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Abstract

In this paper, we use the concept of kinetic reactant deficiency to determine the
existence of complex balanced equilibria of power law kinetic systems. We previously
introduced a class of power law kinetic systems whose kinetic order vectors (which we
call “interactions”) are reactant-determined (i.e. reactions with the same reactant
complex have identical vectors) and are linear independent per linkage class, denoted
by PL-TIK systems. A subset of PL-TIK systems was found to admit a complex
balanced equilibrium. In this work, we prove that zero kinetic reactant deficiency
systems are precisely the PL-TIK systems. Our main result is the existence of
complex balanced equilibria for weakly reversible systems with zero kinetic reactant
deficiency (for any rate constant), hence, generalizing the previous study.

1 Introduction

This paper deals with weakly reversible power law kinetic (PLK) systems and appropriate

conditions to admit complex balanced equilibria. We say that a kinetic system is complex

balanced if it contains a complex balanced steady state. At this state, for each complex,
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formation and degradation are at equilibrium. The concept first appeared in the works

of Horn, Jackson and Feinberg [9, 13, 14]. One of their early major results was to show

that any weakly reversible, zero deficiency CRN with mass action kinetics has a complex

balanced equilibrium for any set of rate constants [10].

In [18], we discovered that a subclass of weakly reversible PL-TIK systems do admit

a complex balanced equilibrium, without regard to the deficiency of a system. PL-TIK

systems are power law kinetic systems whose reactions with the same reactant complexes

have the same kinetic order vectors (called interactions), which are linear independent

per linkage class.

The novelty of this present paper is the generalization of this result to the whole class of

PL-TIK systems (see Theorem 6). More interestingly, this result is established by defining

a parameter called the kinetic reactant deficiency (see Definition 10) which measures the

degree of the kinetic interactions. This new parameter is defined analogously as that

of the kinetic deficiency of Müller-Regensburger [16, 17] which is necessarily limited to

cycle-terminal networks. In Proposition 2, it is shown that PL-TIK systems are precisely

those networks with kinetic reactant deficiency equal to 0. We can also consider our

main result (the Zero Kinetic Reactant Deficiency Theorem) as a “Weak Reversibility

Theorem” in the sense posed in our previous work [18]. That is, a weakly reversible zero

kinetic reactant deficiency system has a positive equilibrium. This result is regardless of

the network deficiency of the system.

The paper is organized as follows. Fundamentals of chemical reaction networks and

kinetics needed for the later sections are provided in Section 2. The PLK systems with

reactant determined kinetics and their subclasses such as PL-TIK systems are discussed

in Sections 3.1 and 3.2. The concept of reactant deficiency is introduced at the beginning

of Section 3.3 and it is shown in Section 3.4 how PL-RDK systems with zero kinetic reac-

tant deficiency can admit a positive equilibrium. A parametrization tool of the positive

equilibria is also developed in Section 3.5. The main result of the paper which is the

Zero Kinetic Reactant Deficiency Theorem is proved in Section 4. Our results are also

illustrated through the multisite phosphorylation system and an SIR epidemic network.

Lastly, we conclude and provide future perspectives in Section 5.
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2 Preliminaries to chemical reaction network theory

In a chemical reaction, a species is represented by a variable. We denote the nonempty

finite set of distinct species by S = {X1, X2, ..., Xm} with cardinality of S equals m. A

complex is a linear combination of the species with nonnegative integer coefficients. We

denote the nonempty finite set of complexes by C = {C1, C2, ..., Cn} where the cardinality

of C is equal to n. A reaction is an ordered pair of distinct complexes. Thus, if we denote

this nonempty finite set of reactions by R, we have R ⊂ C ×C . Let r be the cardinality

of R. Consider the reaction

αX1 + βX2 → γX3,

X1, X2 and X3 are the species. αX1 + βX2 and γX3 are the complexes. In particular,

αX1+βX2 is called the reactant (or source) complex and γX3 the product complex.

The nonnegative coefficients α, β and γ are called stoichiometric coefficients. Under

power law kinetics (PLK), the rate at which the reaction occurs is given by

K = kXa
1X

b
2

with rate constant k > 0 and a, b ∈ R. We call a and b as kinetic orders. Thus, the

reaction rate is a monomial in the reactant concentrations X1 and X2 with the exponents

a and b. Assuming mass action kinetics (MAK), (a subset of PLK), we have a = α and

b = β, that is, the stoichiometric coefficients of the reactant complexes are the kinetic

orders. Within a network involving additional species and reactions, the above reaction

contributes to the dynamics of the species concentrations as

Ẋ =


Ẋ1

Ẋ2

Ẋ3
...

