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Abstract

The reduced reciprocal Randić (RRR) index of the graph G = (V,E) is defined as
RRR(G) =

∑
uv∈E

√
(du − 1)(dv − 1), where du and dv denote the degrees of vertices u

and v, respectively. We characterize the trees of order n with p pendant vertices that
maximize RRR index for every p ≥ bn/2c, which has been identified as an open problem
by Ren, Hu and Zhao (2016). The main observations which leads to the characterization
is that the extremal tree is of height 2.

1 Introduction

Topological indices are numerical quantities of a graph, which are invariant under graph

isomorphisms. They have been shown to correlate well with numerous physico-chemical

and biological properties, thus they are useful descriptors in QSAR and QSPR studies that

are used for predictive purposes. Generally they can be quickly and readily calculated.

Calculation of some of them depends on vertex degrees, such topological indices are known

as vertex-degree-based topological indices.
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One of the most studied and most applied such index is the Randić index, defined

in [11] as

R(G) =
∑
uv∈E

1√
dudv

,

where du and dv denote the degrees of vertices u and v, respectively. It was introduced for

measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons.

Determining the graphs with extremal values of a certain index if often the topic of interest

for many researchers. Results of this type for Randić index can be found in [4,5,13], and

surveys [6, 9].

Based on successful applications of Randić index, Manso et al. [10] introduced the Fi

index to predict the normal boiling point temperatures of hydrocarbons. In the mathe-

matical definition Fi index is comprised of two summands. In [7] Gutman et al. focused

on one of the summands and they called it the reduced reciprocal Randić (RRR) index,

which also belongs to vertex-degree-based topological indices as it is for a graph G defined

as

RRR(G) =
∑
uv∈E

√
(du − 1)(dv − 1).

The RRR index was compared in [7] with several well-known topological indices for

predicting the standard heats (enthalpy) of formation and normal boiling points of octane

isomers and it was concluded that RRR index deserves further attention of researchers.

The RRR index of some dendrimer and nanotube structures was computed in [3,8] . Find-

ing extremal values of RRR index under special conditions became the topic of subsequent

studies.

The authors of [7] proved that the star graph and the complete graph have the min-

imum and maximum value, respectively, among all n-vertex graphs. The problem of

finding graphs with minimum RRR value among all n-vertex connected unicyclic graphs

(n-vertex connected graphs with n edges) was solved in [1]. Recently in [2], graphs hav-

ing minimum RRR index were identified among all n–vertex connected bicyclic graphs

(n-vertex connected graphs with n+ 1 edges), for n ≥ 5.

In [7] a conjecture related to the maximum value of RRR index of trees was posed,

which was settled by Ren et al. [12] who characterized trees of order n with the maximal

value of RRR index. In order to derive the mentioned result, Ren et al. characterized
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trees that have maximum RRR index among all trees from the class⋃
bn/2c≤p<n

Tn,p,

where Tn,p denotes the class of trees of order n with a fixed number of leaves p. They

found that the tree with maximal value of RRR index in the mentioned class has bn/2c

leaves. Especially, Ren et al. [12] have also identified the trees from Tn,p that attain the

maximum value of RRR index if p < bn/2c. However, the following problem from [12]

remained open.

Problem 1. Characterize trees from Tn,p that have maximal value of RRR index if

bn/2c < p ≤ n− 1.

In this paper we solve this problem and show that extremal trees are trees of height

2, rooted in (the unique) vertex of maximal degree.

2 Preliminaries

Let G = (V,E) be a simple connected graph with n vertices. For a vertex v ∈ V , let dv

denote the degree of v in G. A rooted tree is a pair (T, r) where T is a tree and r ∈ V (T )

is a vertex that is called the root. Let (T, r) be a rooted tree and v ∈ V (T )\{r}. Let u be

the next vertex, neighbor of v, on the unique path towards the root r. Then u is called

the father of v, and v is a child of u. The height of a vertex v, ht(v), in a rooted tree is

the number of edges on a longest path between v and a leaf from the descendant of v.

The height of a rooted tree T is denoted by ht(T ) and defined as

ht(T ) = ht(r),

which is the length of a longest path from the root r to a leaf in T . If a vertex v does not

have children, then ht(v) = 0.

