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Abstract

In the present paper, we prove lower and upper bounds for each of the ratios GA/δ,
as well as a lower bound on GA/

√
δ, in terms of the order n, over the class of con-

nected graphs on n vertices, where GA and δ denote the geometric-arithmetic index
and the minimum degree, respectively. We also characterize the extremal graphs
corresponding to each of those bounds. In order to prove our results, we provide a
modified statement of a well-known lower bound on the geometric-arithmetic index
in terms of minimum degree.

1 Introduction and definitions

We begin by recalling some definitions. In this paper, we consider only simple, undirected

and finite graphs, i.e, undirected graphs on a finite number of vertices without multiple

edges or loops. A graph is (usually) denoted by G = G(V,E), where V is its vertex set

and E its edge set. The order of G is the number n = |V | of its vertices and its size is

the number m = |E| of its edges. For two vertices u and v (u, v ∈ V ), if uv ∈ E, we say

u and v are adjacent in G. The degree of a vertex u, denoted du, is the number of vetices

adjacent to it in G. A graph G is said to be regular of degree d, or d-regular if du = d for

every vertex u in G. The minimum degree in a graph G is denoted by δ. As usual, we

denote by Sn the star and by Kn the complete graph, each on n vertices.
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Molecular descriptors play a very important role in mathematical chemistry especially in

QSAR (quantitative structure-activity relationship) and/or QSPR (quantitative structure-

property relationship) related studies. Among those descriptors, a special interest is

devoted to so-called topological indices. They are used to understand physicochemical

properties of chemical compounds in a simple way, since they sum up some of the prop-

erties of a molecule in a single number. During the last decades, a legion of topological

indices were introduced and found some applications in chemistry, see e.g., [7,8,16]. The

study of topological indices goes back to the seminal work by Wiener [18] in which he

used the sum of all shortest-path distances, nowadays known as the Wiener index, of a

(molecular) graph for modeling physical properties of alkanes.

Another very important molecular descriptor, was introduced by Randić [13]. It is called

the Randić (connectivity) index and defined as

Ra = Ra(G) =
∑
uv∈E

1√
dudv

where du denotes the degree (number of neighbors) of u in G. The Randić index is

probably the most studied molecular descriptor in mathematical chemistry. Actually,

there are more than two thousand papers and five books devoted to this index (see,

e.g., [6, 9–12] and the references therein).

Motivated by the definition of Randić connectivity index, Vukičević and Furtula [17]

proposed the geometric-arithmetic index. It is so-called since its definition involves both

the geometric and the arithmetic means of the endpoints degrees of the edges in a graph.

For a simple graph G, the geometric-arithmetic index GA(G) of a graph G is defined as

in [17] by

GA = GA(G) =
∑
uv∈E

2
√
dudv

du + dv
.

It is noted in [17] that the predictive power of GA for physico-chemical properties is

somewhat better than the predictive power of the Randić connectivity index. In [17],

Vukičević and Furtula gave lower and upper bounds for GA, identified the trees with

the minimum and the maximum GA indices, which are the star Sn and the path Pn,

respectively. In [19] Yuan, Zhou and Trinajsić gave the lower and upper bounds for GA

index of molecular graphs using the numbers of vertices and edges. They also determined

the n-vertex molecular trees with the minimum, the second, and the third minimum, as
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well as the second and the third maximum GA indices. The chemical applicability of the

geometric-arithmetic index was highlighted in [3, 5, 17].

Lower and upper bounds on the geometric-arithmetic index in terms of order n, size m,

minimum degree δ and/or maximum degree were proved in [14]. Also in [14], GA was

compared to other well known topological indices such as the Randić index, the first and

second Zagreb indices, the harmonic index and the sum connectivity index. Other lower

and upper bounds, on the geometric-arithmetic index, involving the order n the size m,

the minimum and the maximum degrees and the second Zagreb index were proved in [2]

In [1], several bounds and comparisons, involving the geometric-arithmetic index and

several other graph parameters, were proved.

In the present paper we deal with the problem of finding upper and lower bounds, with the

charcterization of the corresponding extremal graphs, for the geometric-arithmetic index

of a connected graph with given number of vertices n and minimum degree δ. Earlier

study of this problem can be found in [4, 15].

2 Main results

In this section, we first prove upper bounds on the ratios GA/δ in terms of the order n,

over the class of connected graphs on n vertices. We also charaterize the corresponding

extremal graphs. Thereafter, we prove lower bounds on the ratios GA/
√
δ and GA/δ in

terms of the order n.

To prove our first bound, namely an upper bound on GA/δ, we need the following pre-

liminary result.

Lemma 2.1. For n ≥ 3,

(n− 2)(n− 3)

2
+

2(n− 2)
√

(n− 1)(n− 2)

2n− 3
+

2
√
n− 1

n
>

(n− 1)(n− 2)

2
.

