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Abstract

Let G be a connected graph. The Wiener index of G is the sum of all distances
in G, that is, W (G) =

∑
u,v∈V (G) dist(u, v). On the other hand, the Graovac-

Pisanski index of G is GP(G) = |V (G)|
2|Aut(G)|

∑
u∈V (G)

∑
α∈Aut(G) dist(u, α(u)), where

Aut(G) is the group of automorphisms of G. In this paper we study the difference
∆W (G) = W (G)−GP(G). We show that this difference is nonnegative for trees, but
there are graphs G for which ∆W (G) is negative. We also find infinitely many graphs
G which are not vertex-transitive and yet ∆W (G) = 0. For trees we completely
determine the set of values of ∆W (G).

1 Introduction

All graphs considered in this paper are connected. Let G be a graph. We denote the
vertex and edge sets of G by V (G) and E(G), respectively. For two vertices u and v, by
dist(u, v) we denote the distance between u and v. Wiener index of a graph, W (G), was
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introduced by Wiener in [24]. It is the sum of distances between all (unordered) pairs of
vertices in a graph, i.e.,

W (G) =
∑

u,v∈V (G)

dist(u, v).

A great deal of knowledge on this index is accumulated in several survey papers [7, 8, 13,
14, 25].

Let G be a graph and let U ⊆ V (G). The Wiener index of U in G is defined as the
sum of distances between all vertex pairs in U

WG(U) =
∑
u,v∈U

dist(u, v).

Obviously, WG(V (G)) = W (G). Let v ∈ V (G). By wU(v) we denote the sum of distances
from v to all vertices of U . Hence,

wU(v) =
∑
u∈U

dist(u, v).

If U = V (G), we write wG(v) instead of wV (G)(v). Using this notation one can rewrite
the Wiener index as follows

W (G) = 1
2

∑
v∈V (G)

wG(v).

Graovac-Pisanski index, GP(G), of a graph was introduced in [10]. It is defined as

GP(G) =
|V (G)|

2|Aut(G)|
∑

u∈V (G)

∑
α∈Aut(G)

dist(u, α(u)),

where Aut(G) is the group of automorphisms of G.
Graovac-Pisanski index (originally known as the modified Wiener index) presents an

algebraic approach for generalizing the Wiener index. The definition of Graovac-Pisanski
index is based on distances but its advantage is in considering also the symmetries of a
graph. It is known that symmetries of a molecule have an influence on its properties [20].
Črepnjak et al. showed that the Graovac-Pisanski index of some hydrocarbon molecules
is correlated with their melting points [5]. Graovac-Pisanski index was considered for
nanostructures, linear polymers, and some classes of fullerenes and fullerene-like molecules
[1–3, 17–19,21–23].

Upper and lower bounds for Graovac-Pisanski index were considered in [18]. Graovac-
Pisanski index was further considered from computational point of view in [9, 22]. Exact
formulae for the Graovac-Pisanski index for some graph operations are present in [4].
Recent studies were devoted to identifying graphs with maximal values of this index
among n-vertex trees and unicyclic graphs [15, 16].
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The group of automorphisms of G partitions V (G) into orbits. We say that u, v ∈
V (G) belong to the same orbit if there is an automorphism α ∈ Aut(G) such that α(u) = v.
Let V1, V2, . . . , Vt be all the orbits of Aut(G) in G. In [10] it was shown that for every
graph G

GP(G) = |V (G)| ·
t∑

i=1

WG(Vi)

|Vi|
, (1)

where V1, V2, . . . , Vt are the orbits of Aut(G). Since all vertices u in an orbit U have the
same value of wU(u), we can rewrite (1) in the following way (see [6])

GP(G) =
|V (G)|

2
·

t∑
i=1

wVi
(vi), (2)

where V1, V2, . . . , Vt are the orbits of Aut(G) and v1, v2, . . . , vt, respectively, are their
representatives. Using (2) one can see that the Graovac-Pisanski index of every graph
is either an integer or half of an integer number. Moreover, in [6] it was shown that for
bipartite graphs the following statement holds.

Proposition 1. If G is a bipartite graph then GP(G) is an integer number.

