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Abstract 

 

Quantifying the diversity content of an incidence matrix is challenging in several scientific 

fields. The existing indices capture diverse facets of diversity and thus comparing their 

behaviour is not a straightforward task. For example, an application of diversity measures 

involves ensembles of classifiers which usually in real applications contain missing values. 

Therefore, we analysed 14 statistics and, after making them comparable and able to deal 

with missing values, we applied them on more than one hundred incidence matrices in 

order to examine the relationships among the measures themselves. In particular, we 

highlighted the importance of the interrow agreement of factors, the general agreement of 

incident factors, as well as the influence on the indices of the proportion of missing values 

and matrix dimensions, the sensitivity to missing values, the uniform distribution of entries 

and the invariance to matrix transposition.
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1. Introduction 
 

Incidence matrices are numerical tables where the presence of a relationship between a row 

object and a column factor is simply denoted by a numerical value equal to one, while the 

absence of this relationship is denoted by zero. For example, the activity of a molecule 

(row) with respect to a pharmacological target (columns) is denoted by 1 if the molecule is 

active and by 0 is the molecule is not active or the existence of a relationship between an 

individual (row) with another individual (column) is denoted by 1 while the absence of a 

relationship is denoted by 0. In the latter case, typically the matrices are squared, and the 

row and column elements are the same. When the existence of a relationship between row 

and column elements is not known, missing values are used. 

Incidence matrices are used in several fields and some examples of their application are 

summarized in Table 1, which explicates also the meanings for each dimension and entry 

of the incidence matrix. 

 

Table 1. Structure and meaning of some incidence matrices. 

Incidence matrix type Rows/objects Columns/factors value 1 value 0 
Missing 

values 

Generic data set objects properties yes no unknown 

Classifier ensemble objects classifiers correct  wrong  unclassified 

Ecological data species sites presence absence unknown 

Molecule activities molecules activities active not active unknown 

Molecule structure molecules fingerprint presence absence - 

Databases comparison objects databases included non-included - 

Graph theory vertices edges belonging not belonging - 

Tuning matrix targets actions effective not effective no concern 

Molecule connectivity  atoms atoms bonded not bonded - 

Social network individuals individuals connected not connected unknown 

Road/train map cities cities connection not connection - 

Tournament matrix players players win defeat no game 

 

In order to numerically characterize the structure of the incidence matrices, several indices 

able to capture similar or different facets of diversity were proposed [1]. These indices, 

usually divided into pairwise and non-pairwise, have been used especially in pruning of 

ensembles of classifiers. In this case, objects (i.e. rows) are the samples while factors (i.e. 

columns) are the classifiers. The entry in the i-th row and j-th column is 1 if the i-th sample 
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is correctly classified by the j-th classifier and 0 if it is not. Although the most used indices 

seem to be inadequate to evaluate the overall performance [2,3], they had been successfully 

applied in combination with accuracy and margin theory to select classifiers in several 

areas, including remote sensing, social media semantic analysis and online classifications 

[4–10].  

However, the existing diversity indices are challenging in real applications because of the 

issue of missing values regarded in the incidence matrix as the i-th sample not classified 

by the j-th classifier (i.e. NaN value in MATLAB code) which so far were not considered 

in the formulas. In addition, these indices are often calculated in different ranges and 

meanings, which make their relationships not immediately intelligible. 

We have studied statistics which can measure similarity or diversity of an incidence matrix: 

three averaged pairwise coefficients (the Yule’s Q statistic, the Sokal-Michener similarity 

and the mutual average difference) and eight non-pairwise measures (the Wave-Edge 

distance, the Soergel distance, the Kohavi-Wolpert variance, inter-factor agreement, the 

generalized similarity, the coincident failure similarity, the multivariate correlation index 

and the average agreement) [1,11–17]. 

These statistics were made comparable and able to deal with the presence of missing values 

and finally, were applied to several both patterned and random matrices to investigate their 

behaviours, correlations and sensitivities to missing values through the analysis of principal 

components. 

 

2. Materials and methods 

 

2.1 Similarity/diversity indices 

 

In the sections from now on we will refer in the general case of incidence matrix where the 

columns are factors and the rows are the objects. The procedure can be easily generalized 

or adapted case by case, e.g. following Table 1.  