Proof :
Considering the ratio rn of the left hand side to the right hand side of the inequality we
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have

rn =

(
(n− 2)(n− 3)

2
+

2(n− 2)
√

(n− 1)(n− 2)

2n− 3
+

2
√
n− 1

n

)
·
(

2

(n− 1)(n− 2)

)
=

n− 3

n− 1
+

4

2n− 3

√
n− 2

n− 1
+

4

n(n− 2)
√
n− 1

= 1− 2

n− 1
+

4
√
n− 2

(2n− 3)
√
n− 1

+
4

n(n− 2)
√
n− 1

= 1 +
2
(

2
√

(n− 2)(n− 1)− (2n− 3)
)

(2n− 3)(n− 1)
+

4

n(n− 2)
√
n− 1

= 1 +
2
(
4(n− 2)(n− 1)− (2n− 3)2

)
(2n− 3)(n− 1)

(
2
√

(n− 2)(n− 1) + (2n− 3)
) +

4

n(n− 2)
√
n− 1

= 1− 2

(2n− 3)(n− 1)
(

2
√

(n− 2)(n− 1) + (2n− 3)
) +

4

n(n− 2)
√
n− 1

> 1 .

This shows the inequality.

Theorem 2.2. For any connected graph on n ≥ 3 with minimum degree δ and geometric-

arithmetic index GA,

GA

δ
≤ (n− 2)(n− 3)

2
+

2(n− 2)
√

(n− 1)(n− 2)

2n− 3
+

2
√
n− 1

n

with equality if and only if G is the kite Kin,n−1.

Proof :

If δ = 1, then the maximum number of edges in G is (n−1)(n−2)/2+1 which is attained

if and only if G is the kite Kin,n−1. In this case equality holds.

If δ = 1 and the number of edges is not maximum, i.e., m ≤ (n− 1)(n− 2)/2, then using

Lemma 2.1 and the fact that GA ≤ m, we have

GA ≤ (n− 1)(n− 2)

2
<

(n− 2)(n− 3)

2
+

2(n− 2)
√

(n− 1)(n− 2)

2n− 3
+

2
√
n− 1

n
.

Therefore, in this case, the inequality is strict.

If δ ≥ 2, then

GA

δ
≤ m

2
≤ n(n− 1)

4
<

(n− 2)(n− 3)

2
+

2(n− 2)
√

(n− 1)(n− 2)

2n− 3
+

2
√
n− 1

n
.

Therefore, in this case also, the inequality is strict.

The following theorem is proved in [14].
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Theorem 2.3 ( [14]). Let G be a graph on n vertices with minimum degree δ such that

δ ≥ k ≥ 2, for some integer k.

(1) If n ≤ 10, then

GA ≥ nk

2
.

(2) If n ≥ 11, then

GA ≥ min

{
nk

2
,
(k + 1)

√
k(n− 1)

3
2

n− 1 + k

}
.

We are going to make a more precise statement of the above theorem. For that purpose,

we need the following lemma.

Lemma 2.4. For an integer k ≥ 4, let

fk(t) =
(k + 1)

√
k(t− 1)

3
2

t− 1 + k
− kt

2
for t ≥ k + 1.

We have

fk(t)

{
≥ 0 if k + 1 ≤ t ≤ k + 8;
< 0 if t ≥ k + 9.

Proof :

To do the calculations related to the function in this lemma, we used the software Wol-

framAlpha (available at wolframalpha.com).

The second derivative of fk is

f ′′k (t) = −(k + 1)
√
k (t3 + (7k − 3)t2 + (3k2 − 14k + 3)t− 3k3 − 3k2 + 7k − 1)

4(t− 1 + k)4
√
t− 1

which is negative for all t ≥ k + 1 with k ≥ 4. Thus the graph of fk is concave down for

all t ≥ k + 1 with k ≥ 4. Therefore, the equation fk(t) = 0 has at most 2 solutions.

We have fk(k + 1) = 0, that is t1 = k + 1 is a solution of fk(t) = 0. Also

fk(k + 8) =
(k + 1)

√
k(k + 7)

3
2

2k + 7
− k(k + 8)

2
> 0 for all k ≥ 4

and

fk(k + 9) =
(k + 1)

√
k(k + 8)

3
2

2k + 8
− k(k + 9)

2
< 0 for all k ≥ 4,

that is fk(t) = 0 has a solution t2 satisfying k + 8 < t2 < k + 9.

In the statement of the above lemma, there is the condition that k ≥ 4. For k = 2 and

k = 3, the conclusions are slightly different, namely

f2(t) =
3
√

2(t− 1)
3
2

t+ 1
− t

{
≥ 0 if 3 ≤ t ≤ 11;
< 0 if t ≥ 12;
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and

f3(t) =
4
√

3(t− 1)
3
2

t+ 2
− 3t

2

{
≥ 0 if 3 ≤ t ≤ 12;
< 0 if t ≥ 13.

In view of the above lemma and discussion, we can state Theorem 2.3 as follows.

Theorem 2.3′. Let G be a graph on n vertices with minimum degree δ such that δ ≥ 2.

(1) If δ = 2, then

GA ≥

{
n if 3 ≤ n ≤ 11;

3
√
2(n−1)

3
2

n+1
if n ≥ 12.