 = kXa
1X

b
2


−α
−β
γ
...

+ . . .

2.1 Chemical reaction networks as directed graphs

Chemical reaction networks (CRNs) can be represented as a directed graph or reaction

graph with the rate constants as we will show in our first example.

Example 1. Consider the chemical reaction network (CRN) below [12].

E1 + A AE1 E1 + AP

E2 + AP APE2 E2 + A

k12

k21

k23

k45

k54

k56
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The vertices or nodes are the complexes and the reactions are the edges. Here, we have

m = 6 (species), n = 6 (complexes), nr = 4 (reactant complexes) and r = 6 (reactions).

We can write

S = {X1, X2, X3, X4, X5, X6} = {E1, A,AE1, AP , E2, APE2}

C = {C1, C2, C3, C4, C5, C6} = {E1 + A,AE1, E1 + AP , E2 + AP , APE2, E2 + A} .

On the other hand, the set of reaction R consists of the following:

R1 : E1 + A→ AE1

R2 : AE1 → E1 + A

R3 : AE1 → E1 + AP

R4 : E2 + AP → APE2

R5 : APE2 → E2 + AP

R6 : APE2 → E2 + A.

In a CRN, 0 is called the zero complex symbolizing an “outside” reactor. 0→ X and

X → 0 are called inflow reaction and outflow reaction for any complex X.

The linkage classes of a CRN are the subgraphs of a reaction graph where for any

complexes Ci, Cj of the subgraph, there is a path between them. Thus, the number of

linkage classes, denoted as l, of Example 1 is two (l = 2). The linkage classes are:

L1 = {R1, R2, R3}

L2 = {R4, R5, R6} .

A subset of a linkage class where any two vertices are connected by a directed path in

each direction is said to be a strong linkage class. Considering Example 1, there are

four strong linkage classes whose number is denoted by sl. We also identify the terminal

strong linkage classes, the number denoted as t, to be the strong linkage classes where

there is no reaction from a complex in the strong linkage class to a complex outside the

same strong linkage class. The terminal strong linkage classes can be of two kinds: cycles

(not necessarily simple) and singletons (which we call “terminal points”). In Example 1,

we have t = 2 where both are terminal points.

We now define important CRN classes. A CRN is weakly reversible if sl = l, i.e.

every linkage class is a strong linkage class. A CRN is t-minimal if t = l. Let nr be
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the number of reactant complexes of a CRN. Then n − nr is the number of terminal

points. A CRN is called cycle-terminal if and only if n− nr = 0, i.e., each complex is a

reactant complex. It is called point-terminal if and only if n− nr = t and point- and

cycle-terminal if n− nr < t.

Clearly, the CRN in Example 1 is not weakly reversible since 4 = sl 6= l = 2. However,

this paper focuses on weakly reversible networks.

The dynamics of the CRN of Example 1 can be written as

Ẋ =



˙[E1]
˙[A]
˙[AE1]
˙[AP ]
˙[E2]
˙[APE2]


=

R1 R2 R3 R4 R5 R6


−1 1 1 0 0 0
−1 1 0 0 0 1
1 −1 −1 0 0 0
0 0 1 −1 1 0
0 0 0 −1 1 1
0 0 0 1 −1 −1


k12[E1]

f11 [A]f12

k21[AE1]
f23

k23[AE1]
f33

k45[E2]
f44 [AP ]f45

k54[APE2]
f56

k56[APE2]
f66

 = NK(X).

Here, N is called the stoichiometric matrix and K(X) is called the kinetic vector. In

this paper, we are interested with kinetic vectors under power law kinetics. They have

the form

Ki(x) = kiΠ
m
j=1x

Fij ∀i ∈ 1, r

with ki ∈ R+ and Fij ∈ R. Power law kinetics is defined by an r ×m matrix F = [Fij],

called the kinetic order matrix, and vector k ∈ Rr, called the rate vector. In our

running example, the kinetic order matrix is

F =

E1 A AE1 AP E2 APE2


f11 f12 0 0 0 0 R1

0 0 f23 0 0 0 R2

0 0 f33 0 0 0 R3

0 0 0 f44 f45 0 R4

0 0 0 0 0 f56 R5

0 0 0 0 0 f66 R6

. (2.1)

A particular example of power law kinetics is the well-known mass action kinetics