In [7] a family of n-vertex trees TRRR(n) was constructed as follows. Let n be a fixed

integer, n ≥ 3. If n = 2k, then TRRR(n) is obtained by attaching one pendant vertex to

each of the k − 1 pendant vertices of the star Sk+1, and if n = 2k + 1, we construct the

tree TRRR(n) by attaching one pendant vertex to each of the k pendant vertices of the

star Sk+1, see Figure 1. In [12, Theorem 2] it has been proved that the trees TRRR(n)

have maximum RRR index among all trees from
⋃

bn/2c≤p<n

Tn,p.
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In both cases, when n = 2k or n = 2k + 1, TRRR(n) has p = k leaves. Recall that we

are interested to find maximal RRR index among trees from Tn,p, for fixed numbers n and

p which satisfy p ≥ bn/2c. Thus according to the mentioned result from [12], the problem

for two cases, when n = 2p or n = 2p+ 1, has been resolved. Therefore in the rest of the

paper we will assume that p > bn/2c, which means that that we will only consider trees

from Tn,p that have at least one leaf more than the half of the total number of vertices.

. . .

B2k

. . .

B2k+1

Figure 1. The trees TRRR(n) that have the maximal RRR value for p ≥ bn/2c.

In order to simplify the notation, we will denote by Mn,p the graphs from Tn,p with

maximal RRR index, where p > bn/2c is fixed. Also, we can skip trivial cases n = 1, 2, 3, 4,

so assume that n ≥ 5 for the rest of the paper. Since we consider trees T with n ≥ 5 and

p > bn/2c, it also follows that the for the maximal degree ∆(T ) of T it will always hold

∆(T ) ≥ 3.

3 Properties of optimal trees

When we mention a tree T fromMn,p in this section, we usually regard it as a rooted tree,

where the root is a vertex of maximal degree ∆(T ). As already mentioned, we assume

that ∆(T ) ≥ 3.

The next lemma formalizes a straightforward observation that exchanging any two

neighbors of two vertices with equal degrees does not affect RRR index. In it the notation

T ′ = T −{xy, st}+ {xt, sy} stands for a tree T ′ obtained from a tree T by deleting edges

xy, st and adding edges xt and sy instead.

Lemma 2. Let xy and st be two edges in a tree T such that dx = ds. Let T ′ = T −

{xy, st}+ {xt, sy}. Then RRR(T ′) = RRR(T ).

By Sn we denote a star on n+ 1 vertices, i.e. a tree with a vertex adjacent to all other

vertices. A double star Da,b is a tree consisting of a+ b+ 2 vertices (where a, b ≥ 1), two
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of which have degrees a+ 1 and b+ 1, respectively, while the remaining ones have degree

1. The number of leaves p in Da,b is thus a+ b. We may assume that a ≥ b.

Proposition 3. Let T ∈Mn,p.

1. If p = n− 1, then T = Sn.

2. If p = n− 2, then T is a double star Da,b, where a− b ≤ 1.

Proof. Let T ∈ Mn,p. The first claim is obvious since the star on n vertices is the only

tree with n − 1 leaves. It is also clear that if a tree has n − 2 leaves, then it must

be a double star, i.e., T = Da,b. Suppose that a − b ≥ 2. Let x and y be non-leaf

vertices with degrees a + 1 and b + 1, respectively, in Da,b and z a neighbor of x. Then

Da,b − {xz}+ {yz} = Da−1,b+1, and

RRR(Da−1,b+1)− RRR(Da,b) =
√
a− 1

√
b+ 1−

√
a
√
b.

To obtain a contradiction with T ∈ Mn,p we need to prove that this difference is posi-

tive, which can easily be seen, since squaring the inequality
√
a− 1

√
b+ 1 >

√
a
√
b and

simplifying the obtained expression we get a− b > 1, which holds by the assumption.

We next show that in an optimal tree the degree of a father is always at least the

degree of its children.

Lemma 4. Let bn/2c < p ≤ n − 3, T ∈ Mn,p and a, b ∈ V (T ). If a is the father of b,

then da ≥ db.

Proof. Let T ∈ Mn,p be a tree rooted in a vertex r of maximal degree and let a be the

father of b. Suppose to the contrary that da < db. Consider a path P from r to a leaf w,

which does not contain vertices a and b (such a path exists since dr > 1). Since r is of

maximal degree in T , w has degree 1 and db > 1 by the assumption, there exists an edge

xy on P such that x is the father of y, and dy < db ≤ dx. Let T ′ = T −{ab, xy}+{ay, xb}.