The data matrix T’ is constituted by n’ objects and L’ factors; the entry ijt  of the T’ matrix 

is equal to 1 if there is a relationship between the i-th object and the j-th factor and 0 if 

there is not a relationship. When no information is available for an object, the entries are 

missing values denoted as mij (some special code is used, e.g. ‘NaN’ in MATLAB code). 
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As first step to deal with missing values, the rows entirely filled by missing values are 

deleted, i.e. the objects not related to any factor; analogously, all the columns entirely filled 

by missing values are deleted, i.e. factors not able to relate to any object. 

The reduced data matrix T is then defined by n objects and L factors. All the quantities 

below are defined in terms of these new dimensions, i.e. 

 

n = number of rows not entirely filled by missing values 

L = number of columns not entirely filled by missing values 

 

We divided the similarity/diversity indices into three groups based on their algorithm. The 

first group includes the indices calculated as an average of column pairwise statistics such 

as Yule’s Q statistic and Sokal-Michener similarity. The indices deriving from the row 

sums and thus focused on intra-row differences are collected in the second group which 

includes the Wave-Edge distance, the Soergel distance, the Kohavi-Wolpert variance, the 

interfactor agreement, the generalized similarity, the average agreement and the coincident 

failure similarity. Finally, the multivariate correlation index and the mutual difference are 

collected in the third group, since they are calculated from the whole matrix. 

The similarity/diversity indices are defined below. Note that each index has been rescaled 

between 0 and 1 for ease of interpretation. Moreover, each diversity measure increases 

when diversity decreases, excepting mutual average difference and Kohavi-Wolpert 

variance. 

 

2.1.1 Column pairwise measures 

 

In pairwise measures, firstly the diversity between all pairs (j,k) of factors is calculated 

computing the so-called contingency table, constituted by the parameters a, b, c and d, 

where a and d are the number of objects both equal to 1 and both equal to 0, respectively, 

while b and c are the number of samples having 1 in the j-column and 0 in the k-column 

and vice versa. Thereafter, the overall diversity measure values are computed as the mean 

of the pairwise values. 

 

Yule’s Q statistic (QY)  

For each pair of factors (j,k) the Yule correlation similarity (QY) is calculated by the 

contingency table as: 
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jk

a d b c
Q

a d b c

 − 
=

 + 
                                                        (1) 

The final index QY is calculated as the average value of the pairwise Yule correlation 

similarity as:   

 

 
1

1 1

1
1 1

L L

jk

j k j

QY Q QY
C

−

= = +

=  −   +                       (2)                  

The term C is the count of valid column pairs, i.e. all the cases where 0a d b c +   ; if no 

missing values are present, all the contributions are valid and 
( )1

2

L L
C

 −
= . 

Finally, QY was rescaled in range [0, 1]: 

 

1

2

QY
QY '

+
=                                                                 (3) 

 

Sokal-Michener similarity (SM)  

For each pair of factors (j,k) the Sokal-Michener similarity is calculated by the contingency 

table as: 

jk

a d
SM

a b c d

+
=

+ + +
                                                     (4) 

The global index is then calculated as: 

1

1 1

1
0 1

L L

jk

j k j

SM SM SM
C

−

= = +

=                                (5) 

The term C is the count of valid column pairs, i.e. all the cases where 0a b c d+ + +  ; if no 

missing values are present, all the contributions are valid, and C is calculated as in the 

previous case. 

 

2.1.2 Indices based on the row sum 

Most of the similarity/diversity indices are based on the different distribution of 1 and 0 

among the entries of each row. For these statistics the following quantities must be 

previously defined for each i-th row of the T matrix with L columns: 

1

0 0
L

i ij i i i i i

j

u t u L z L u m z L
=

=   = − −        (6) 
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i i iu z L L+ =         
i iL m L+ =           

where mi is the total number of missing values in the i-th row, i.e. denoting the number of 

factors whose relationship with the selected example is unknown; ui is the number of 1 in 

the i-th row while zi is the number of 0. 

Row sum probabilities can thus be defined as the probabilities of ui or zi to be equal to a 

number ranging from 0 to L. 

The row sum probability is calculated as: 

1

0

1
0 1

0

n

im L
ii

m im m

m

if u m
pu m L pu

n otherwise

=

=


=

=    =  =



  

1

0

1
0 1

0

n

im L
ii

m im m

m

if z m
pz m L pz

n otherwise

=

=


=

=    =  =



            (7) 

Note that, if no missing values are present, m L mpu pz −=  . 