(MAK) where the kinetic order matrix consists of stoichiometric coefficients of the reac-

tants. If Example 1 is under MAK, the kinetic system will be an enzymatic cycle (1-site

phosphorylation system) where E1, E2, A and AP are the substrate, product, kinase and
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phosphotase, respectively. With MAK assumption, the kinetic order matrix is

F =

E1 A AE1 AP E2 APE2


1 1 0 0 0 0 R1

0 0 1 0 0 0 R2

0 0 1 0 0 0 R3

0 0 0 1 1 0 R4

0 0 0 0 0 1 R5

0 0 0 0 0 1 R6

. (2.2)

We further decompose the stoichiometric matrix N . Writing the stoichiometric com-

plexes as column vectors of the (molecularity) matrix Y , we have

Y =

C1 C2 C3 C4 C5 C6


1 0 1 0 0 0 E1

1 0 0 0 0 1 A
0 1 0 0 0 0 AE1

0 0 1 1 0 0 AP
0 0 0 1 0 1 E2

0 0 0 0 1 0 APE2

.

Considering the directed graph of our CRN, the incidence matrix

(Ia)(i,j) =


−1, if i is the reactant complex of reaction j ∈ R,

1, if i is the product complex of reaction j ∈ R,

0, otherwise

will be

Ia =

R1 R2 R3 R4 R5 R6


−1 1 0 0 0 0 C1

1 −1 −1 0 0 0 C2

0 0 1 0 0 0 C3

0 0 0 −1 1 0 C4

0 0 0 1 −1 −1 C5

0 0 0 0 0 1 C6

.

It is important to note that stoichiometric matrix N = Y Ia. The stoichiometric map

N : Rr → Rm is defined as the composition Y ◦ Ia.

2.2 Dynamically equivalent CRNs

It is noteworthy to discuss here that it is possible that different chemical reaction networks

with the same set of kinetics could generate the same set of ordinary differential equations,

i.e. they can be dynamically equivalent. G. Farkas [8] introduced the idea of dynamic
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equivalence in the kinetic lumping schemes for MAK systems while G. Craciun and C.

Pantea [7] were among the first to establish its mathematical foundations.

We will present in Example 2 below a dynamically equivalent CRN with that of Ex-

ample 1. Dynamic equivalence is useful for qualitative mathematical analysis of chemical

kinetic systems. For instance, original CRNs might not satisfy certain characteristics

(e.g. weak reversibility) but one can formulate a suitable dynamically equivalent CRN

such that mathematical conclusions hold true. The coincidence of the ODE systems en-

sures the correctness of these conclusions for the original system though they are purely

mathematical constructs which might not be biologically or chemically feasible as we will

see in the following example.

Example 2. Below is an example of a weakly reversible network (here, sl = l = 1) which

is dynamically equivalent to our CRN in Example 1, given that they have the same kinetic

order matrix F in Equation 2.1:

E1 + E2 + A AE1 + E2

E1 + E2 + APAPE2 + E1

k12

k21 k23

k34

k43
k56

Remark 1. The CRN above can be obtained by a mathematical technique introduced

by M. Johnston in [15]. The power law kinetic system is a mathematical construct that,

via dynamic equivalence, facilitates the qualitative analysis of the original biochemical

system.

2.3 Deficiency, reactant deficiency and kinetic deficiency of a
chemical kinetic system

The linear subspace of Rm defined by ImN is called the stoichiometric subspace, de-

noted as S. Let s = dimS. The deficiency δ is defined as δ = n−l−s. This non-negative

integer is, as Shinar and Feinberg pointed out in [20], essentially a measure of the linear

dependency of the network’s reactions. In the running example, the deficiency of the net-

work is two. It is one of the important parameters in CRNT to establish claims regarding

the existence, multiplicity, finiteness and parametrization of the set of positive steady

states, denoted as E+. It is defined as E+(N , K) =
{
x ∈ Rm

+

∣∣NK(X) = 0
}

.

-607-



Furthermore, considering the linkage classes of the network, we can write

N = [N1, N2, · · · , Nl] and K(X) = [K1(X), K2(X), · · · , Kl(X)]>

in block forms where l is the number of linkage class. Let si be the dimension of the image

of Ni and ni be the number of complexes in linkage class Li. We can define the linkage

class deficiency of Li as δi = ni − 1 − si and the set of positive steady states for

linkage class Li as E+(Li, K) =
{
x ∈ Rm

+

∣∣NiKi(X) = 0
}

.