Since trees are bipartite graphs, Proposition 1 implies that GP(T ) is an integer number
if T is a tree. If a graph has no nontrivial automorphisms, that is if all its orbits consist
of single vertices, then its Graovac-Pisanski index is 0.

Some researchers have shown interest in the difference between Wiener index and
Graovac-Pisanski index. Denote

∆W (G) = W (G)−GP(G).

This difference was first considered in [11], and in [12] it was computed for some families
of polyhedral graphs. In both these papers one can find an erroneous statement that a
graph G is vertex-transitive if and only ∆W (G) = 0. It was observed already in [10] that
for a vertex-transitive graph ∆W (G) = 0, however we find infinitely many graphs G which
are not vertex-transitive and yet ∆W (G) = 0, see Section 2. In the same section we show
that there exist graphs G for which ∆W (G) is negative. In the last section we prove that
∆W (G) is nonnegative for trees. Moreover, we completely determine the set of values of
∆W (G) if G is a tree.

2 General graphs
Let G be a graph. As already mentioned, GP(G) = W (G) if G is vertex-transitive, i.e.,
if there is just one orbit of vertices of Aut(G). On the other hand, if G has |V (G)|
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orbits of Aut(G) then GP(G) = 0. Regarding the number of orbits these two cases are
extremal, and so maybe one could expect that 0 ≤ GP(G) ≤ W (G). While the inequality
0 ≤ GP(G) follows from the definition and it is obvious that GP(G) = 0 if and only if
G has |V (G)| orbits, the inequality GP(G) ≤ W (G) is not so obvious although one can
object that all the distaces contribute to W (G) while only some of them contribute to
GP(G). The problem is caused by the normalizing factors |V (G)| and 1

|Vi| in (1). From
the terms in (1) one can deduce that ∆W (G) = W (G)−GP(G) can be negative if there
are “big distances” inside orbits and “small distances” between them. A typical example
of such a situation is a complete bipartite graph Ka,b, where a 6= b. We have the following
statement.

Proposition 2. Let a > b ≥ 1. Then

∆W (Ka,b) = a+ b− ab.

Proof. Let a > b ≥ 1. In Ka,b, denote by V1 and V2 the partite sets with a and b vertices,
respectively. Further, let v1 ∈ V1 and v2 ∈ V2. Then

wG(v1) = 2(a− 1) + b, wV1(v1) = 2(a− 1),

wG(v2) = 2(b− 1) + a wV2(v2) = 2(b− 1).

Hence we have

W (Ka,b) = 1
2
· a(2a+ b− 2) + 1

2
· b(a+ 2b− 2) = a2 + b2 + ab− a− b,

GP(G) = (a+ b)
(
1
2
· 2(a− 1) + 1

2
· 2(b− 1)

)
= a2 + b2 + 2ab− 2a− 2b,

and so ∆W (Ka,b) = a+ b− ab.

Observe that ∆W (Ka,1) = 1. However, if b ≥ 2 then

a+ b− ab = b− (b− 1)a ≤ b− a < 0.

Hence, we obtain the following corollary.

Corollary 3. For every n ≥ 5 there is a graph G on n vertices such that

∆W (G) < 0.

It is easy to check that all connected graphs G on n ≤ 4 vertices satisfy ∆W (G) ≥ 0.
But Corollary 3 naturally opens the following problem.

Problem 4. Let G be a graph on n vertices. What is the minimum value of ∆W (G)?
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Denote by m(n) the minimum value of ∆W (G) from Problem 4. For Ka,b we cannot
have a = b. Therefore, the minimum value of ∆W (Ka,b) occurs when a − (n−a) = 1 or
a− (n−a) = 2 depending on the parity of n. Hence,

m(n) ≤ n+ 1
4
− n2

4
if n is odd,

m(n) ≤ n+ 1− n2

4
if n is even.

However, it is not known whether these bounds are tight.

