. 

The application of the AGDC algorithm for the determination of the ATPs in the 

mechanisms considered, can be written schematically as follows: 

Iteration m à Input data: X(m), SQD(m) 

1. Calculate the vector of movement. 

1.1. Compute partial numerical derivatives of (aj)C with respect to the parameters to be 

determined Xp [23],   u𝜕�𝛼)�¢ 𝜕𝑋�} {
(k)

 

1.2. Compute Gradient vector and Hessian Matrix (g(m) and H(m))  (29), (30). 

1.3. Compute (H(m))–1 [24].  

1.4. Calculate the components of the vector of movement p(m)   (27).  

2. Control and correction of the direction of the vector of movement p(m). 

2.1. If H(m) is singular, p(m) = – g(m), go to 3. 

2.2. If p(m) g(m)  < e (e = scalar close to zero), p(m) = - g(m) and go to 3. 

2.3. If p(m) g(m)  > 0,  p(m) = - p(m). 

3. Control the length of the vector of movement p(m). 

3.1. Compute the scalar (l (m)) by the method of Hartley [27]. 
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3.2. 𝑿(k´0) = 𝑿(k) + 𝜆(k)𝒑(k). 

3.3. Determinate the SQD(m+1) function (25). 

3.4. If the Goldstein-Armijo criterium [28] is satisfied go to 4. 

3.5. 𝜆(k) = 𝜆(k) 2⁄   go to 3.2. 

4. Calculate: 

𝐶𝑂𝑁 = ¹
𝑆𝑄𝐷(k´0) − 𝑆𝑄𝐷(k)

𝑆𝑄𝐷(k)
¹ (31) 

 

5. If convergence is not attained (CON > CC), set m = m + 1 and go to 1.  

6. X (m+1) = Optimized Parameters.  

7. END optimization.   

The procedure followed to carry out the optimization of the activation parameters is 

schematically expressed as follows:  

0. Input data: Experimental data of (aj)E/ti, [Bj]0, Convergence Criteria (CC), Initial estimates 

of the unknown parameters X(0): E12(0), A12(0), ∆S12≠(0), ∆H12≠(0), E23(0), A23(0), ∆S23≠ (0), ∆H23≠ (0) 

(Values of outputs from ANN application). 

I. Optimization of E12, A12, ∆S12≠ and ∆H12≠ 

Ia. X = [E12 ,  A12].  

m=0. X(0) =[E12(0), A12(0)].   

 Ia1.   Calculate (a1(0))C (26). 

i) T =f (t) inverse hyperbolic (7) à Mathematical exact solution (10).  

ii) T =f(t) polynomial of n-th degree (11) à Numerical integration of (12) or numerical 

solution of the rate differential equation (13). 

Ia2. Calculate SQD(0) (25). 

Ia3. AGDC Algorithm  

Ia4. Optimized parameters: X* = [E12, A12] à Calculate the errors of E12, A12. 

Ib.  X =[∆S12≠, ∆H12≠].  

m=0. X(0) =[∆S12≠(0), ∆H12≠(0)]. 

Ib1.  Calculate (a1(0))C (26): T =f (t) Polynomial of n-th degree (11) à Numerical 

solution of the rate differential equation (14) or Numerical integration (15). 

Ib2. Calculate SQD(0) (25). 
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Ib3. AGDC Algorithm  

Ib4. Optimized parameters: X* = [∆S12≠, ∆H12≠]à Calculate the errors of ∆S12≠, ∆H12≠.  

II. Optimization of E23, A23, ∆S23≠ and ∆H23≠ 

IIa. X = [E23, A23].  

m = 0. X(0) =[E23(0), A23(0)]. 

IIa1. Calculate (a2(ti)(0))C , (a3(ti)(0))C  (26). 

i) Calculate  Ti  (11). 

ii) Calculate  𝑘0T(𝑇�) = 𝐴0T𝑒
_efg h ∑ wx	GH

xxyz
xyj} . 

iii) Calculate 𝑘T�(𝑇�) = 𝐴T�
(Z)𝑒_eg�

(j) h ∑ wx	GH
xxyz

xyj} . 

iv) Numerical solution of the rate differential equations (16). 

IIa2. Calculate SQD(0) (25). 

IIa3. AGDC Algorithm  

IIa4. Optimized parameters: X* = [E23, A23] à Calculate the errors of E23, A23. 

IIb. X = [∆S23≠ , ∆H23≠]. 

 m = 0. X(0) = [∆S23≠ (0), ∆H23≠ (0)]. 

IIb1. Calculate (a2(ti)(0))C , (a3(ti)(0))C  (26). 

i) Calculate  Ti  (11). 

ii) Calculate 𝑘0T(𝑇�) = (𝑘� ℎ⁄ )∑ 𝑎)	𝑡�
))/-

)/Z 𝑒_∆�fg
� h ∑ wx	GH

xxyz
xyj} 𝑒∆�fg� h⁄ . 

iii) Calculate 𝑘T�(𝑇�) = (𝑘� ℎ⁄ )∑ 𝑎)	𝑡�
))/-

)/Z 𝑒_∆�g�
�(j) h ∑ wx	GH

xxyz
xyj} 𝑒∆�g�

�(j) h} . 

iv) Numerical solution of the rate differential equations (16). 

IIb2. Calculate SQD(0) (25).  

IIb3. AGDC Algorithm  

IIb4. Optimized parameters: X* = [∆S23≠, ∆H23≠]à Calculate the errors of ∆S23≠, ∆H23≠. 

III. Statistical analysis of residuals. 

 

3  Computational aspects 
The hybrid algorithm used in this work combines two different methods (ANN and 

AGDC), the computational treatment of these methods is carried out through the application of 

mathematical software MATLAB©. The computational treatment of ANN has been performed 
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by means of the software of MATLAB “Neural Networks Toolbox” [24].We design and 

perform specific computational executable programs (##.m type) in the MATLAB environment 

using “M” language to obtain synthetic data with which to carry out the training of the network. 