To end the proof consider the difference RRR(T ′)− RRR(T ):

RRR(T ′)− RRR(T ) =
√
da − 1

√
dy − 1 +

√
db − 1

√
dx − 1

−
√
da − 1

√
db − 1−

√
dy − 1

√
dx − 1

= (
√
db − 1−

√
dy − 1)(

√
dx − 1−

√
da − 1)

≥ (
√
db − 1−

√
dy − 1)(

√
db − 1−

√
da − 1).

Since da < db and dy < db we infer that RRR(T ′)−RRR(T ) > 0, which is in a contradiction

with the assumption that T ∈Mn,p.
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. . .

. . .

x

T :
y

x1 x2 . . . xa−1 xa

y1 y2 . . . yb−1 yb

x1 x2 . . . xa−1 xa

T ′ :

x

y

y1 y2 . . . yb−1 yb

. . .

. . .

Figure 2. An illustration of trees T and T ′.

In what follows we consider trees from Mn,p where the number of leaves p is at most

n− 3, and show that under this condition the inequality in Lemma 4 becomes strict.

Lemma 5. Let bn/2c < p ≤ n− 3 and T ∈Mn,p. If x is the father of y, then dx > dy.

Proof. By Lemma 4 we already know that dx ≥ dy. We will show that the assumption

dx = dy leads to a contradiction.

First suppose that dx = dy = 2. Note that by Lemma 4 there exists exactly one

path P from x to a leaf in T such that y ∈ V (P ). Denote by c this leaf, let b be

its unique neighbor and let a be the father of b (a and b may coincide with x and y,

respectively). Let t be a vertex of degree d ≥ 3 in T with a leaf neighbor u (such vertices

t and u exist since p > bn/2c). Let T ′ = T − {bc} + {uc}. It is easy to see that

RRR(T ′)− RRR(T ) =
√
d− 1− 1 > 0, a contradiction with T being in Mn,p.

Now assume dx = dy = a ≥ 3. Let x1, x2, . . . , xa−1 be degrees of neighbors of x,

different from y, and let y1, y2, . . . , ya−1 be degrees of neighbors of y, different from x. By

Lemma 2 we may assume that x1 ≤ x2 ≤ · · · ≤ xa−1 ≤ y1 ≤ y2 ≤ · · · ≤ ya−1. Let z be

the neighbor of x whose degree is xa−1 and let T ′ = T − {xz} + {yz}. For the sake of

simplicity we will write b instead of xa−1 in what follows. Then

RRR(T ′)− RRR(T ) =
√
a− 2(

√
x1 − 1 + · · ·+

√
xa−2 − 1) +

√
a(b− 1)

+
√
a(a− 2) +

√
a(
√
y1 − 1 + · · ·+

√
ya−1 − 1)

−
√
a− 1(

√
x1 − 1 + · · ·+

√
xa−2 − 1)−

√
(a− 1)(b− 1)

−(a− 1)−
√
a− 1(

√
y1 − 1 + · · ·+

√
ya−1 − 1)

= (
√
a− 2−

√
a− 1)(

√
x1 − 1 + · · ·+

√
xa−2 − 1)

+(
√
a−
√
a− 1)(

√
y1 − 1 + · · ·+

√
ya−1 − 1 +

√
b− 1)

−(a− 1) +
√
a(a− 2).

(1)
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Now we consider two cases with respect to the value of b.

Case 1. Let b = 1. Then x1 = x2 = · · · = xa−2 = 1. Note that ya−1 ≥ 2, otherwise

T is a double star, which implies p = n − 2, a contradiction to our assumption. Thus

RRR(T ′)−RRR(T ) ≥ (
√
a−
√
a− 1)−(a−1)+

√
a(a− 2) in this case. However, it turns

out that the right side of this inequality is positive. Namely, by squaring both sides of the

inequality
√
a+

√
a(a− 2) > (a− 1) +

√
a− 1 we obtain that a

√
a− 2 > (a− 1)

√
a− 1,

or equivalently
a√
a− 1

>
a− 1√
a− 2

, (2)

where the inequality (2) can be seen as g(a) > g(a− 1) where g is the function defined as

g(x) = x√
x−1 for x ∈ [1,∞). Since g′(x) = x−2

2(x−1)
√
x−1 and clearly g′(x) > 0 for x > 2, we

conclude that the function g is strictly increasing for x > 2. Consequently, the inequality

(2) holds for a ≥ 3. With this we have shown that RRR(T ′)− RRR(T ) > 0, which is in

contradiction with T ∈Mn,p.