 

Soergel concordance (SOC)  

Derived from the Soergel distance [17], it is here defined as a complementary quantity, 

here called concordance: 

( )

1

1

n

i i

i

n

i i

i

u z

SOC

max u ,z

=

=

−

=



                                  (8) 

where ui and zi are defined above in equation (6). 

SOC takes into account the intra-row differences, i.e. how the factors outputs differ for the 

same i-th object. 

 

Wave-edge concordance (WEC) 

Derived from the Wave-edge distance [17], it is here defined as a complementary quantity, 

here called concordance: 

 

 1

1
1

n
i i

i i i

min u ,z
WEC

n max u ,z=

= −                         (9) 

As SOC, WEC explicitly considers the different contributions of ui and zi in the i-th row. 
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Kohavi-Wolpert variance (KWV) 

We use the general idea expressed in [1,4] and derived from [13] in the following way: 

1

1

4

n

in
i i i

i i

L
u z

KWV L
n L L n

=

=


=  =




                                 (10) 

𝐿̅ is equal to L if there are not missing values, otherwise it considers only the factors which 

provide information for each object. We multiplied the original formula by 4 in order to 

rescale the KWV between 0 and 1. 

Higher the variability of each row, higher the value of KWV. 

 

Measure of interfactor agreement (IA)  

As it is suggested in [18], the formula for the interfactor agreement (IA) takes into account 

the mean of present relationships (𝑢̅), the mean square between objects (BMS) and the mean 

square within objects (WMS) defined as: 

1

1 n

i

i

u u
n =

=                    

( )
2

1

n

i

i

u u

BMS
n L

=

−

=



          

( )
1

1

n

i i

i

u z

WMS
n L L

=



=
  −


                   (11)   

From the two previous quantities, IA is calculated as: 

 

( )
1

1
1 1

BMS WMS
IA IA

BMS L WMS L

−
= −  

+ −  −
                        (12) 

Finally, IA is rescaled in the range [0, 1]: 

 

( )1 1
0 1

IA L
IA IA

L

 − +
 =                                              (13) 

 

 Generalized similarity (GSu and GSz)  

The generalized diversity defined in  [14] is here replaced by the complementary quantity, 

here called  generalized similarity: 
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( )
( )1

1

1

1

L

m

m

L

m

m

mm
pu

L L
GSu

m
pu

L

=

=

 −
   − 

=







                                                      (14) 

( )
( )1

1

1

1

L

m

m

L

m

m

mm
pz

L L
GSz

m
pz

L

=

=

 −
   − 

=







                                                         (15) 

Since we defined two row sum probabilities pu and pz (equations (7)), there are also two 

generalized similarity indices. GSu considers the probability of 1 while GSz that of 0. 

Clearly the difference between the two indices becomes significant in presence of missing 

values. 

 

Coincidence failure similarity (CFSu and CFSz)  

Similarly to the generalized diversity, two complementary quantities are defined as 

coincident failure similarity indices from [14]: 

0

0

10

0 1

1
1

1 1

L

m

m

if pu

CFDu L m
pu if pu

pu L=

=


= −  
    − − 


                           (16) 

0

0

10

0 1

1
1

1 1

L

m

m

if pz

CFDz L m
pz if pz

pz L=

=


= −  
    − − 


                               (17) 

The two diversity indices defined above are then converted into similarities: 

 
1CFSu CFDu= −                     (18)                         

1CFSz CFDz= −                    (19) 

 

Average agreement (AAu and AAum)  

As an index of the degree of incidence, we calculated also the average agreement as the 

average of the proportion of 1 in the rows, once without considering missing values (AAu) 

and once taking them into account (AAum). 

   
1

n
i

i i

u

L
AAu

n

=

 
 
 

=


                 (20)  
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1

n
i

i i i

u

L m
AAum

n

=

 
 

+ 
=


                   (21) 

In presence of missing values, by definition, AAum AAu , otherwise AAum AAu= . 

For example, in case of classifiers ensemble each i-th row is the proportion of correct 

classifications, while, in the case of active molecules each i-th row is the proportion in 

which a molecule is active with respect to the L different targets. 

 

2.1.3 Global indices 

We considered the two similarity/diversity indices described below which take into 

account the whole matrix content, not taking into account explicitly difference between 

rows and columns.  