Arceo et al. [2] introduced the reactant deficiency of a CRN. It is an essential measure

of the linear independence of reactant complexes as shown by the definition below.

Definition 1. The reactant deficiency of a network is given by δρ := nr − q where nr

the number of reactant complexes and q is the rank of matrix Yres, i.e., the m×nr matrix

Y without the columns of the terminal points. The columns of Yres are the reactant

complexes ρ(R1), ρ(R2), ..., ρ(Rr) where ρ : R → C maps a reaction r : y → y′ to its

reactant complex y.

Müller and Regensburger [16,17] also introduced a parameter for a reaction network,

known as the kinetic deficiency of a generalized chemical reaction network (GCRN). The

brief definition is given below.

Definition 2. A generalized chemical reaction network (GCRN) (G, y, ỹ) is given

by a digraph G = (V,E) without self-loops, and two functions

y : V → Rm and ỹ : Vs → Rm

assigning to each vertex a (stoichiometric) complex and to each source a kinetic complex.

In the above definition, V = {1, . . . , n} is a finite set of vertices and E ⊆ V × V is a

finite set of edges. An edge e = (i, j) ∈ E is denoted by i → j to emphasize that it is

directed from the source i to a target j. Moreover, the set Vs is the set of source vertices,

that is,

Vs = {i|i→ j ∈ E} .

Definition 3. Let N be a cycle-terminal network with n complexes and l linkage classes.

The kinetic order subspace S̃MR is the span {ỹ(y′)− ỹ(y)|y → y′}, where ỹ is the

kinetic complexes map. If s̃ = dim S̃MR, then the kinetic deficiency is defined as

δ̃ = n− l − s̃.
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In Proposition 3, we are going to relate the reactant deficiency and kinetic deficiency

to our kinetic reactant deficiency to be introduced in Section 3.3.

3 The kinetic reactant deficiency for power law ki-

netic systems

3.1 Power law reactant-determined kinetics

In [3], the set of power law kinetics with reactant-determined kinetic orders of a network

N (PL-RDK system) is introduced. It is defined as follows:

Definition 4. A PLK system has reactant-determined kinetics (of type PL-RDK)

if for any two reactions i, j with identical reactant complexes, the corresponding rows of

kinetic orders in F are identical, i.e., fik = fjk for k = 1, ...,m.

In our Example 1, if f23 = f33 and f56 = f66 in Equation 2.1, then the given kinetics is

of type PL-RDK. An equivalent formulation for the dynamics of a PL-RDK system can

be written using the factor map and the k− Laplacian matrix defined below (Arceo et

al. [3]).

Definition 5. The factor map ψK : Rm → Rn is defined as

(ψK)c(x) =

{
(xF )i, if c is a reactant complex of reaction i,

0, otherwise.

Definition 6. The k- Laplacian matrix of a CRN is an n× n matrix such that

(Ak)ij =

{
kji, if i 6= j,

kjj −
∑n

x=1 kjx, if i = j.

where kji is the label (often called the rate constant) associated to the reaction from Cj

to Ci.

The set of positive steady states E+ of a PL-RDK system can be defined using Ak and

ψK . We have the following decomposition:

E+(N , K) =
{
x ∈ Rm

+

∣∣Y AkψK(x) = 0
}
.

The set of positive steady states for the linkage classes can also be redefined using the

block forms of Ak and ψK . Another set of power law kinetics of special interest for us is the

set of factor span surjective systems PL-FSK(N ). We use the following characterization

which was derived in [1] as our working definition:
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Definition 7. A PL-RDK kinetics is factor span surjective if and only if all rows

with different reactant complexes in the kinetic order matrix F are pairwise different (i.e.,

ρ(r) 6= ρ(r′) implies Fr,· 6= Fr′,·).

3.2 The T-matrix and the PL-TIK systems

Müller and Regensburger [17] introduced the m×n matrix Ỹ for cycle terminal networks

(that is, every complex is a reactant complex). But, we generalize this concept into

arbitrary networks and define it as follows.

(Ỹ )ij =

{
Fki, if j is a reactant complex of reaction k,

0, otherwise

where F is the kinetic order matrix.

In 2017, Talabis et al. [22] defined the T-matrix and the augmented T-matrix (T̂ ) as

follows:

Definition 8. The m×nr T-matrix is the truncated Ỹ where the non-reactant columns

are deleted and nr is the number of reactant complexes. The T-matrix defines a map

T : Rρ(R) → RS . The kinetic reactant subspace R̃ is the image of T . Its dimension is

called the kinetic reactant rank q̃.