The second method, the mathematical optimization, was carried out with the AGDC 

algorithm by means of the computer program KINNOISOT(AGDC) [14-15] written in 

MATLAB language for the treatment of non-isothermal kinetics. The program is formed by a 

main program and a series of subprograms, in which the different treatments and calculations 

necessary for the optimization process of AGDC are carried out. It has been structured in the 

following parts: 

1. Main program KINNOISOT(AGDC) 

Performs the following functions: 

1.1. Select the parameters to be optimized. 

1.2. Select the method to calculate (aj)C.   

1.3. Input data: Estimates of the unknown parameters (values of outputs from ANN 

application), Experimental data of (aj)E/ti, Initial concentrations [Bj]0, Parameter values 

whose value is known, Convergence criteria CC,.. 

1.4. Output data: Optimized Parameters E12, A12, ∆S12≠, ∆H12≠, E23, A23, ∆S23≠, ∆H23≠, 

Errors of the parameters and statistical analysis. 

2. Functions: 

2.1. fAGDC, function that performs the optimization process by applying the AGDC 

algorithm.  

2.2. fEXACT, function that calculates [B1]i and (a1)C from the exact mathematical 

solution. 

2.3. fNUMINT1 function that generates and integrates numerically the equation 12 by 

means of the methods provided by MATLAB: quad, quadl, quadv or quadgk [8]. 

2.4. fNUMINT2 function that generates and integrates numerically the equation 15 by 

means of the methods provided by MATLAB: quad, quadl, quadv or quadgk [8]. 

2.5. fDIFEQ, establishes the set of differential rate equations. 

2.6. fNUMSOL, solves the set of differential rate equations by means of the methods 

provided by MATLAB: ode45, ode23, ode113 or ode15s [24]. 

2.7. fDERIV, calculates the numerical partial derivatives of the (aj)C with respect to the 

parameters to be optimized by means of the central differences method [23]. 
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2.8. fINVER, calculates the determinant and performs the inversion of the Hessian 

matrix by means the MATLAB function inv [24]. 

2.9. fESTAD, function that determines the errors of the parameters and performs 

statistical analysis of the residuals [25-26]. 

 

4  Results and discussion 
The applicability and efficiency of the hybrid algorithm (HA) ANN-AGDC, has been 

proved by means of the treatment of non-isothermal kinetic data generated (synthetic) for 

different reaction mechanisms [14-15]. The application of the HA to the synthetic data 

generated for these mechanisms, allowed to determine successfully the activation 

thermodynamic parameters. 

In this work we have applied the HA for the treatment of experimental kinetic data (non-

isothermal) from two chemical reactions which generally respond to the following reaction 

mechanisms. 

4.1  Model I   𝑩𝟏
𝒌𝟏𝟐MN 𝑩𝟐 

The first chemical reaction studied responds in a general way to model I, it is an 

isomerization reaction of the steroid 5-cholesten-3-ona (5CHOL) to 4-cholesten-3-ona (4-

CHOL) catalyzed by sodium ethoxide in ethanol absolute medium. According to the 

experimental evidences [17-18], a reaction mechanism constituted by two reversible steps can 

be proposed: 

5 − 𝐶𝐻𝑂𝐿 + 𝐸𝑡𝑂_
�fgMN

�gf
ÀÁ 3,5 − 𝐸

_ + 𝐸𝑡𝑂𝐻
�g�MN

��g
ÀÁ4 − 𝐶𝐻𝑂𝐿 + 𝐸𝑡𝑂

_ 

 
The intermediate specie 3,5-dienolate (3,5 − 𝐸_)  is considered highly reactive so the 

global isomerization reaction can be written as: 

5 − 𝐶𝐻𝑂𝐿
�f�MN 4 − 𝐶𝐻𝑂𝐿 

We apply the HA to study the reaction in the direct path, meaning, when we start with 

5-cholesten-3-ona and sodium ethoxide and we obtain 4-cholesten-3-ona. The non-isothermal 

kinetic data obtained at diverse temperatures (from 288.15K to 308.15K) will be correctly 

correlated through the appropriate equations derives from the Arrhenius and Eyring theories, 

which will allow us to determine the activation thermodynamic parameters. 
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4.1.1  Experimental design (ED) 

The hybrid algorithm consists of two methods, ANN and AGDC, so first it is necessary 

to perform the experimental design that allows to generate a set of kinetic curves to carry out 

the ANN training. The suitable ED is of the Central Star Composite Experimental Desing 

(CSCED) type [14-15], whose factors are formed by a set of parameters E13/A13 or ΔH13≠/ΔS13≠ 

and the responses are data of the base curve of inputs (α1/t).  

The experimental values for the activation thermodynamic parameters taken from the 

bibliography [27-28], corresponding to the central points from which the data will be generated 

to carry out the training process (inputs for training), are the following: E13= 6.28.104 Jmol-1, 

A13=1.96.1010 min-1, ΔH13≠= 6.03.104 Jmol-1 and ΔS13≠= -90.5 JK-1mol-1. Figure 1 shows the ED 

obtained for E13 and A13 and figure 2 corresponds to ΔH13≠ and ΔS13≠ (targets for training). 

 
Figure 1. Experimental Design (CSCED) constituted by 2 factors (A13 and E23) and 45 points distributed 

in 9 levels (points from 1-37) and 4 sub-levels (points from 38-45) that participate in the base 
curve of the inputs matrix used for the neural network training process.  