 

Multivariate correlation index (K)  

To evaluate the correlation content into the matrix, we considered the multivariate 

correlation index which was proposed for the evaluation of the global correlation of a 

dataset [15,16]. After substituting the missing value codes by a numerical value, the total 

quantity of correlation is estimated from the eigenvalue distribution obtained from the 

eigenvalue decomposition of the corresponding matrix M, calculated by symmetrisation of 

T:  

0 25

ij ij ij

ij

ij ij

t if t m
t

. if t m


= 

=

           
( )

( )

if min n,L L

if min n,L n

=  =

=  =

T

T

M T T

M T T
  

( )

1

1

1

2 1

p

k

p
k

k

k

p

K
p

p

=

=


−



=
 −




                                       (22) 

where   are the eigenvalues of the matrix M and p the minimum rank between n and L. 

The assumed empirical value of 0.25 is chosen in such a way to give 𝐾 ≅ 0.5 for total 

random matrices. 
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Mutual average difference (Δ)  

The mutual average difference (Δ) for the i-th row takes into account the average of the 

modules of the differences between each pair of different entries in the row (excluding 

missing values) as: 

 

   
1

1 1

1
0 1 0 1

L L

i ij ik ij ik

j k j

t t t , t ,
C

−

= = +

 =  − =  =                          (23) 

The term C is the count of valid differences; if no missing values are present, all the 

differences are valid, and C is calculated as in the previous cases. 

The final index is calculated as the average over all the objects as: 

    1

n

i

i

n

=



 =


                                                                               (24) 

      

2.1.4 Numeric example 

 

To better understand the calculation of the indices we provided an example using the 

incidence matrix T reported in Table 2 where the last two columns collect the i-th row sum 

of 1 (ui) and 0 (zi). 

In this case, n = 6 and L = 4. 
 

Table 2. Example of incidence matrix. 

T F1 F2 F3 F4 u z 

O1 1 1 1 0 3 1 

O2 1 0 1 1 3 1 

O3 0 1 0 0 1 3 

O4 1 1 1 1 4 0 

O5 1 0 0 1 2 2 

O6 0 0 1 0 1 3 

 

For the pairwise indices, six comparisons between each pair of the four factors are carried 

out. For example, Table 3 reports the parameters a, b, c and d considering factor F1 and 

factor F2.  
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Table 3. Example of parameters needed to calculate pairwise statistics. The case of the pair of 

factors F1 and F2 is reported. 

 

 

 

 

 

In this case,  

 

12

2 1 1 2
0

2 1 1 2
Q

 − 
= =

 + 
  

which denotes a middle value of similarity, since Qjk ranges from -1 to 1. 

The global QY index is calculated and rescaled between 0 and 1 as it follows. 

 

( )
( ) ( )12 13 14 23 24 34

2 1
0 0 5 1 0 0 6 0 0 15

1 6
QY Q Q Q Q Q Q . . .

L L
=  + + + + + =  + + + − + =

 −
  

1
0 58

2

QY
QY .

+
 = =   

The parameters a, b, c and d calculated for each pair of factors are used also to calculate 

SM as: 

 

( )
( )12 13 14 23 24 34

2
0 56

1
SM SM SM SM SM SM SM .

L L
=  + + + + + =

 −
  

The statistics derived from the row sum of 0 and 1 (i.e. last two columns of Table 2) are 

reported below. 

 

3 1 3 1 1 3 4 0 2 2 1 3
0 67

3 3 3 4 2 3
SOC .

− + − + − + − + − + −
= =

+ + + + +
  

1 1 1 1 2 1
1 0 0 61

6 3 3 3 2 3
WEC .

 
= −  + + + + + = 

 
  

4 3 3 3 4 3
0 0 67

6 4 4 4 4 4 4
KWV .

 
=  + + + + + = 

  
 

For IA it is necessary to calculate first u , BMS and WMS as it follows: 

Q12 F1 = 1 F1 = 0 

F2 = 1 a = 2 b = 1 

F2 = 0 c = 2 d = 1 
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( )
1

3 3 1 4 2 1 2 33
6

u .=  + + + + + =   

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

3 2 33 3 2 33 1 2 33 4 2 33 2 2 33 1 2 33
0 31

6 4

. . . . . .
BMS .

− + − + − + − + − + −
= =


  

( )
3 1 3 1 1 3 4 0 2 2 1 3

0 22
6 4 4 1

WMS .
 +  +  +  +  + 

= =
  −

  

Then, IA is computed and rescaled: 

 

( )
0 31 0 22

0 09
0 31 4 1 0 22

. ,
IA .

. .

−
= =

+ − 
                  

( )0 09 4 1 1
0 32

4

.
IA .