Define the nr× l matrix L = [e1, e2, ..., el] where ei is a characteristic vector for linkage

class L i. The block matrix T̂ ∈ R(m+l)×nr is defined as

T̂ =

[
T
L>

]
.

In Example 2 with kinetic order matrix F in Equation 2.1, which is of type PL-RDK

(if f23 = f33 and f56 = f66), the T-matrix and the augmented T-matrix will be

T =

E1 + E2 + A AE1 + E2 E1 + E2 + AP APE2 + E1


f11 0 0 0 E1

f12 0 0 0 A
0 f23 0 0 AE1

0 0 f44 0 AP
0 0 f45 0 E2

0 0 0 f56 APE2

and
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T̂ =





f11 0 0 0 E1

f12 0 0 0 A
0 f23 0 0 AE1

0 0 f44 0 AP
0 0 f45 0 E2

0 0 0 f56 APE2

1 1 1 1 L1

. (3.1)

Observe that all complexes are reactant complexes. In [22], Talabis et al. defined the

PL-TIK systems, a subclass of PL-RDK systems.

Definition 9. A PL-RDK kinetics is T̂ -rank maximal (to type PL-TIK) if its column

rank is maximal.

Remark 2. PL-TIK systems are PLK systems whose reactions with the same reactant

complexes have the same kinetic order vectors (called interactions), which are linear in-

dependent per linkage class.

Observe that the rank of T̂ above is 4 (if fij 6= 0) which is equal to the number of

columns of T̂ . By definition, the kinetic system is PL-TIK, that is, T̂ -rank maximal.

3.3 The kinetic reactant deficiency

We introduce now a novel concept called kinetic reactant deficiency which we will use in

our quest for complex balanced equilbrium of PL-RDK systems.

Definition 10. Let N be a network with nr reactant complexes and K a PL-RDK

kinetics with T-matrix T . If q̂ = rank(T̂ ), then the kinetic reactant deficiency δ̂ is

defined as

δ̂ = nr − q̂.

The kinetic reactant deficiency of a kinetic system is an integer index that assumes

non-negative values. The kinetic reactant deficiency measures the degree of the kinetic

interactions of the PL-RDK system. The higher the kinetic reactant deficiency, the lower

the extent of linear independence of kinetic orders (kinetic interaction).

If the system is a MAK system, the kinetic reactant deficiency is simply the reactant

deficiency of the underlying CRN (s. [2]). One readily observes the analogy to the concept

of “kinetic deficiency” introduced by Müller and Regensburger [17]. However, a distinct
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advantage of the new construct is that it is defined for an arbitrary CRN, whereas the

Müller-Regensburger construct is restricted to cycle terminal networks.

As a consequence of Rank-Nullity Theorem and Definition 10, we have the following

result.

Proposition 1. Let (N , K) a PL-RDK system with T-matrix T and kinetic reactant

deficiency δ̂. Then

δ̂ = dim ker(T̂ ).

As a direct consequence of Proposition 1, we have the following result.

Proposition 2. (N , K) is PL-TIK system iff δ̂ = 0.

Proof. Note that δ̂ = 0 is equivalent to dim ker(T̂ ) = 0. Thus, the columns of T̂ are

linearly independent. Hence, the rank of T̂ is equal to the number of columns of T̂ . By

definition, the kinetic system is PL-TIK, that is, T̂ -rank maximal.

This result permits us to rewrite the known properties of PL-TIK systems and their

equilibria previously done in [18,22]. We discuss them next.

3.4 Equilibria of PL-RDK systems with zero kinetic reactant
deficiency

In [14], Horn and Jackson introduced a subset of E+ called the set of complex balanced of

equilibria denoted as Z+. A kinetic system is complex balanced at a state (i.e. a species

composition) if for each complex, formation and degradation are at equilibrium.

Definition 11. A positive vector c in Rm is called complex balanced (CB) if K(c)

is contained in ker Ia. A CKS is called complex balanced if it has complex balanced

equilibria. The set of complex balanced equilibria of a chemical kinetic system is denoted

by Z+(N , K). Thus,

Z+(N , K) =
{
x ∈ Rm

+

∣∣Ia ·K(x) = 0
}
⊆ E+(N , K).

Remark 3. If (N , K) is a PL-RDK system then it can be shown that Z+(N , K) ={
x ∈ Rm

+

∣∣Ak · ψK(x) = 0
}

.