 
Figure 2. Experimental Design (CSCED) constituted by two factors (ΔH13

≠/ΔS13
≠) and 45 points 

distributed in 9 levels (points from 1-37) and 4 sub-levels (points from 38-45) that use as a 
base curve the input matrix used for the neural network training process.  
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4.1.2  Determination of E13 and A13 

4.1.2.1  Training of the ANN and Prediction of E13 and A13 through ANN 

From the sets of E13 and A13 obtained in the corresponding ED (targets for training), we 

have generated a set of 45 non-isothermal kinetic curves α1/t. These kinetic curves are formed 

by the remaining molar fraction of the reactant B1 (α1/t) considering an hyperbolic variation of 

temperature (equation 7). This data forms the matrix of inputs for training and in conjunction 

with the matrix of targets for training are supplied in the neural network to proceed with the 

training.  

The ANN training process has the objective of finding an optimal network (optimal 

architecture) to carry out the prediction process of E13 and A13 for experimental kinetic 

experiences in which their value is unknown. We have carried out the training process for a 

great set of neural networks considering different possible configurations for the architectures 

with 2 and 3 hidden layers. In the first 5 columns of table 1, the most relevant results obtained 

in the training process of the ANN (made with the 45 curves obtained from the ED) and the 

subsequent prediction for the case of the kinetic data corresponding to the central point are 

shown. The experiences have been performed considering the same curve percentage relation 

for training, validation and testing in all cases (80/10/10). In the table 1, the values of outputs, 

E13/A13 and the corresponding deviations (“Des. %”) [14-15] obtained after the application of 

different ANN can be seen. The optimal neural network is one that consists of three layers 

(structure) and with one configuration (number of nodes in each layer) of 10/7/10 even though 

the obtained values indicate that it is necessary to improve the results by means of a posterior 

optimization carried out in the second step of the hybrid algorithm (AGDC). 
 

Table 1. Results of the training and prediction processes of the neural network constituted by an 
architecture with 2 and 3 hidden layers and different configurations, when A13 and E13 are 
computed. 

 
  ANN   HA (ANN - AGDC) 

Config. 
 

A13 /1010 

min-1 
E13 /104 

Jmol-1 
Des. % 

(A13) 
 

Des. %  
(E13) 

 

A13/1010 

min-1 
E13 /104 

Jmol-1 
Des. % 

(A13) 
Des. %  

(E13) 

10/14 1.9299 6.0621 1.5351 3.4686 1.9326 6.2762 1.3986 6.0026.10-2 
8/10/10 1.9201 6.4747 2.0318 -3.1006 1.9437 6.2750 8.3007.10-1 7.9505.10-2 
10/7/10 1.9444 5.7361 7.9334.10-1 8.6607 1.9577 6.2781 1.2007.10-1 3.0918.10-2 

10/10/11 1.9449 6.5542 7.6889.10-1 -4.3663 1.9463 6.5410 6.9693.10-1 -4.1568 
10/10/12 2.1382 5.7873 -9.0962 7.8449 1.9673 6.3012 3.7003.10-1 -3.3752.10-1 
10/10/14 1.9279 6.2998 1.6375 -3.1628.10-1 1.9566 6.2760 1.7006.10-1 6.4006.10-2 

 
 

The joint representation of the outputs/targets regressions of A13 and E13 (figure 3) 

shows that they are widely separated within the graph, as a result of which they present very 

-313-



 
 

 

different orders of magnitude (E13 ≈ 104 and A13 ≈ 1010). A poor linearity is observed in the case 

of the A13 deviations and in the E13 case, all the values overlap, and they produce an unique 

point. This is due to the different magnitudes in the scales of both parameters, which covers the 

true dispersion effects making the parameters to set a good regression line, considering this 

graph seemingly acceptable.  
 

 

Figure 3. Linear regression of the matrix of outputs vs targets, when both parameters (E13/A13) are 
represented together during the ANN training process with an architecture of 3 hidden layers 
(25, 3, 2). 

 
The outputs/targets regressions separately show the great dispersion that exists in both 

parameters (figures 4.a and 4.b), so that the results obtained with the application only of ANN 

are unacceptable, therefore it is necessary to use an alternative algorithm, in our case AGDC, 

to obtain the satisfactory A13 and E13 final values. 

               (a)  (b) 

 
Figure 4.a and 4.b. Linear regression of the matrix of outputs vs targets, exclusively in the case of E13 

(a) and A13 (b) for the ANN training process with an architecture of 3 hidden layers (25, 3, 
2). 
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4.1.2.2  Optimization of E13 and A13 through AGDC 

The values of E13 and A13 obtained in the prediction process after the application of 

ANN have been used as initial estimations in the optimization process that was carried out 

through the application of the program KINNOISOT(AGDC). The second part of table 1 

shows the values of the optimized parameters after the application of AGDC and the deviations 

of the real values. The application of the HA presumes an improvement of the results comparing 

the values of the deviations of both parameters with the ones calculated from the ANN 

application.   

 

4.1.3  Determination of ΔH13≠ and ΔS13≠ 

4.1.3.1  Training of the ANN and Prediction of ΔH13
≠ and ΔS13

≠ through ANN 

From the set of values ΔH13≠ and ΔS13≠ obtained from the corresponding ED (figure 2) 

(targets for training) we have generated the non-isothermal kinetic curves (equation 17) (inputs 

for training) and the process of ANN training has been executed with the objective of finding 

the best one to carry out the process of prediction of ΔH13≠ and ΔS13≠. 

Table 2 shows the most relevant results obtained in the training process and the 

subsequent prediction of ΔH13≠ and ΔS13 (corresponding to the central point of the 45 curves of 

ED), obtained for different configurations for the architectures with 2 and 3 hidden layers. In 

the first part of table 2 we show the outputs values, ΔH13≠/ΔS13≠ and the appropriate deviations 

(“Des. %”), the optimal network in this case consists of 3 hidden layers and the configuration 

12/10/10. The obtained values for the errors of the parameters indicate that it is necessary to 

improve the results through the application of the AGDC. 