 − +
 = =   

To calculate GSu, GSz, CFSu and CFSz the row sum probability is needed. Table 4 

summarises these values for the matrix T. 

 

Table 4. Summary of the row probabilities for the matrix T defined in Table 2. 

 

 

 

 

 

1 2 3 4

1 2 3 4

1 1 1 2 2 1 3 3 1 4 4 1

4 4 1 4 4 1 4 4 1 4 4 1
0 62

1 2 3 4

4 4 4 4

pu pu pu pu

GSu .

pu pu pu pu

       − − − −       
  +   +   +                − − − −              

= =

 +  +  + 

  

1 2 3 4

1 2 3 4

1 1 1 2 2 1 3 3 1 4 4 1

4 4 1 4 4 1 4 4 1 4 4 1
0 47

1 2 3 4

4 4 4 4

pz pz pz pz

GSz .

pz pz pz pz

       − − − −       
  +   +   +                − − − −              

= =

 +  +  + 

 

1 2 3 4

0

1 4 1 4 2 4 3 4 4
0 56

1 4 1 4 1 4 1 4 1
CFDu pu pu pu pu .

pu

 − − − −       
=   +  +  +  =        

− − − − −        
  

1 0 56 0 44CFSu . .= − =   

1 2 3 4

0

1 4 1 4 2 4 3 4 4
0 67

1 4 1 4 1 4 1 4 1
CFDz pz pz pz pz .

pz

 − − − −       
=   +  +  +  =        

− − − − −        
 

 m = 0 m = 1 m = 2 m = 3 m = 4 

pum 0/6 2/6 1/6 2/6 1/6 

pzm 1/6 2/6 1/6 2/6 0/6 
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1 0 67 0 33CFSz . .= − =  

The multivariate correlation index K takes into account the eigenvalues λj calculated on the 

matrix T= M T T , since the minimum rank is L = 4. The four eigenvalues are: 10.274, 

2.189, 1.253, and 0.284. 

If we define the sum of the eigenvalues as 1 2 3 4 14 = + + + = , K can be calculated 

as: 

( )

10 274 1 2 189 1 1 253 1 0 284 1

14 4 14 4 14 4 14 4
0 65

2 4 1

4

. . . .

K .

− + − + − + −

= =
 −

  

Finally, since T does not contain missing values, the average agreement is equal to: 

 
3 3 1 4 2 1

4 4 4 4 4 4 0 58
6

AAu AAum .

+ + + + +

= = =   

We can conclude that T has a diversity content not far from a random matrix. 

 

2.2 Data sets 

 

We generated 129 matrices in order to test the similarity/diversity indices explained above. 

To study the relationships between the indices we used 19 patterned matrices, i.e. matrices 

with a peculiar conformation not containing any missing value, which can be divided as it 

follows. 

1. Matrices with rows entirely composed by either 1 or 0 with dimensions 1000 × 50 

(1000 rows and 50 columns). The proportions of 1 considered are 10% (labelled as 

Row10 in the figures), 30% (Row30), 50% (Row50), 70% (Row70) and 100% 

(Row100). The latter is a matrix entirely composed by 1. 

2. Diagonal matrices. Two squared 100 × 100 matrices, one composed by 0 with the 

main diagonal entries equal to 1 (Diag1) and the other composed by 1 with the main 

diagonal entries equal to 0 (Diag0). 

3. Matrices derived from bi- and tri-diagonal. Two 50 ×10 matrices composed by the 

vertical concatenation of five 10 × 10 banded matrices with one-entries along the 

diagonal above or the diagonal below the main diagonal, in one case the main 

diagonal is composed by 0 (Bidiag1) and in the other by 1 (Tridiag1). Analogously, 
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two 50 × 10 composed by the vertical concatenation of five 10 × 10 banded matrices 

with 0 entries along the diagonal above or the diagonal below the main diagonal 

and 1 elsewhere, in one case the main diagonal is composed by 1 (Bidiag0) and in 

the other by 0 (Tridiag0). 

4. Matrices derived from orthogonal matrices. Five matrices with dimensions 100 × 

10 were created. One is made by a vertical concatenation of ten sub-matrices 10 × 

10, the first of which is entirely composed by 0 excepting for the first column 

entirely filled with 1, the second sub-matrix indeed is composed by 0 excepting the 

second column entirely filled with 1, and so on to form Orth1_1.  Orth1_2 follows 

the same scheme but considering each time two columns filled with 1 instead of 

one. This procedure was repeated reversing 0 and 1 to obtain Orth0_1 and Orth0_2. 