(2) If δ = 3, then

GA ≥

{
3n
2

if 4 ≤ n ≤ 12;
4
√
3(n−1)

3
2

n+2
if n ≥ 13.

(3) If δ ≥ 4, then

GA ≥

{
δn
2

if δ + 1 ≤ n ≤ δ + 8;
(δ+1)

√
δ(n−1)

3
2

n+δ−1 if n ≥ δ + 9.

Note that the cases δ = 2 and δ = 3 in the above theorem were already stated in [14].

We next prove a lower bound on the ration GA/
√
δ and characterize the corresponding

extremal graphs.

Proposition 2.5. For any connected graph on n ≥ 3 vertices with minimum degree δ and

geometric-arithmetic index GA,

GA√
δ
≥ 2(n− 1)

3
2

n

with equality if and only if G is the star Sn.

Proof :

If δ = 1, the result is proved in [17].

Assume that δ ≥ 2. From Theorem 2.3, we have

GA√
δ
≥ min

{
n
√
δ

2
,
(δ + 1)(n− 1)

3
2

(n− 1 + δ)

}
.

First, we compare between

n
√
δ

2
and

2(n− 1)
3
2

n
.
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We have

n
√
δ

2
− 2(n− 1)

3
2

n
≥ n√

2
− 2(n− 1)

3
2

n
=

n2 − 2(n− 1)
3
2

√
2n

.

The study of the function

f(t) =
t2 − 2(t− 1)

3
2

√
2t

shows that f(t) > 0 for all t ≥ 1. Therefore

n
√
δ

2
>

2(n− 1)
3
2

n

for all n ≥ δ + 1 ≥ 3.

Now, we compare between

(δ + 1)(n− 1)
3
2

(n− 1 + δ)
and

2(n− 1)
3
2

n
,

or equivalently between
δ + 1

(n− 1 + δ)
and

2

n
.

We have

δ + 1

(n− 1 + δ)
− 2

n
=

(δ + 1)n− 2(n− 1 + δ)

n
=

(δ − 1)n− 2(δ − 1)

n

=
(δ − 1)(n− 2)

n
> 0 for all n ≥ δ + 1 ≥ 3.

Thus
δ + 1

(n− 1 + δ)
>

2

n

for all n ≥ δ + 1 ≥ 3.

In conclusion

min

{
n
√
δ

2
,
(δ + 1)(n− 1)

3
2

(n− 1 + δ)

}
≥ 2(n− 1)

3
2

n

for all n ≥ δ + 1 ≥ 3. This completes the proof.

Under certain conditions, the inequality in the above proposition remains valid if GA/
√
δ

is replaced by GA/δ, as next stated.

Proposition 2.6. If G is a connected graph on n vertices with minimum degree δ such

that n ≥ max
{

13, 2
√
δ(
√
δ + 1)/(

√
δ − 1)

}
, then

GA

δ
≥ 2(n− 1)

3
2

n

with equality if and only if G is the star Sn.

-185-



Proof :

Again if δ = 1, the result is proved in [17].

Assume that δ ≥ 2. In this case, from Theorem 2.3, we have

GA

δ
≥ min

{
n

2
,
(δ + 1)(n− 1)

3
2

(n− 1 + δ)
√
δ

}
.

First, we compare between
n

2
and

2(n− 1)
3
2

n
.

For t ≥ 2, consider the function

f(t) =
t

2
− 2(t− 1)

3
2

t
.

This function is continuous and its second derivative is

f ′′(t) =
t(t+ 4)− 8

2t3
√
t− 1

.

We have f ′′(t) > 0 for all t ≥ 2 and therefore the function f(t) is concave up for t ≥ 2.

Thus the equation f(t) = 0 has (at most) two solutions: one of them is t1 = 2 and the

other one, say t2, satisfies 12 < t2 < 13 (since f(12) < 0 and f(13) > 0). We conclude

that f(t) > 0, which means

n

2
>

2(n− 1)
3
2

n
for all n ≥ 13.

Now, we compare between

(δ + 1)(n− 1)
3
2

(n− 1 + δ)
√
δ

and
2(n− 1)

3
2

n
,

or equivalently between
δ + 1

(n− 1 + δ)
√
δ

and
2

n
.

We have

δ + 1

(n− 1 + δ)
√
δ
− 2

n
=

(δ + 1)n− 2(n− 1 + δ)
√
δ

n(n− 1 + δ)
√
δ

=
(δ − 2

√
δ + 1)n− 2(δ − 1)

√
δ

n(n− 1 + δ)
√
δ

=
(
√
δ − 1)2n− 2(

√
δ − 1)(

√
δ + 1)

√
δ

n(n− 1 + δ)
√
δ

=

√
δ − 1

n(n− 1 + δ)
√
δ

(
(
√
δ − 1)n− 2(

√
δ + 1)

√
δ
)
.
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Thus
δ + 1

(n− 1 + δ)
√
δ
>

2

n
if and only if n >

2
√
δ(
√
δ + 1)√

δ − 1
.

The combination of both cases completes the proof.
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