Case 2. Now let b ≥ 2. Since x1 ≤ x2 ≤ · · · ≤ xa−2 ≤ b ≤ y1 ≤ y2 ≤ · · · ≤ ya−1, we

infer from (1) that

RRR(T ′)− RRR(T ) ≥ (
√
a−
√
a− 1)a

√
b− 1− (

√
a− 1−

√
a− 2)(a− 2)

√
b− 1

−(a− 1) +
√
a(a− 2).

(3)

The expression on the right side of inequality (3) achieves the smallest value when b = 2,

thus

RRR(T ′)− RRR(T ) ≥ (
√
a−
√
a− 1)a− (

√
a− 1−

√
a− 2)(a− 2)

−(a− 1) +
√
a(a− 2).

(4)

Our goal is to prove that for a ≥ 3 the right side of inequality (4) is positive, i.e.

(
√
a−
√
a− 1)a− (

√
a− 1−

√
a− 2)(a− 2)− (a− 1) +

√
a(a− 2) > 0,

or equivalently,

(
√
a−
√
a− 1)+(

√
a−
√
a− 1)(a−1)−(

√
a− 1−

√
a− 2)(a−2)−(a−1)+

√
a(a− 2) > 0.

To this end it suffices to prove that (
√
a−
√
a− 1)(a−1)− (

√
a− 1−

√
a− 2)(a−2) > 0,

as we have already seen in Case 1 that
√
a−
√
a− 1− (a− 1) +

√
a(a− 2) > 0. To show

this it is enough to see that the function f(x) = x(
√
x+ 1 −

√
x) is strictly increasing,

since from this it will follow that f(a− 1) > f(a− 2). Since f ′(x) =
3x−3
√

x(x+1)+2

2
√
x+1

, and

3x− 3
√
x(x+ 1) + 2 > 0 for x ≥ 0, the proof is complete as this implies a contradiction

with T being in Mn,p again.
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In the beginning of this section we assumed that T ∈ Mn,p is rooted in a vertex r

such that dr = ∆(T ). Lemma 5 implies the following.

Corollary 6. Let bn/2c < p ≤ n− 3 and T ∈Mn,p. Then there exists exactly one vertex

of maximal degree in T .

We will also need the following property.

Lemma 7. Let bn/2c < p ≤ n− 3, T ∈Mn,p and v ∈ V (T ).

(a) If v has a leaf neighbor, then its height is either 1 or 2.

(b) If the degree of every child of v is 2, then ht(v) = 2.

Proof. Suppose that T is a rooted tree and let a leaf ` be a neighbor of v. To prove

the first statement by contradiction, assume that v has a child a that has a child b with

db ≥ 2. By Lemma 5 we know that dv > da > db. Let T ′ = T − {ab, lv}+ {al, bv}. Then

RRR(T ′)− RRR(T ) =
√
db − 1

√
dv − 1−

√
db − 1

√
da − 1

=
√
db − 1(

√
dv − 1−

√
da − 1).

Since this expression is positive, we have a contradiction with T ∈Mn,p.

The second claim follows by Lemma 5, as the only possible child of a vertex with

degree 2 is a leaf.

A vertex is called a fork vertex if it is of degree at least 3, it has at least one leaf child,

and all its children are of degree 1 or 2, see Figure 3. By Lemma 7, every fork vertex in

T , where T ∈Mn,p and bn/2c < p ≤ n− 3, is of height 1 or 2.

. . . . . .

Figure 3. An example of a fork vertex.

Lemma 8. Let bn/2c < p ≤ n− 3. Then T ∈Mn,p contains a fork vertex.

Proof. Since the number of leaves is bigger than half the number of vertices, there exists

a vertex x such that dx > 2 and x has a leaf as a child. By Lemma 7, x is of height at

most 2. If x is a not a fork vertex, then it must have a child y of degree greater than 2.

As ht(y) = 1, it follows that y is a fork vertex.
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We have the following property of fork vertices in optimal trees.

Lemma 9. Let bn/2c < p ≤ n − 3 and T ∈ Mn,p a tree, rooted in r. If the degree of

every child of r is at least 2, then every fork vertex in T has a child of degree 2.

Proof. Suppose to the contrary that there exists a fork vertex y with only leaf children.

Since the degree of every child of r is at least 2, vertices y and r are different. Let x be

the father of y (x and r may coincide), and let d = dr. By Lemma 5 and the definition of

a fork vertex we have d ≥ dx > dy ≥ 3. Denote by C the set of children of r. Let ` be a

leaf child of y, and let T ′ = T − {y`}+ {r`}. Consider the difference

RRR(T ′)− RRR(T ) =
√
d
∑
u∈C

√
du − 1 +

√
dx − 1

√
dy − 2

−
√
d− 1

∑
u∈C

√
du − 1−

√
dx − 1

√
dy − 1

= (
√
d−
√
d− 1)

∑
u∈C

√
du − 1

−
√
dx − 1(

√
dy − 1−

√
dy − 2).