Finally, Orth5 is composed by the vertical concatenation of two 50 × 10 sub-

matrices, the first with five columns of 1 and the other five of 0, while the second 

with 5 columns of 0 followed by 5 columns of 1. 

5. A 1000 × 50 (Col50) and a 50 × 2 (TwoCol) matrix which alternate columns of 1 

and columns of 0. 

6. A 100 × 100 chequered matrix where 1 and 0 are distributed like white and black 

on a chessboard (Chess).  

In order to study the behaviour of the different indices in relation both to an increase 

percentage of missing values and to an increase dimensions, we created 10 matrices with 

random distributions of 1 and 0 (100 × 10, 1000 × 10, 10000 × 10, 100 × 50, 1000 × 50, 

10000 × 50, 1000 × 100, 50 × 50, 100 × 100, 50 × 100). For each of these matrices we 

formed other ten matrices with growing percentage of missing values from 5% to 50% in 

random positions, for a total of 110 matrices. 

 

3. Results and discussion 

 

The defined data sets were analysed by means of PCA with the aim to understand the 

different behaviours of the studied indices. Similar results were gained with a 

correspondence analysis. The numerical results are collected in Tables S1, S2 and S3 in 

the supplementary material.  First, the 19 patterned data sets were examined; in Fig. 1 the 

loading plots of the first 3 PCs are shown (the indices), while in Fig. 2 the corresponding 
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score plots (the datasets) are shown. In the latter plots, representative images of the 

patterned matrices are reported where black and grey stand for 0 and 1, respectively. 

 

Figure 1. Loading plots PC1 vs PC2 (A) and PC1 vs PC3 (B) for the 19 patterned matrices. The 

total explained variance is 92.5%. See Table S1 for numerical results. 

 

As expected, analysing PC1, all the indices indicate the maximum similarity (agreement) 

when an object is related to all factors, except for AAum and AAu. In our exemplificative 

matrices, QY, SM, IA, WEC, SOC, GSz, GSu, CFSz, CFSu and K are equal to 1 and Δ and 

KWV are equal to 0 for Row10, Row30, Row50 and Row70. On the other hand, they 

designate maximum diversity for TwoCol, namely when half factors are related to the 

object. By definition, AAu and AAum are dependent on the row percentages of 1. 

The first principal component (PC1) interprets well the interrows agreement, i.e. the 

concordance between factors. Matrices with rows entirely composed by either 1 or 0 indeed 

have high values on this axis (e.g. Row70, Row50, Row30 …), while TwoCol has the 

lowest PC1 value because in this matrix the two columns (i.e. factors) always disagree. 

High values of QY, SM, IA, WEC, SOC, GSz, GSu, CFSz, CFSu and K and low values of 

Δ and KWV corresponds to high concordance between factors. 

The second component (PC2) reflects the agreement of incident factors, i.e. the percentage 

of 1, which influence positively K, GSu, CFSu and AAu (these last three indices are clearly 

correlated to the presence of 1) and negatively GSz and CFSz (which obviously are 

dependent to the percentage of 0). Along the second PC, the indices KWV, Δ, IA, QY, SM, 

SOC and WEC do not influence the patterned matrices. The third PC highlights the contrast 

(13% of variance) among SOC, WEC and, partially, SM (negative scores) with QY, K, IA 

and, partially, KWV, Δ, GSz, GSu, CFSz, CFSu (positive scores). The third component 

(PC3) takes into account the structure of the patterned matrices, independently from the 
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percentage of ones and zeros, distinguishing checkboard structures from matrices with 

diagonal square structures. 

 

Figure 2. Score plots PC1 vs PC2 (A) and PC1 vs PC3 (B) for the 19 patterned matrices. The points 

are filled according to the percentage of 1 in the matrices: black indicates high percentage 

of 1 (above 70%), grey intermediate (between 25% and 75%) and white low (less than 

25%). Near each point there are the label and a pictorial representation of the matrices 

where black refers to 0 and grey to 1. 

 

The application of the 14 indices to the 110 random matrices lead to the loading and score 

plots of PC1 vs PC2 shown in Fig. 3. In this case, analysing the PC1 loadings, the pairwise 

indices (QY, SM), the global indices (K, Δ) and AAu are not influenced by the percentage 

of missing values; indeed, their values are always more or less equal to 0.50. High loadings 

values of PC1 are related to low percentage of missing values, while high values of PC2 

are linked to the number of factors; in particular, QY, SM and KWV decrease and SOC, 

WEC, IA, Δ, AAu, AAum, GSu and GSz increase as factors decrease (blue data sets in Figure 

3-B).  