Due to Proposition 2 and Theorem 3 in [18] (Theorem 4 in [22]), we have the following

results:
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Theorem 1. Let (N , K) be a PL-RDK system with δ̂ = 0.

(i) E+(Li, K) 6= ∅ for each linkage class Li implies E+(N , K) 6= ∅.

(ii) Z+(Li, K) 6= ∅ for each linkage class Li implies Z+(N , K) 6= ∅.

Definition 12. The restricted incidence matrix Ia,R is the truncated Ia, that is, the

columns for non-reactant complexes are deleted. For weakly reversible system, Ia,R = Ia.

The kinetic reactant flux subspace S̃R is the subspace T (Im(Ia,R)) of the kinetic

reactant space R̃. For q ∈ Rm
≥ , the set (q+ S̃R)∩Rm

≥ is called the kinetic reactant flux

class. A kinetic reactant flux class Q is said to be positive if Q ∩ Rm
> 6= ∅.

Let Cr denote the set of reactant complexes and C ′ the set of complexes in the terminal

strong linkage class. Suppose C ′′ = C \C ′. Let nr = |Cr|, n′ = |C ′|, and n′′ = |C ′′|.

Consider Ak ∈ Rn×n, ψK : Rm → Rn and a vector h ∈ Rn in the block forms

Ak =

[
A′k ∗
0 A′′k

]
∈ R(n′+n′′)×(n′+n′′), ψK =

[
ψ′K
ψ′′K

]
: Rm → R(n′+n′′)

and h =

[
h′

h′′

]
∈ R(n′+n′′)

Let h ∈ kerY ∩ ImAk. Denote as H′′ the product of (A′′k)
−1 and h′′. Analogously, we

can define (H′′)i for each linkage class Li.

Theorem 2. Let (N , K) be a t-minimal PL-RDK system with δ̂ = 0 and where each

linkage class has δ = 0 or = 1.

(I) If N is weakly reversible then

(A) E+(N , K) 6= ∅;

(B) E+(N , K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃R)⊥
}

provided that

x∗ ∈ E+(N , K) and δ = δ1 + δ2 + . . .+ δl;

(II) If N is non-weakly reversible then

(A) E+(N , K) 6= ∅ if

(i) each linkage class L i with δ = 0 is strongly connected; and

(ii) each non-strongly connected linkage class L i has δ = 1 and contains a

terminal strong linkage class which satisfies (H′′)i ∈ R(ni)′′

+ ∪ R(ni)′′

− ;
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(B) E+(N , K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃R)⊥
}

provided that

x∗ ∈ E+(N , K) and δ = δ1 + δ2 + . . .+ δl;

(III) if δ = δ1 + δ2 + . . . + δl and E+(N , K) 6= ∅, then |E+(N , K) ∩ Q| = 1 for each

positive kinetic reactant flux class Q.

Theorem 3. Let (N , K) be a weakly reversible PL-RDK system with δ̂ = 0 and linkage

classes L1, ...,Ll.

(i) If N has no inflow reaction, then Z+(N , K) is non-empty and the system’s kinetic

deficiency is zero.

(ii) If N has an inflow reaction and the linkage class L1 containing the zero complex

has δ̃ = 0, then Z+(N , K) is non-empty and the system’s kinetic deficiency is zero.

If its δ̃ = 1, then for the rate constants which satisfy the Müller and Regensburger

criterion for complex balancing, Z+(N , K) is non-empty.

(iii) For systems satisfying (i) and (ii) , the set of positive equilibria E+(N , K) contains

the parametrized set{
x ∈ Rm

>

∣∣∣log(x)− log(x∗) ∈ (S̃R)⊥
}

=
⋂

Ei
+.

If δ = δ1 + δ2 + . . .+ δl, then the sets are equal.

In [18], we showed that if the kinetics on a CRN N is factor span surjective, i.e.

contained in PL-FSK, then its set of kinetic complexes C̃ forms a reaction network Ñ ,

i.e. a digraph where the embedding of the complexes is not necessarily contained in Zm≥ .

Many concepts and results for CRNs hold for reaction networks. In particular, we consider

the reactant deficiency of Ñ and its relationship to δ̂, which is expressed in the following

Proposition:

Proposition 3. Let (N , K) be a PL-FSK system and Ñ its reaction network of kinetic

complexes. Then

δρ(Ñ ) ≥ δ̂.