Now we turn our attention to graphs G for which ∆W (G) = 0. Observe that a+b−ab =

0 is equivalent to a = b
b−1

for b ≥ 2. Since a is an integer we get b = 2, implying a = b,
which is false. Hence, there are no a > b ≥ 1 such that ∆W (Ka,b) = 0. But there are
graphs G which are not vertex-transitive and yet ∆W (G) = 0.

Let A, B and C be disjoint sets having a, b and c vertices, respectively. We define a
graph Ga,b,c as follows. V (Ga,b,c) = A ∪B ∪ C and e = uv is an edge of Ga,b,c if and only
if either u ∈ A and v ∈ B, or u ∈ B and v ∈ C, or u, v ∈ C, u 6= v. In fact, Ga,b,c is
(Da ⊕ Kc) + Db where Dn is an empty graph on n vertices, Kn is a complete graph on
n vertices, ⊕ denotes the disjoint union and + denotes the join of graphs. Since Ga,b,1 is
Ka+1,b, we require c ≥ 2. We have the following statement.

Lemma 5. Let a, b ≥ 1 and c ≥ 2. Then

∆W (Ga,b,c) =
1
2
(−2ab+ ac− bc+ 3a+ 3b+ 4c).

Proof. Observe that A, B and C are the orbits of Aut(Ga,b,c). Let u ∈ A, v ∈ B and
z ∈ C. We have

wG(u) = 2(a− 1) + b+ 2c, wA(u) = 2(a− 1),

wG(v) = a+ 2(b− 1) + c, wB(v) = 2(b− 1),

wG(z) = 2a+ b+ (c− 1), wC(z) = (c− 1).

Hence

W (Ga,b,c) = 1
2

(
a(2a+ b+ 2c− 2) + b(a+ 2b+ c− 2) + c(2a+ b+ c− 1)

)
= 1

2
(2a2 + 2b2 + c2 + 2ab+ 4ac+ 2bc− 2a− 2b− c)

GP(Ga,b,c) = 1
2
(a+ b+ c)

(
(2a− 2) + (2b− 2) + (c− 1)

)
= 1

2
(2a2 + 2b2 + c2 + 4ab+ 3ac+ 3bc− 5a− 5b− 5c)

which gives ∆W (Ga,b,c) as required.
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Observe that if a = b then

∆W (Ga,b,c) = 3a− a2 + 2c.

Hence if c = a2−3a
2

we get ∆W (Ga,a,c) = 0. The expression a2 − 3a is even for every value
of a but c ≥ 2 implies a ≥ 4. So we have the following corollary.

Corollary 6. Let a ≥ 4 and let c = a2−3a
2

. Then ∆W (Ga,a,c) = 0.

Corollary 6 gives an infinite class of graphs G which are not vertex-transitive and yet
W (G) = GP(G). The problem, for which values n there are non-vertex-transitive graphs
G on n vertices such that ∆W (G) = 0, remains open.

3 Trees

If e ∈ E(G), then G− e denotes the graph with vertex set V (G) and edge set E(G) \ {e}.
As shown in [24], if G is a tree, then its Wiener index can be computed using the following
lemma.

Lemma 7. Let T be a tree. For every edge e in T , denote by n(e) and n′(e) orders of the
two trees of T − e. Then

W (T ) =
∑

e∈E(T )

n(e) · n′(e).

In Lemma 7, every summand counts how many times an edge occurs on a (shortest,
and unique) path connecting two vertices of V (T ). Therefore, we have the following
analogue of Lemma 7 for WG(U).

Lemma 8. Let T be a tree and let U ⊆ V (T ). For every edge e in T , denote by nU(e)

and n′
U(e), respectively, the number of vertices of U in the two trees of T − e. Then

WT (U) =
∑

e∈E(T )

nU(e) · n′
U(e).

By Pn we denote a path on n vertices. Since every tree has at most two central vertices
and since vertices which are central cannot be in the same orbit as non-central ones, P1

and P2 are the only trees which have just one orbit of the group of automorphisms, i.e.,
which are vertex-transitive. Hence, W (T ) = GP(T ) if T is P1 or P2. For all other trees
the following statement is true.