As in the previous case, the joint representation of the regressions outputs/targets of 

ΔH13≠ and ΔS13≠ (figure 5) are extremely separated within the graph since their magnitude orders 

are very different (ΔH13≠≈104 and ΔS13≠≈101) and because they are represented at the same 

scale, the points that appear in the graph form two groups separated by a great distance. 

Moreover, all the conforming values to ΔS13≠ overlap in the same point. This situation masks 

the real dispersion effects, which caused the regression line to be correct when both ATPs are 

represented.  

The individual representation of the regression outputs/targets of ΔH13≠ and ΔS13≠ 

(figures 6.a and 6.b) show great dispersion in both parameters which causes the results obtained 

through the exclusive application of ANN to be unacceptable and the necessity to use a different 

algorithm, AGDC in our case. 
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Figure 5. Linear regression of the matrix of outputs vs targets, when both parameters (ΔS13

≠/ΔH13
≠) are 

represented together during the ANN training process with an architecture of 3 hidden layers 
(25, 3, 2). 

 

 

 (a)                                                      (b) 

 

Figures 6.a and 6.b. Linear regression of the matrix of outputs vs targets, exclusively in the case of 
ΔH13

≠ (a) and ΔS13
≠

 (b) the ANN training process with an architecture of 3 hidden layers (25, 
3, 2). 
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Table 2. Results of the training and prediction processes of the neural network constituted by an 
architecture with 2 and 3 hidden layers and different configurations, when ΔS13

≠ and ΔH13
≠ are 

computed. 
 

 
4.1.3.2  Optimization of ∆S13

≠ and ∆H13
≠ through AGDC 

In the second step, the KINNOISOT(AGDC) program is applied to optimize the values 

of ΔH13≠ and ΔS13≠ using as initial estimations the predicted values through ANN. The values 

of ΔH13≠ and ΔS13≠ optimized with the AGDC algorithm and the deviations of the real values 

are shown in the second part of table 2, the values of the deviations of ΔH13≠ and ΔS13≠ show 

abundant improvement. 

Lastly, the HA is applied to determine the values of A13, E13, ΔH13≠ and ΔS13≠   

corresponding to non-isothermal experimental kinetic experiences. First, the parameter values 

are determined using for each case the optimal neural network and then, the results obtained by 

means of the prediction with ANN, are submitted to a later refining process or improvement by 

the application of the AGDC algorithm. The optimization process of makes up the end of the 

HA that provides us with the unknown values of the parameters corresponding to the 

experimental kinetics performed in the laboratory. Table 3 shows the results obtained in the 

determination of A13, E13, ΔH13≠ and ΔS13≠: values obtained with the Arrhenius and Eyring 

equations (columns 1 and 2), values obtained after the application of HA (columns 3 and 4) and 

deviation of each parameter. 

 

 

  ANN   (ANN - AGDC) HA 

Config. 
 

∆H13≠/104 

Jmol-1 
∆S13≠/ 

JK-1mol-

1 

Des. % 
(∆H13≠) 

Des. % 
(∆S13≠) 

∆H13≠/104 

Jmol-1 
∆S13≠/ 

 JK-1mol-

1 

Des. % 
(∆H13≠) 

Des. % 
(∆S13≠) 

8/10 6.0308 -90.049 -1.3808.10-2 4.9839.10-1 6.0318 -90.443 -2.9118.10-2 6.2643.10-2 
9/10 6.0371 -91.375 -1.1871.10-1 -9.6635.10-1 6.0318 -90.399 -4.6118.10-2 1.1219.10-1 
10/8 6.0318 -94.818 -2.9918.10-2 -4.7711 6.0392 -90.128 -1.5242.10-1 4.1118.10-1 
10/9 6.0436 -87.700 -2.2646.10-1 3.0939 6.0178 -90.907 2.0278.10-1 -4.4977.10-1 

10/10 6.0322 -96.858 -3.7422.10-2 -7.0258 5.9727 -92.583 9.5007.10-1 -2.3011 
10/11 6.0375 -90.570 -1.2585.10-1 -7.7870.10-2 6.0327 -90.409 -4.5427.10-2 1.0079.10-1 
10/12 6.0270 -80.201 4.8370.10-2 11.380 6.0283 -90.365 2.8983.10-2 1.4905.10-1 
11/10 6.0310 -91.517 -1.7310.10-2 -1.1239 6.0271 -90.592 4.8071.10-2 -1.0122.10-1 
12/10 6.0036 -89.777 4.3616.10-1 7.9897.10-1 6.0275 -90.578 4.0875.10-2 -8.6178.10-2 

8/10/10 6.0307 -91.991 -1.2407.10-2 -1.6477 6.0291 -90.529 1.5591.10-2 -3.2229.10-2 
9/10/10 6.0360 -94.019 -1.0050.10-1 -3.8886 6.0161 -90.896 2.3041.10-1 -4.3756.10-1 
10/8/10 6.0271 -91.831 4.7171.10-2 -1.4708 6.0314 -90.451 -2.2814.10-2 5.4051.10-2 
10/9/10 6.0362 -95.052 -1.0362.10-1 -5.0296 5.9959 -91.521 5.6519.10-1 -1.1282 
10/10/8 6.0345 -86.522 -7.5845.10-2 4.3954 6.0425 -90.095 2.0665.10-1 4.5145.10-1 
10/10/9 6.0412 -91.534 -1.8722.10-1 -1.1423 6.0352 -90.312 8.6752.10-2 2.0742.10-1 