Proof. Let the columns of T = (ai) and (ai, hi) the corresponding element of T̂ . If∑
zi(ai, hi) = 0 in Rm×Rl, then

∑
aizi = 0 in Rm, hence if the columns of T are linearly

independent, then zi = 0. Hence rankT ≤ rank T̂ . Since the reaction network of kinetic

complexes has the same number of reactants as the CRN, then δρ(Ñ ) ≥ δ̂.
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Remark 4. If N is cycle terminal, as shown in [18], then δρ(Ñ ) ≥ δ(Ñ ) = δ̃, the

kinetic deficiency of N . In particular, for any factor span surjective kinetics on a cycle

terminal network, δρ(Ñ ) = 0 implies that both δ̃ and δ̂ = 0.

3.5 Tools for the parametrization of positive equilibria

To examine the finiteness and uniqueness of positive equilibria, we adapt the techniques

used in [6]. In particular, the following proposition and corollaries make claims similar to

Boros’ Proposition 4.3 and its consequences [6].

Proposition 4. Let (N , K) be a weakly reversible PL-RDK system with T-matrix T

and δ̂ = 0. Let P1 : Rm × Rl → Rm be the first projection map, i.e., Pr1(v) = v1 for

v =

[
v1

v2

]
∈ Rm×Rl. Then P1|ker T̂> is a bijection between ker T̂> and (S̃R)⊥ where (S̃R)

is the space generated by TIa.

Proof. We want to show P1|ker T̂> is both surjective and injective. Let w ∈ (S̃R)⊥. By

definition of S̃R, since N is weakly reversible, each column of T (Ia) corresponds to a

reaction (i, j) in such a way that the corresponding column is T·,j − T·,i. Thus, we have

〈T·,j − T·,i, w〉 = 0, ∀(i, j) ∈ RR.

Hence, 〈T.,j, w〉 = 〈T.,i, w〉. Clearly, 〈T.,i, w〉 depends only on the linkage class L i of

complex Ci ∈ C . Let ξr = 〈T.,i, w〉 for the linkage class L r.

To prove surjectivity, we want to show that for w ∈ (S̃R)⊥, there exists v ∈ ker T̂>

such that Pr1(v) = w. Let v ∈ Rm+l such that v =
[
w>,−ξ1, ...− ξl

]>
. This implies that

T̂>v = T>w + Lpr

 −ξ1...
−ξl

 = 0.

Therefore, v ∈ ker T̂> and Pr1(v) = w. On the other hand, to prove injectivity, we want

to show that if Pr1(v1) = Pr1(v2), then v1 = v2. Let w = Pr1(v1) = Pr1(v2). We can

write v1 = [w>, u>1 ]> and v2 = [w>, u>2 ]>. Thus, it suffices to show that u1 = u2. Since

v1 ∈ ker T̂>,

0 = T̂>v1 = T>w + Lpru1 =

 〈T.,1, w〉...
〈T.,l, w〉

+ Lpru1.
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Note that 〈T.,i, w〉 depends on the linkage class of complex Ci. Thus, the equation above

can be written as  ξ1
...
ξl

+ Lpru1 = 0.

It implies that Lu1 =

 −ξ1...
−ξl

. Analogously, Lu2 =

 −ξ1...
−ξl

. Therefore Lu1 = Lu2.

Since columns of L are linearly independent, L is of full column rank. Thus, u1 = u2,

implying Pr1|ker T̂> is injective.

The connection presented by Proposition 4 will be the key for Corollaries 1 and 2.

Corollary 1. Let (N , K) be a weakly reversible PL-RDK system with T-matrix T and δ̂ =

0. Fix w ∈ (S̃R)⊥ and x∗ ∈ Rm
+ such that there exists γ∗ ∈ Rl

+ such that T̂>
[

log(x∗)
− log(γ∗)

]
=

w. Then for x ∈ Rm
+ the following are equivalent:

1. There exists γ ∈ Rl
+ such that T̂>

[
log(x)
− log(γ)

]
= w.

2. The vector log(x)− log(x∗) ∈ (S̃R)⊥.

Proof. The equivalence is an immediate consequence of Proposition 4.

Corollary 2. Let (N , K) be a weakly reversible PL-RDK system with T-matrix T and

δ̂ = 0. Fix w ∈ (S̃R)⊥. Then for all q ∈ Rm
+ , there exists (x, γ) ∈ Rm

+ × Rl
+ such that

x ∈ (q + S̃R) and T̂>
[

log(x)
− log(γ)

]
= w.

Proof. The statement is an immediate consequence of Corollary 1 and Lemma 3.3 of [6].