To better investigate the role of missing values, we took a random binary matrix 100 × 10 

and we created other 50 matrices by adding every time 1% of missing values in random 

positions, always preserving the previous missing values. The PCA loading and score plots 

are reported in Fig. 4. PC1 reflects PC1 of Figure 3-B (i.e. the percentage of missing 

values), while PC2 seems to reflect the uniform distribution between 1, 0 and missing 

values. Lower PC2 values indeed were reached for matrices with a proportion of missing 

values around 33%. In this case, since the distribution of values is random, it is reasonable 

to assume that more or less there are equal number of 1, 0 and missing values. On the other 

hand, when the proportion of missing values is low (below 10%) or high (above 40%), the 

-254-



 

classes are unbalanced. Δ decreases and QY, SM and K increase when the number of 1, 0 

and missing values is unbalanced. 

 

Figure 3. Loading (A) and score (B) plots of PC1 vs PC2 for the 110 random matrices. The 

explained variance is 66.5%. In the score plot different shapes indicate different 

number of factors in the matrices: circle indicates 10 columns, square 50 and star 

100. The points darkness is proportional to the percentage of missing values (black 

filled = 50% of missing values). See Table S2 for numerical results. 

 

 

Figure 4. Loading (A) and score plot (B) of PC1 vs PC2 for the 51 matrices 100 × 10 

derived from the same random matrix with increasing percentage of missing 

values from 1% to 50% with step of 1. In the score plot the darkness of the points 

is proportional to the percentage of missing values. The explained variance is 

94.8%. See Table S3 for numerical results. 

 

Table 5 summarizes the different behaviours of the 14 diversity indices derived from PCA. 

First, it can be noted that WEC and SOC as well as QY and SM measures express the same 

information. In column A the trends of the indices for an increasing inter-row agreement 

is reported. 
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AAu and AAum differ only when we are considering matrices containing missing values. 

GSu and GSz as well as CFSu and CFSz, as it could be expected, have a different meaning 

only in describing the agreement of incidence factors (column B). In column C, it is shown 

the behaviour of the indices in presence of missing values, while in column D their 

behaviour for an increasing number of factors. 

Columns E, G and H of Table 5 refer to the following sections in which the sensitivity to 

missing values and the transposition invariance of the indices were quantitatively analysed. 

 

Table 5. A: inter-row agreement of factors; B: agreement of incident factors; C: proportion of 

missing values; D: total number of factors; E: sensitivity to missing values; F: uniform 

distribution of {0, 1, missing}; G: invariance to matrix transposition (n > L); H: 

invariance to matrix transposition in presence of missing values (n > L). 

VH: very high; H: high; L: low; I: invariant; N: no; Y: yes. 

ID Index A B C D E F G H 

1 QY H I I H L L Y N 

2 SM H I I H L L Y Y 

3 WEC H I H L H I N N 

4 SOC H I H L H I N N 

5 KWV L I L H L I Y Y 

6 IA H I H L VH I N N 

7 GSu H H L L H I/L Y Y 

8 GSz H L L L H I/L Y Y 

9 CFSu H H L I H I/L Y Y 

10 CFSz H L L I H I/L Y Y 

11 Δ L I I L L H Y Y 

12 K H H I I L L Y Y 

13 AAu H H I L L I Y Y 

14 AAum H H L L H I/L Y Y 

 

Looking the analyses carried out, the meaning for each index can be roughly expressed as 

reported in Table 6. 

 

 

 

 

 

 

-256-



 

Table 6. General meaning of the studied incidence indices. 