10/10/10 6.0336 -92.451 -6.1136.10-2 -2.1556 6.0345 -90.333 -7.4245.10-2 1.8513.10-1 
10/10/11 6.0411 -93.390 -1.8491.10-1 -3.1934 6.0286 -90.495 2.4086.10-2 5.7495.10-3 
10/10/12 6.0320 -89.701 -3.4120.10-2 8.8271.10-1 6.0335 -90.386 -5.7935.10-2 1.2636.10-1 
10/11/10 5.9612 -96.321 1.1403 -6.4318 6.0440 -90.066 -2.3260.10-1 4.4926.10-1 
10/12/10 6.0367 -91.272 -1.1147.10-1 -8.5312.10-1 6.0330 -90.391 -5.0530.10-2 1.2081.10-1 
11/10/10 6.0204 -90.563 0.15834 -6.9063.10-2 6.0245 -90.692 9.4045.10-2 -2.1232.10-1 
12/10/10 6.0294 -89.790 0.0097294 7.8450.10-1 6.0308 -90.476 1.3808.10-2 2.6776.10-2 
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Table 3. Results of the application of the hybrid algorithm (ANN-AGDC) for the prediction of: 
               a) A13 and E13, 2 experiences (architecture of the neural network (25, 3, 2) with 3 hidden layers 

and configuration 10/7/10). 
               b) ΔS13

≠ and ΔH13
≠, 7 experiences (architecture of the neural network (25, 3, 2) with 3 hidden 

layers and configuration 12/10/10). 
  HA (ANN - AGDC) 

(A13)Arrhenius/ 
1010 min-1 

(E13) Arrhenius/ 
104Jmol-1 

(A13)HA/ 
1010 min-1 

(E13)HA/ 
104 Jmol-1 

% Des. 
(A13) 

% Des. 
(E13) 

1.9589 6.2924 1.9590 6.2799 5.2809.10-2 2.0997.10-3 
1.9252 6.0405 1.9554 6.0345 -1.5652 9.4054.10-2 

(∆H13
≠)Eyring/ 

104 Jmol-1 
(∆S13

≠)Eyring / 
JK-1mol-1 

(∆H13
≠)HA/ 

104 Jmol-1 
(∆S13

≠)HA/ 

JK-1mol-1 
% Des. 
(∆H13

≠) 
% Des. 
(∆S13

≠) 
5.8539 -92.254 4.0214 -93.151 1.2214.10-3 -4.2151.10-3 
6.2106 -92.616 4.1366 -91.473 1.5856.10-1 -3.5703.10-1 
5.9122 -91.320 3.9553 -92.272 2.2553.10-3 -7.4272.10-3 
6.1491 -92.334 3.9843 -92.254 -5.4843.10-3 1.1854.10-2 
6.0852 -90.069 3.9403 -89.712 4.6303.10-2 -1.0512.10-1 
6.0891 -91.342 3.8591 -91.370 -6.9591.10-3 1.4370.10-2 
5.7530 -90.371 4.0373 -90.504 1.9373.10-3 -4.7504.10-3  

 

4.2  Model II  		𝐁𝟏 
𝐤𝟏𝟐MN 𝐁𝟐 

𝐤𝟐𝟑MN 𝐁𝟑  
The rupture reaction of the trinuclear chromium acetate cluster with a series of 

monoprotic and diprotic amino acids that act as a ligand in an aqueous medium [19-20], 

considering reaction conditions of pseudo-first order, can be assimilated to a mechanism formed 

by 2 consecutive steps, (model II), where  𝐵0 is supposed to be an ionic pair, 𝐵T the intermediate 

specie and 𝐵� the product. 

The reaction has been studied experimentally for pH values between 3.5-5.5, in a 

temperature range of 318.15-333.15K and an initial reactant concentration of 3.00.10-4 mol dm-

3. Its evolution has been followed spectrophotometrically and the values of the rate constants 

corresponding to the first and second steps of the reaction are of the order: k12 ≈10-4 s-1 and k23 

≈10-7 s-1 [19-20].  

We have applied in this work the HA for the determination of the ATPs from the non-

isothermal experimental kinetic data from this chemical reaction. The determination of the 

ATPs corresponding to the first step of the mechanism (E12, A12, ∆S12≠ and ∆H12≠) is performed 

as in the case of the previous mechanism (model I); thus, we will focus in the determination of 

the ATPs corresponding to the second step of the mechanism (E23, A23, ∆S23≠ and ∆H23≠). 

 

4.2.1  Experimental design (ED) 

The experimental designs used are of the Central Star Composite Experimental Design 

(CSCED) type and for its implementation we have taken experimental values obtained from 
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bibliographic data [19-20]. In the case that the factors implicated are E23 and A23, the responses 

are the non-isothermal kinetic data from the base curve of inputs (a2/t).  The values of the 

central point, acquired from the bibliography are: E23 = 12.6x104 Jmol-1 and A23=1.81x1014 s-1. 

If the factors are formed by ΔH23≠/ΔS23≠, the responses are the data from the base curve of 

inputs (α2/t and α3/t) and the values of the central point, acquired from the bibliography, are the 

following: ΔH23≠ = 123000 Jmol-1 and ΔS23≠ = 19 JK-1mol-1. The corresponding EDs are shown 

in figures 7 and 8. 

 
Figure 7. Experimental Design (CSCED) formed by 2 factors (A23/E23) and 45 points distributed in 9 

levels (points 1-37) and 4 sub-levels (points 38-45) using as a base curve the matrix of input 
used for the network training process.  