Theorem 9. Let T be a tree on at least three vertices. Then

W (T ) > GP(T ).
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Proof. By (1) we have to prove

W (T ) > |V (T )| ·
t∑

i=1

WT (Vi)

|Vi|
, (3)

where V1, V2, . . . , Vt are the orbits of Aut(T ). We prove this statement using Lemma 8.
Fix an endvertex of T and denote it by q. For every U ⊆ V (T ), by nU(e) we denote
the number of vertices of U in the component of T − e containing q, while n′

U(e) is the
number of vertices of U in the other component of T −e. For every orbit Vi of Aut(T ), let
ni = |Vi| and let ai(e) = nVi

(e). Then n′
Vi
(e) = ni − ai(e). Since nV (G)(e) =

∑t
i=1 ai(e),

n′
V (G)(e) =

∑t
i=1

(
ni − ai(e)

)
and |V (T )| =

∑t
i=1 ni, after reordering the sums, (3) is

equivalent to∑
e∈E(T )

( t∑
i=1

ai(e) ·
t∑

i=1

(
ni−ai(e)

))
>

∑
e∈E(T )

t∑
i=1

ni ·
( t∑

i=1

ai(e) ·
(
ni−ai(e)

)
ni

)

Hence, (3) is true if for every edge e we have
t∑

i=1

ai(e) ·
t∑

i=1

(
ni − ai(e)

)
≥

t∑
i=1

ni ·
t∑

i=1

ai(e) ·
(
ni − ai(e)

)
ni

and for at least one edge the inequality is strict.
So let e ∈ E(T ). Denote pi = ai(e)/ni, 1 ≤ i ≤ t. Then 0 ≤ pi ≤ 1. Observe that

0 ≤ (pi − pj)
2 and equality holds if and only if pi = pj. Hence,

0 ≤
∑

1≤i<j≤t

ninj(pi − pj)
2 (4)

and equality holds if and only if p1 = p2 = · · · = pt. However, (4) is equivalent to the
following

t∑
i=1

n2
i p

2
i +

∑
1≤i<j≤t

2ninjpipj ≤
t∑

i=1

n2
i p

2
i +

∑
1≤i<j≤t

(ninjp
2
i + ninjp

2
j)

t∑
i=1

nipi ·
t∑

i=1

nipi ≤
t∑

i=1

ni ·
t∑

i=1

nip
2
i

t∑
i=1

nipi ·
t∑

i=1

ni −
t∑

i=1

nipi ·
t∑

i=1

nipi ≥
t∑

i=1

ni ·
t∑

i=1

nipi −
t∑

i=1

ni ·
t∑

i=1

nip
2
i

t∑
i=1

nipi ·
t∑

i=1

(
ni − nipi

)
≥

t∑
i=1

ni ·
t∑

i=1

nipi(1− pi)

t∑
i=1

ai(e) ·
t∑

i=1

(
ni − ai(e)

)
≥

t∑
i=1

ni ·
t∑

i=1

ai(e) ·
(
ni − ai(e)

)
ni

(5)
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and equality holds in (5) if and only if a1(e)
n1

= a2(e)
n2

= · · · = at(e)
nt

.
Let e∗ = qu, where q is the fixed endvertex. Since T has at least three vertices, q

and u have different degrees, and so they belong to different orbits of Aut(T ). Assume
that q ∈ V1 and u ∈ V2. Then nV1(e

∗) = a1(e
∗) = 1 while nV2(e

∗) = a2(e
∗) = 0. Hence

p1 = a1(e
∗)/n1 > 0 while p2 = a2(e

∗)/n2 = 0. So in this case we have a strict inequality
in (5) which proves (3).

Now we find the values of ∆W (T ), when T is a tree. For this we need to calculate ∆W

for four types of trees, namely T 1
a , T 1

a,b, T 2
a and T 2

a,b. The graphs T 1
a and T 1

a,b have one
central vertex, say c. T 1

a is obtained when a pendant vertices are attached to c, where
a ≥ 2. Hence, T 1

a is the star Ka,1. T 1
a,b is obtained from T 1

a by attaching b pendant vertices
to every endvertex of T 1

a , where b ≥ 1. Observe that T 1
a,b has 1 + a + ab vertices. The

graphs T 2
a and T 2

a,b have two adjacent central vertices, say c1 and c2. T 2
a is obtained from

the edge c1c2 by attaching a pendant vertices to each endvertex of c1c2, where a ≥ 1. So
T 2
a has 2 + 2a vertices. T 2

a,b is obtained from T 2
a by attaching b pendant vertices to every

endvertex of T 2
a , where b ≥ 1. Observe that T 2

a,b has 2 + 2a + 2ab vertices. We have the
following lemma.