Since the degree of every vertex in C is at least 2, we have
∑

u∈C
√
du − 1 ≥ |C| = d >

d− 1, thus

RRR(T ′)− RRR(T ) > (d− 1)(
√
d−
√
d− 1)−

√
dx − 1(

√
dy − 1−

√
dy − 2).

Using straightforward calculations one can check that since d ≥ 4 it holds

(d− 1)(
√
d−
√
d− 1) >

1

1 +
√

2

√
d− 1,

and since dy ≥ 3 we have √
dy − 1−

√
dy − 2 ≤ 1

1 +
√

2
.

Since d ≥ dx, we obtain√
dx − 1(

√
dy − 1−

√
dy − 2) ≤ 1

1 +
√
2

√
dx − 1 ≤ 1

1 +
√
2

√
d− 1 < (d− 1)(

√
d−
√
d− 1),

implying that RRR(T ′) > RRR(T ), a contradiction with the assumption that T ∈Mn,p.

The following lemma will be crucial in the proof that an optimal tree is of height 2.

Lemma 10. Let bn/2c < p ≤ n− 3 and T ∈Mn,p a tree, rooted in r. Then r has a leaf

child.
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Proof. Suppose to the contrary that no child of the root r is a leaf. By Lemma 8 there

exists a fork vertex y in T , and y has a child of degree 2 by Lemma 9. Note that y 6= r,

since y has a leaf child by the definition of a fork vertex. Let x be the father of y (which

may coincide with r), and let d = dr. Denote by C the set of children of r and let A be

the set of children of y whose degree equals 2, and a = |A|. As already noted, a ≥ 1. Let

T ′ = T − {yv|v ∈ A} + {rv|v ∈ A}, i.e., T ′ is obtained from T by deleting every edge

between y and a vertex from A, and connecting instead r with every vertex in A.

. . .

r r

x

y

x

y

. . .. . . . . .

z1 z2 . . . za

z1 z2 . . . za

T : T ′ :

Figure 4. An illustration of trees T and T ′.

In the below estimation of RRR(T ′)−RRR(T ), we use the fact that
∑

u∈C
√
du − 1 ≥

|C| = d and dy < d (the latter holds by Lemma 5):

RRR(T ′)− RRR(T ) =
√
d+ a− 1

(∑
u∈C

√
du − 1 + a

)
+
√

(dx − 1)(dy − a− 1)

−
√
d− 1

∑
u∈C

√
du − 1− a

√
dy − 1−

√
(dx − 1)(dy − 1)

>

(∑
u∈C

√
du − 1 + a

)
(
√
d+ a− 1−

√
d− 1)

+
√

(dx − 1)(dy − a− 1)−
√

(dx − 1)(dy − 1)

≥ (d+ a)(
√
d+ a− 1−

√
d− 1)

−
√
dx − 1

(√
dy − 1−

√
dy − a− 1

)
.

To prove that RRR(T ′)−RRR(T ) > 0, which will give us a contradiction with T ∈Mn,p,

we need to see that

(d+ a)(
√
d+ a− 1−

√
d− 1) >

√
dx − 1

(√
dy − 1−

√
dy − a− 1

)
.

This inequality can be transformed to

(d+ a)
d+ a− 1− (d− 1)√
d+ a− 1 +

√
d− 1

>
√
dx − 1

dy − 1− (dy − a− 1)√
dy − 1 +

√
dy − a− 1

,
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and since a ≥ 1, further to

(d+ a)
(√

dy − 1 +
√
dy − a− 1

)
>
√
dx − 1

(√
d+ a− 1 +

√
d− 1

)
, (5)

thus proving inequality (5) is our final goal. Since a ≤ dy − 2, we have
√
dy − a− 1 ≥ 1,

and since dy ≥ 3, it holds
√
dy − 1 ≥

√
2. Therefore

√
dy − 1+

√
dy − a− 1 > 2. Clearly

we have
√
dx − 1 <

√
d+ a. Now we derive

(d+ a)
(√

dy − 1 +
√
dy − a− 1

)
> 2(d+ a)

= 2
√
d+ a

√
d+ a

>
√
dx − 1

(√
d+ a− 1 +

√
d− 1

)
,

which concludes the proof of inequality (5).