 
Figure 8. Experimental Design (CSCED) formed by 2 factors (ΔH23

≠/ΔS23
≠) and 37 points distributed 

in 9 levels and 3 sub-levels using as a base curve the matrix of input used for the network 
training process.  
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4.2.2  Determination of E23 and A23 

4.2.2.1. Training of the ANN and prediction of E23 and A23 through ANN 

The prediction of E23 and A23 through ANN is carried out following the same steps as 

in the previous case (section 4.1.2.1): 

- Generation of 45 non-isothermal kinetic curves (inputs for training) from the pairs 

of data E23/A23 corresponding to ED (targets for training). 

- Training of the artificial neural network with the objective of finding the most ade-

quate network that allow us to determine E23 and A23. 

- Prediction with the optimal ANN. 

The joint and separated representation of the outputs/targets regression of E23/A23 show 

the same behavior that in the previous cases (sections 4.1.2.1 and 4.1.2.2) which marks the 

results as unacceptable through the unique application of ANN and it shows the necessity to 

use a different algorithm, in our case AGDC to complete the HA.  

In the first part of table 4, the results obtained from the training process are shown and 

the subsequent prediction for the most meaningful configurations corresponding to the central 

point of the 45 curves of ED. In this case, the suitable neural network consists of 3 layers and 

one configuration 10/10/14 with a percentage of curves for the training, validation and testing, 

(80/10/10) (table 4). The pair of values of outputs, E23/A23 and the corresponding deviations 

(“Des. %”) indicate that it is necessary to improve the result by applying the AGDC algorithm 

(second step of HA). 
 
Table 4. Results of the training and prediction processes of the neural network constituted by an 

architecture with 2 and 3 hidden layers and different configurations, when A13 and E13 are 
computed. 

 

 

 

  ANN   HA (ANN - AGDC) 
Config. 

 
A23 /1014 

s-1 
E23 /105 

Jmol-1 
Des. % 

(A23) 
Des. % 

(E23)  
A23 /1014 

s-1 
E23 /105 

Jmol-1 
Des. % 

(A23) 
Des. % 

(E23) 
7/10 1.8151 1.1930 4.9871.10-1 5.3163 1.8131 1.1930 -2.7951.10-1 5.3162 
10/8 1.8142 1.3272 6.0382.10-1 -5.3406 1.8142 1.3273 -2.3482.10-1 -5.3401 
10/10 1.8119 1.4265 7.4679.10-1 -13.217 1.8128 1.4265 -1.0248.10-1 -13.217 
10/11 1.8137 1.1913 -1.0254 5.4514 1.8147 1.1913 -2.0487.10-1 5.4514 
10/12 1.8113 1.1657 4.9593.10-1 7.4846 1.8113 1.1657 -7.0313.10-2 7.4846 
10/14 1.8088 1.3846 6.1918.10-1 -9.8910 1.8098 1.3846 6.9498.10-2 -9.8910 
10/20 1.8115 1.2861 -5.7425.10-1 -2.0719 1.8125 1.2861 -8.4025.10-2 -2.0719 
13/10 1.7950 1.1106 -1.3458 11.853 1.7950 1.1106 8.2860.10-1 11.853 
14/10 1.8085 1.1178 4.8265.10-1 11.289 1.8085 1.1178 8.3585.10-2 11.289 
20/10 1.7933 1.3579 -9.8133.10-1 -7.7730 1.7933 1.3579 9.2453.10-1 -7.7730 

10/10/14 1.8138 1.2714 -2.1188.10-1 -9.0834.10-1 1.8148 1.2714 -2.1188.10-1 -9.0834.10-1 
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4.2.2.2  Optimization of A23 and E23 through AGDC 

Starting with the outputs values, E23/A23 obtained after the application of ANN, they are 

optimized through the application of the program KINNOISOT(AGDC). The second part of 

table 4 shows the values for the optimized parameters and the deviations from the real values. 

Comparing the deviation values of both parameters through the HA with the calculated from 

the application of ANN, the improvement of results is confirmed.  

Lastly, the hybrid algorithm was applied to determine the values of A23 and E23 

corresponding to a series of non-isothermal experimental kinetic experiences. Table 5 contains 

the results obtained after the application of the complete HA that gives us the unknown values 

of the parameters.  
 

Table 5. Results of the application of the hybrid algorithm (ANN-AGDC) for the prediction of A13 and 
E13, 8 experiences (architecture of the neural network (9.00.105, 3, 2) with 3 hidden layers and 
configuration 10/10/14). 

 

 
 
 
4.2.3  Determination of ΔS23≠ and ΔH23≠    
4.2.3.1  Training of the ANN and prediction of of ΔS23

≠ and ΔH23
≠   through ANN 

The process followed is analogous to the one previously followed: 

- With the corresponding ED (targets for training), 37 kinetic curves (inputs for training) 

were generated considering a variation polynomic of the temperature.  

- The process of training of ANN was done varying the number of nodes and the config-

uration of the systematically hidden layers with the goal of finding the most adequate 

network that allow us to determine ΔH23≠ and ΔS23≠. In this case the optimal architecture 

of the network is simpler, one hidden layer and the optimal number of nodes is 6 (table 

6), since carrying out the process of training with more complex structures and a higher 

number of nodes, the value of MSE (≈10-8) is not significantly modified.  

- Prediction with the optimal ANN. 