Lemma 10. We have

∆W (T 1
a ) = 1, ∆W (T 1

a,b) = 2 + a+ b,

∆W (T 2
a ) = 2, ∆W (T 2

a,b) = 4 + 2a+ 2b.

Proof. By Proposition 2, ∆W (T 1
a ) = 1, so we consider only T 1

a,b, T 2
a and T 2

a,b here. Let T

be a tree with orbits V1, V2, . . . Vt, where ni = |Vi| for 1 ≤ i ≤ t, and for e ∈ E(T ) let

∆W (e) =
t∑

i=1

ai(e) ·
t∑

i=1

(
ni−ai(e)

)
−

t∑
i=1

ni ·
t∑

i=1

ai(e) ·
(
ni−ai(e)

)
ni

,

where a1(e), a2(e), . . . , at(e) are numbers of vertices of V1, V2, . . . , Vt, respectively, in the
component of T − e containing a specific vertex q. As shown in the proof of Theorem 9,

∆W (T ) =
∑

e∈E(T )

∆W (e).

Observe that this specific vertex q can be chosen for every edge e separately, important
is only that all a1(e), a2(e), . . . , at(e) relate to the same component of T − e.

The graph T 1
a,b has exactly three orbits of vertices. Let V1 be the orbit of endvertices

of T 1
a,b, let V2 be the orbit of vertices adjacent to endvertices and let V3 = {c}. Further,

let e1 be a pendant edge and let e2 be an edge incident with c. For computing ∆W (e1),
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we choose q to be the endvertex of e1 of degree 1, and to obtain ∆W (e2) let q be the
endvertex of e2 different from c. Then

∆W (e1) = 1 · (a+ab)− (1+a+ab)
(

1·(ab−1)
ab

+ 0·a
a
+ 0·1

1

)
= 1+a

ab
,

∆W (e2) = (1+b) · (a−b+ab)− (1+a+ab)
(

b·(ab−b)
ab

+ 1·(a−1)
a

+ 0·1
1

)
= 1+b

a
.

Since T 1
a,b has ab edges like e1 (that is, incident with a pendant vertex) and a edges like

e2, we have ∆W (T 1
a,b) = 2 + a+ b.

Analogously, the graph T 2
a has exactly two orbits of vertices. Let V1 be the orbit of

endvertices of T 2
a and let V2 = {c1, c2}. Further, let e be a pendant edge. Then

∆W (e) = 1 · (1 + 2a)− (2 + 2a)
(

1·(2a−1)
2a

+ 0·2
2

)
= 1

a
,

while ∆W (c1c2) = 0 since ai(c1c2)/ni =
1
2

for 1 ≤ i ≤ 2 in this case. Since T 2
a has 2a

pendant edges, we get ∆W (T 2
a ) = 2.

The graph T 2
a,b has three orbits of vertices. Let V1 be the orbit of endvertices of T 2

a,b,
let V2 be the orbit of vertices adjacent to endvertices and let V3 = {c1, c2}. Further, let
e1 be a pendant edge and let e2 be an edge incident with a central vertex, e 6= c1c2. Then

∆W (e1) = 1 · (1+2a+2ab)− (2+2a+2ab)
(

1·(2ab−1)
2ab

+ 0·2a
2a

+ 0·2
2

)
= 1+a

ab
,

∆W (e2) = (1+b) · (1+2a−b+2ab)− (2+2a+2ab)
(

b·(2ab−b)
2ab

+ 1·(2a−1)
2a

+ 0·2
2

)
= 1+b

a
,

while ∆W (c1c2) = 0 since ai(c1c2)/ni =
1
2

for 1 ≤ i ≤ 3 in this case. Since T 2
a,b has 2ab

edges like e1 and 2a edges like e2, we have ∆W (T 2
a,b) = 2 + 2a+ 2 + 2b = 4 + 2a+ 2b.