ID Index Index meaning 

1 QY average factor pairwise agreement including disagreement 

2 SM average factor pairwise agreement 

3 WEC Wave-edge factor concordance 

4 SOC Soergel factor concordance 

5 KWV average standardized variance between factors 

6 IA inter-factor agreement 

7 GSu generalized similarity of incident factors 

8 GSz generalized similarity of non-incident factors 

9 CFSu generalized similarity of incident factors 

10 CFSz generalized similarity of non-incident factors 

11 Δ average mutual difference between factors 

12 K global correlation on incident factors 

13 AAu global incidence 

14 AAum global incidence including missing values 

 

3.1 Sensitivity analysis 

 

The sensitivity analysis of the studied indices was performed by using the matrix with a 

fixed dimension (100 × 10) and by evaluating the relative difference of the value of an 

index x including a percentage p of missing values compared with the value of the same 

index where no missing values are present. Then, the formula used is: 

( )
( ) ( )

( )

0
1 2 3 50

0

x p x
Sn x, p p , , ,,..., %

x

−
= =   

In Fig. 5 the sensitivities of all the indices are graphically shown in three different graphs 

for sake of an easier visualisation. IA has the greatest variation in sensitivity and, in 

particular, its sensitivity increases with the percentage of missing values (Figure 5-C). The 

sensitivities of GSz, GSu, CFSz, CFSu and AAum slightly decrease and WEC and SOC 

slightly increase, while the other indices seem to be insensitive to the percentage of missing 

values. A possible explanation is that IA, SOC and WEC by definition take into account the 

number of 1 and 0 for the i-th row without a normalization on Li (i.e. the difference between 

L and mi) while for instance KWV or AAu normalize ui and zi by Li. This consideration is 

also supported by the difference between AAu and AAum. In real applications, when dealing 
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with a large number of missing values it could be better to apply one of the indices which 

are insensitive to the percentage of missing values. 

 

Figure 5. Sensitivity versus percentage of missing values for the 14 diversity indices. 
 

3.2 Matrix transposition 

The invariance to matrix transposition was also evaluated with and without the presence of 

missing values. 

It was assumed that the rows of the starting matrix are larger than the columns (n > L) and 

then the transpose matrix contains a number of columns larger than the number of rows (n 

< L). 

The invariance to matrix transposition was quantitatively evaluated as: 

( )
( )
( )

( )0 1

T

T

min x,x
I x I x

max x,x
=     

where x is the index and values near/equal to 1 indicate invariance. 

For matrices with a different number of columns but without missing values, the invariance 

was estimated directly by using the quantity I(x), 

For matrices with a different number of columns but having also different percentages of 

missing values comprised between 0% - 50% (step 5%), the invariance was evaluated, for 

each index, by the coefficient of variation, defined as: 

( )
( )

xs
CV x

I x
=   

where sx and ( )I x  are the standard deviation and the average, respectively, calculated 

from the I(x) values obtained by matrices having the same dimension but eleven different 

percentages of missing values. Values of CV near to zero indicate invariance. 
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In a matrix without missing values, only the indices K, AAu and AAum are invariant (Table 

5, column G). 

In matrices containing missing values, all the indices are not constant under transposition, 

although K, AAu, AAum, SM, and Δ show only small variations.  

Graphs showing the dependence of CV and I from L are reported in supplementary material 

(Fig. S1). 

As expected, for square random matrices, all the indices show very small variations. 

 

4. Conclusions 

 

The behaviour of the considered 14 measures of diversity with both patterned and random 

matrices was studied together with their sensitivity to the presence of missing values and 

invariance to transposition. 

The pairs CFSz and GSz, CFSu and GSu, SOC and WEC give, in all the cases both with 

and without missing values, almost the same information. CFSz, GSz, CFSu and GSu are 

almost invariant to transposition and decrease with the increase of missing values. CFSz 

and GSz as CFSu and GSu differ only because of the opposite dependence of factors 

agreement. The former pair expresses the generalized similarity of incidence in factors 

while the latter pair of non-incidence in factors. SOC and WEC are weakly variant to 

transposition especially for matrix with lower dimensions (namely L < 20) and they weakly 

increase with the percentage of missing values. IA has a similar behaviour of WEC and 

SOC, but it is more sensitive both to missing values and to transposition. The column 

pairwise statistics QY and SM carry more or less the same information, being defined in a 

similar way, and are influenced by the dimensions and by the inter-row agreement of 

factors, but only the second is invariant to matrix transposition. By definition, AAum is 

equal to AAu, in the case without missing values, and they are sensible to global incidence 

of the factors. Since KWV and Δ increase with diversity, they are related to low values of 

the other indices. Furthermore, the column pairwise statistics such as the global indices are 

sensible to the unbalanced distribution of 0, 1 and missing values in the incidence matrix. 

It can be concluded that the choice of the similarity/diversity indices is dependent on the 

problem under study since they carry different useful information, but, in presence of a 

significant number of missing values, the indices QY, SM, KWV, K, AAu and Δ should be 

preferred being invariant to missing values. 
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