   HA   

 ( A13)Arrhenius/ 
1014 s-1 

 (E13) Arrhenius/ 
105Jmol-1 

 (A23)HA/ 
1014 min-1 

 (E23)HA/ 
105 Jmol-1 

% Des. 
(A23) 

% Des. 
(E23) 

1.8199 1.5299 1.8199 1.5299 5.2112 -28.964 
1.8173 1.3696 1.8173 1.3696 -6.5722 -2.6932 
1.8033 1.4829 1.8033 1.4829 4.0785 -22.472 
1.8040 1.3524 1.8040 1.3524 -3.6787 -3.3073 
1.8142 1.4870 1.8142 1.4870 1.9364 -20.369 
1.8049 1.3160 1.8049 1.3160 -1.9707 -2.4489 
1.8040 1.3509 1.8040 1.3509 3.3280.10-1 -3.1919 
1.8138 1.2714 1.8138 1.2714 -2.1188.10-1 -9.0834.10-1 
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The joint representation of the outputs/targets regressions of ΔH23≠ and ΔS23≠ (figure 

9), are highly separated because they present different magnitude orders (ΔH23≠ ≈ 105 and 

ΔS23≠ ≈ 101). In the case of the ΔH23≠ deviations, apparently exists a good linearity, which 

we check when we perform the individual regression (figure 10.a). In the case of the ΔS23≠ 

deviations, figure 9 shows the overlap of all the dispersion values giving an unique point as 

a consequence of the different magnitude of the scales of both parameters. Representing 

separately the outputs/targets regressions of ΔS23≠, we note a great dispersion for ΔS23≠ 

(figure 10.b) which makes the results to be unacceptable through the unique application of 

ANN, so that it is necessary to use another algorithm.  

 

 
 
Figure 9. Linear regression of the output vs targets matrices, when both parameters (ΔS23

≠/ΔH23
≠) are 

jointly represented during the ANN training process with an architecture of 1 hidden layer 
(9.00.105, 1, 2). 

 

(a)                                                                        (b) 

 

Figures 10.a and 10.b. Linear regression of the output vs targets matrices, exclusively in the case of 
ΔH23

≠ (a) and ΔS23
≠ (b)  during the ANN training process with an architecture of 1 hidden 

layer (9.00.105, 1, 2). 
 

y = 0.0382x + 0.1767
R² = 0.0032

0.16

0.18

0.2

0.22

0.17 0.18 0.19 0.2 0.21

O
ut

pu
ts

 (Δ
S 2

3≠ )
 / 

10
2

JK
-1

m
ol

-1

Targets (ΔS23
≠) /102JK-1mol-1

y = 1.0034x - 0.0004
R² = 0.9981

0.1

0.11

0.12

0.13

0.14

0.1 0.11 0.12 0.13 0.14

O
ut

pu
ts

 (Δ
H

23
≠ )

/1
06

Jm
ol

-1

Targets (ΔH23
≠)/106 Jmol-1

-322-



 
 

 

Table 6. Results of the training and prediction processes of the neural network constituted by an 
architecture with 1 hidden layer and different configurations, when ΔS13

≠ and ΔH13
≠ are 

computed. 
 

 

The prediction process of ΔH23≠ and ΔS23≠ from experimental kinetic data coming from 

kinetic experiences in which its value is unknown, is carried out with the optimal ANN 

determined in the training process. Table 6 shows the results obtained for the most meaningful 

configurations corresponding to the central point of the 37 ED curves. The pair of values of 

outputs ΔH23≠/ΔS23≠ and the subsequent deviations (“Des. %”) show that it is necessary to 

improve the results through the application of the AGDC algorithm.  

 

4.2.3.2  Optimization of ∆H23
≠ and ∆S23

≠ through AGDC 

The second part of table 6 show the optimized values of ΔH23≠/ΔS23≠ after the application 

of AGDC and the deviations from the real values. In this case, we can see that after applying 

the AGDC algorithm, the deviation of ΔS23≠ considerably decreases, but the deviations of ΔH23≠ 

increases with respect to the results obtained with ANN. After seeing these results, we have 

applied the AGDC algorithm exclusively to improve the values of ΔS23≠ obtained by means of 

ANN. Table 7 shows the results obtained for this case, which let us conclude: 

- The value of ΔH23≠ obtained by means of ANN possesses a small deviation with respect 

to the real value and can be considered acceptable. 

- The application of the AGDC algorithm for the individual optimization of ΔS23≠ leads 

to a considerable decrease of the deviation with respect to the obtained results exclu-

sively through ANN. The value of ΔS23≠ that ANN provides can be improved consider-

ably when the AGDC algorithm is applied exclusively for the optimization of the pa-

rameter mentioned.  
 

  ANN   HA  (ANN - AGDC) 

Config. 
 

∆H23
≠/105 

Jmol-1 
∆S23

≠/ 
JK-1mol-1 

Des. % 
(∆H23

≠) 
Des. % 
(∆S23

≠) 
∆H23

≠/105 

Jmol-1 
∆S23

≠/ 
 JK-1mol-1 

Des. % 
(∆H23

≠) 
Des. % 
(∆S23

≠) 
5 1.2307 16.956 -5.2924.10-2 10.760 1.2270 18.085 2.4460.10-1 4.8174 
6 1.2304 19.781 -3.0505.10-2 -4.1098 1.2347 19.449 -1.1937.10-1 -2.3625 
7 1.2298 17.248 1.6711.10-2 9.2234 1.2270 18.096 2.4090.10-1 4.7587 
8 1.2298 20.862 1.6479.10-2 -9.7972 1.2330 19.905 -2.4050.10-1 -4.7615 
9 1.2301 15.864 -4.0925.10-3 16.506 1.2250 17.452 4.1270.10-1 8.1394 
10 1.2299 15.491 4.9065.10-3 18.471 1.2247 17.253 4.6637.10-1 9.1970 
12 1.2292 17.886 6.7485.10-2 5.8637 1.2278 18.316 1.8178.10-1 3.5994 
15 1.2301 14.645 -7.8094.10-3 22.921 1.2298 16.860 5.7118.10-1 11.265 
20 1.2306 13.510 -4.6183.10-2 28.895 1.2215 16.387 6.9365.10-1 13.755 
22 1.2303 16.025 -2.1074.10-2 15.659 1.2253 17.565 3.8303.10-1 7.5515 
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Table 7. Results of the training and prediction processes of the neural network constituted by an 
architecture with 1 hidden layer and different configurations, when ΔS13

≠ is computed by HA. 
 