Using Lemma 10 we can prove the following theorem.

Theorem 11. There exists a tree T satisfying ∆W (T ) = ` if and only if ` is integer,
` ≥ 0 and ` /∈ {3, 4}.

Proof. By Proposition 1 and Theorem 9, we have that ` is a nonnegative integer.
Since the paths P1 and P2 are vertex-transitive, ∆W (P1) = ∆W (P2) = 0. By Lemma 10,

∆W (T 1
a ) = 1 and ∆W (T 2

a ) = 2. Further, ∆W (T 1
a,b) = 2 + a + b, where a ≥ 2 and b ≥ 1.

Hence, if ` ≥ 5 then ∆W (T 1
`−3,1) = ` since `− 3 ≥ 2. In the rest of the proof we show that

` cannot be 3 or 4.
So let T be a tree such that ∆W (T ) = 3 or ∆W (T ) = 4. Further, let Vi be an orbit

containing only pendant vertices of T . Observe that Vi does not need to contain all
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pendant vertices of T . As in the previous proofs, denote ni = |Vi|. Let e be an edge
containing a vertex of Vi. Then its contribution to ∆W (T ) is

∆W (e) = 1 · (n− 1)− n · 1·(ni−1)
ni

= n−ni

ni
,

where n = |V (T )|. Since there are exactly ni edges with one endvertex in Vi, these edges
contribute to ∆W (T ) by n− ni.

Now suppose that there are two distinct orbits, say V1 and V2, containing (possibly
not all) endvertices of T . Then pendant edges contribute to ∆W (T ) by at least (n−n1)+

(n − n2) = 2n − n1 − n2. Since ∆W (T ) 6= 0, T has at least three vertices, and so the
central vertex of T cannot be pendant. Denote by k the number of vertices of T which
are not in V1 ∪ V2, i.e. k = n − n1 − n2. Then the pendant edges contribute to ∆W (T )

by at least n+ k. Since n ≥ 3 and k ≥ 1, we have n+ k ≥ 4 and equality holds only if T
has exactly three vertices. But then T is P3 and all endvertices of T belong to one orbit
of Aut(T ), a contradiction.

So all endvertices of T belong to a single orbit of Aut(T ), say V1. Observe that if
there are at least five vertices in T which are not pendant, then n1 ≤ n − 5 and so the
pendant edges contribute to ∆W (T ) by at least 5, a contradiction. Hence, deleting all
endvertices of T results in a tree T ′ which has at most 4 vertices. To complete the proof
we distinguish 5 cases according to the structure of T ′.

Case 1: |V (T ′)| = 1. In this case T is T 1
a for some a ≥ 2, and so ∆W (T ) = 1, by

Lemma 10.
Case 2: |V (T ′)| = 2. Then T is T 2

a for some a ≥ 1, and so ∆W (T ) = 2, by Lemma 10.
Case 3: |V (T ′)| = 3. Then T ′ is the path P3. The graph T is obtained from T ′

by attaching pendant vertices to both endvertices of P3 and possibly also to the central
vertex of P3. But since there is only one orbit of pendant vertices in T , there are no
pendant vertices adjacent to the central vertex of P3. Hence, T is T 1

2,b for some b ≥ 1.
Consequently, ∆W (T ) = 2 + 2 + b ≥ 5, by Lemma 10.

Case 4: |V (T ′)| = 4 and T ′ is the path P4. Then analogously as above one can show
that T is T 2

1,b for some b ≥ 1. But then ∆W (T ) = 4 + 2 + 2b ≥ 8, by Lemma 10.
Case 5: |V (T ′)| = 4 and T ′ is the claw T 1

3 . Then T is T 1
3,b for some b ≥ 1, which

means that ∆W (T ) = 2 + 3 + b ≥ 6, by Lemma 10.
Since we obtained a contradiction in all cases, the proof is complete.
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