Finally we can state the main observation on optimal trees.

Lemma 11. Let bn/2c < p ≤ n− 3 and T ∈Mn,p. Then ht(T ) = 2.

Proof. By Lemma 10 and Lemma 7 we derive that ht(T ) ≤ 2. However, ht(T ) cannot

be 1, as T is a star in this case, for which p = n − 1, contradicting our assumption that

p ≤ n− 3.

4 The structure of optimal trees

Let T ∈ Mn,p and p > bn/2c. Recall that by Proposition 3, in the case when p = n− 1,

T is a star, and in the case when p = n − 2, T is a double star Da,b, where |a − b| ≤ 1.

Further, if p ≤ n − 3 the height of a tree from T ∈ Mn,p equals 2 by Lemma 11. This

implies that in a tree T besides the root r, which is the vertex of maximal degree (recall

that such a vertex is unique, by Corollary 6), we have three types of vertices, which we

group in three sets:

• A denotes the set of leaf children of r,

• B is the set of non-leaf children of r, and

• C is the set of leaves, not adjacent to r,

see Figure 6. Let a, b, c denote cardinalities of the sets A,B,C, respectively. Since n =

1 + a + b + c = 1 + b + p and we consider trees for given n and p, b is a constant, i.e.

b = n− p− 1. Further, we have a = p− c, thus it remains to find c. To describe its value,

we first prove the following lemma.
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n = 14 n = 15 n = 16

p = 8

p = 9

p = 10

p = 11

p = 12

p = 13

Figure 5. Optimal trees with given n and p such that bn/2c < p ≤ n− 3.

Lemma 12. Let bn/2c < p ≤ n − 3 and T ∈ Mn,p. Then all non-leaf children of the

root r of T have almost the same degree, i.e. they either have x or x+ 1 leaf children, for

some x ≥ 1.

Proof. Suppose to the contrary that the root r (with degree d) in T ∈Mn,p has children

a and b with degrees α and β, respectively, such that α − 1 > β > 1. By Lemma 11, all

the children of a and b are leaves. Let v be a child of a. Let T ′ = T −{av}+ {bv}. Then

RRR(T ′)− RRR(T ) =
√
d− 1(

√
α− 2 +

√
β −
√
α− 1−

√
β − 1).
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It is easy to see that under the condition α− 1 > β it holds

√
α− 2 +

√
β >
√
α− 1 +

√
β − 1,

thus RRR(T ′)− RRR(T ) > 0, a contradiction.

Since every vertex from B has either x or x+ 1 leaf children, we have x = b c
b
c. Thus

the extremal tree T is completely determined by the values a, b, c. Let b0 denote the

number of vertices in B that have x leaf children, and let b1 denote the number of vertices

in B that have x + 1 leaf children. Then b = b0 + b1. Further, we have b1 = c − bx and

b0 = b− b1 = b+ bx− c. Then

RRR(T ) =
√
d− 1

∑
u∈B

√
du − 1

=
√
d− 1(b0

√
x+ b1

√
x+ 1)

=
√
d− 1

(
(b+ bb c

b
c − c)

√
b c
b
c+ (c− bb c

b
c)
√
b c
b
c+ 1

)
.

With this we have expressed RRR(T ) as a discrete function with the variable c. Thus the

sought-after value of c is the one for which this function attains its maximum. Using a

computer program we identified c for some given values of n and p, where bn/2c < p ≤

n− 3, and the corresponding extremal trees are presented in Figure 5.

x1 x2

r

y1 . . . yb

xa

. . . . . .

z1 z2 zc−1 zc

Figure 6. The structure of optimal trees.

We conclude the paper with the outline of the above observations in the following

theorem.

Theorem 13. Let T ∈ Tn,p with bn/2c < p ≤ n − 3. Let T be rooted in a vertex r of

maximal degree d, with a leaves adjacent to r, b = n− p− 1 non-leaf neighbors of r, and

let c = n− a− b− 1. Then T ∈Mn,p if and only if the following holds:

(1) T is of height 2,

(2) the non-leaf children of r have almost the same degree (i.e. b c
b
c + 1 and d c

b
e + 1),

and
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(3) the expression

√
d− 1

(
(b+ bbc

b
c − c)

√
bc
b
c+ (c− bbc

b
c)
√
bc
b
c+ 1

)
attains the maximum value under the assumption that the conditions (1) and (2)

hold.
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