 

 

 

Lastly, we have applied the hybrid algorithm to determine the values of ΔH23≠ and ΔS23≠ 

in a series of non-isothermal experimental kinetic experiences which values is unknown. In 

table 8, the results obtained after the application of HA are shown (columns 3 and 4). As in the 

previous case, we have exclusively optimized ΔS23≠ by means of the application of the AGDC 

algorithm. The results are shown in table 8 (column 4) and it allows us to check the decrease in 

the deviations in the majority of the cases if we compare it with the results obtained when ANN 

is exclusively applied. 
Table 8. Results of the application of the hybrid algorithm (ANN-AGDC) for the prediction of ΔS23

≠ 
and ΔH23

≠, 8 experiences (architecture of the neural network (9.00.105, 3, 2) with 1 hidden 
layer and configuration 6). 

 

5  Conclusions  
- The application of the hybrid algorithm (ANN-AGDC) to non-isothermal kinetics 

allows to determine the activation thermodynamic parameters (ATPs), directly, without the 

need to calculate the kinetic constants in a previous step. 

  ANN   HA (ANN-AGDC) 

Config.  ∆H23
≠/105

Jmol-1 
∆S23

≠/ 
JK-1mol-1 

Des. % 
(∆H23

≠) 
Des. % 
(∆S23

≠) 
∆S23

≠/ 
 JK-1mol-1 

Des. % 
 (∆S23

≠) 
5 1.2307 16.956 -5.2924.10-2 10.7601 19.383 -9.6541.10-1 
6 1.2304 19.781 -3.0505.10-2 -4.1098 19.099 -5.1888.10-1 
7 1.2298 17.248 1.6711.10-2 9.2234 18.920 4.2204.10-1 
8 1.2298 20.862 1.6479.10-2 -9.7972 18.921 4.1732.10-1 
9 1.2301 15.864 -4.0925.10-3 16.5058 18.999 7.5058.10-3 
10 1.2299 15.491 4.9065.10-3 18.4713 18.965 1.8683.10-1 
12 1.2292 17.886 6.7485.10-2 5.8637 18.728 1.4337 
15 1.2301 14.645 -7.8094.10-3 22.9209 19.013 -6.6509.10-2 
20 1.2306 13.510 -4.6183.10-2 28.8945 19.158 -8.3115.10-1 
22 1.2303 16.025 -2.1074.10-2 15.6586 19.063 -3.3096.10-1 

   HA   

 (∆H23
≠)Eyring/ 

105 Jmol-1 
 (∆S23

≠)Eyring / 

JK-1mol-1 
(∆H23

≠)HA/ 
105 Jmol-1 

 (∆S23
≠)HA/ 

JK-1mol-1 
% Des. 
(∆H23

≠) 
% Des. 
(∆S23

≠) 

1.3074 18.881 1.3063 19.220 -3.3413.10-1 -7.4453 
1.1461 20.272 1.1524 18.321 4.8714.10-1 8.9013 
1.2779 19.134 1.2794 18.691 -1.0954.10-1 -2.3659 
1.2533 19.470 1.2550 18.942 -8.0850.10-2 -1.6764 
1.2055 20.151 1.2070 19.686 -8.3970.10-2 -1.6272 
1.1801 20.412 1.1882 19.783 -9.4882.10-3 -2.1373.10-1 
1.2285 19.802 1.2294 19.542 5.2294.10-2 1.0103 
1.2304 19.781 1.2315 19.449 -1.1935.10-1 -2.3625 
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- The treatment of non-isothermal kinetic data has great advantages over the classic 

isothermal methods in which it is necessary to first calculate the value of the kinetic constant at 

each temperature and then carry out the linearization of the Arrhenius and/or Eyring equation 

to obtain the activation thermodynamic parameters. This implies making a mathematical 

transformation of the equations and the experimental data that produces a modification, both of 

their intrinsic errors and of the errors and precisions in the values of the activation parameters 

obtained. This problem does not exist when using the hybrid algorithm (ANN-AGDC) for the 

determination of activation thermodynamic parameters from non-isothermal kinetic data. The 

treatment of the non-isothermal kinetic data is more complex, but the HA can be perfectly 

applied since it is a rigorous and robust method, as shown by the obtained results. 

- The application of ANN for the determination of activation thermodynamic parameters 

(pre-exponential factor (A), the activation energy (E), the activation enthalpy (∆𝐻#) and the 

activation entropy (∆𝑆#)) provide results that are not acceptable as shown by the graphical 

representations of the output/target regressions. The subsequent application of the AGDC 

optimization algorithm is necessary in a second step to improve the results obtained with ANN, 

the application of these two processes has caused the hybrid algorithm (ANN-AGDC).  

- The great advantage of ANN is that it is a treatment that does not need initial estimates, 

so the hybrid algorithm initially applies ANN and the results obtained are used as values for the 

initial estimates in the second method (AGDC) which does require the use of previous values 

for the parameters to be determined. 

- The application of AGDC serves to improve the values previously obtained in ANN 

to achieve the optimal values of the ATPs. 

- The individual application of the ANN and AGDC methods provides unacceptable or 

insufficient results, however, the sequential application of both methods (hybrid algorithm) 

provides a set of optimal results. In the graphical representations of the outputs/targets 

regressions it is easily verified that the values of the residuals obtained with ANN are much 

higher than those obtained with the hybrid algorithm. 

- In view of all the results obtained, we can conclude that the hybrid algorithm (ANN-

AGDC) is a robust computational method for the treatment of non-isothermal kinetic data and 

for the determination of ATPs values in the treated systems. These good results allow us to 

propose it as a very useful and effective method for the treatment of experimental kinetic data 

acquired in the laboratory. 
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