4 The Zero Kinetic Reactant Deficiency Theorem

Our main result (Theorem 6) is the existence of complex balanced equilibria for all weakly

reversible PL-RDK systems with zero kinetic reactant deficiency for any choice of rate

constants. To prove our main result, we need the following proposition and theorem:

Proposition 5 ( [13]). If Z+(N , K) 6= ∅, then N is weakly reversible.
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The following theorem, denoted as the “Structure Theorem of the k-Laplacian Kernel

(STLK)” in [3] is one of the basis for important results in early CRNT (cf. [10]). For

t ∈ N, 1, t := {1, 2, ..., t}.

Theorem 4 (Structure Theorem of the Laplacian Kernel ( [10])). Let (C ,R, k) be a

labeled directed graph with k : R → R. Let C ′′ = C \ ∪tk=1 C k. Let Ak be the Laplacian

matrix. Denote by A′′k the submatrix of Ak with rows and columns corresponding to V ′′.

Then

(i) A′′k is invertible,

(ii) dim kerAk = t, and

(iii) there exists a basis y1, y2, ..., yt ∈ Rn
≥0 in kerAk such that supp(yk) = Ck ∀k ∈ 1, t

(i.e., k ∈ {1, 2, ..., t}).

Furthermore, we state here an important result found in [5] that will be useful in

proving our prelimary result.

Proposition 6 ( [5]). Let l,m ∈ Z+ and n1, n2, · · · , nl ∈ Z+. Let Aj ∈ Rnj×m and bj ∈

Rnj (j ∈ {1, 2, · · · , l}). Assume that {x ∈ Rm|Aj · x = bj} 6= ∅ for all j ∈ {1, 2, · · · , l}

and Im
[
A>1 , A

>
2 , · · · , A>l

]
= ImA>1 ⊕ ImA>2 ⊕ . . .⊕ ImA>l . Then⋂

{x ∈ Rm|Aj · x = bj} 6= ∅.

Theorem 5. Let (N , K) be a weakly reversible PL-RDK system. Then

(i) Z+(N , K) =
⋂
Z+(Li, K) for each linkage class Li.

(ii) Z+(N , K) 6= ∅ if and only if Z+(Li, K) 6= ∅ for each linkage class.

Proof. Suppose N is weakly reversible. To prove (i), consider Ak and ψK(x) in block

forms:

Ak =

 Ak,1 0
. . .

0 Ak,l

 and ψK(x) =

 (ψK,1)(x)
...

(ψK,l)(x)


where Ak,i and ψK,i(x) correspond to linkage class L i. Thus,

ImAk = ImAk,1 ⊕ ImAk,2 ⊕ . . .⊕ ImAk,l (4.1)
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Recall the definition of Z+(N , K) =
{
x ∈ Rm

+

∣∣Ak · ψK(x) = 0
}

and Z+(Li, K) ={
x ∈ Rm

+

∣∣Ak,i · ψK,i(x) = 0
}

. Clearly, Ak · ψK(x) ∈ ImAk and Ak,i · ψK,i(x) ∈ ImAk,i.

Hence, Equation 4.1 concludes the proof.

To prove (ii), we let Z+(Li, K) =
{
x ∈ Rm

+

∣∣Ak,i · ψK,i(x) = 0
}
6= ∅ for each linkage

class Li. From the block form of Ak, it follows

ImA>k = ImA>k,1 ⊕ ImA>k,2 ⊕ . . .⊕ ImA>k,l.

Using Proposition 6, we have⋂
Z+(Li, K) =

⋂{
x ∈ Rm

+

∣∣Ak · ψK(x) = 0
}
6= ∅. (4.2)

Statement (i) together with Equation 4.2 gives (ii).

We are now ready to present and prove our main result as follows:

Theorem 6 (Zero Kinetic Reactant Deficiency Theorem). Let K a PL-RDK kinetics

with T-matrix T on N and δ̂ = 0.

(i) N is weakly reversible if and only if Z+(N , K) 6= ∅.

(ii) if Z+(N , K) 6= ∅ and x∗ ∈ Z+(N , K) 6= ∅ then

Z+(N , K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃R)⊥
}
.

(iii) if Z+(N , K) 6= ∅ then |Z+(N , K) ∩Q| = 1 for each positive kinetic reactant flux

class Q.

Proof. For (i): The converse is Proposition 5. For the forward direction, consider a weakly

reversible network N . Then, every linkage class is a terminal strong linkage class which

means ti = 1 = dim kerAk,i for all Li.

For any linkage class Li, by Theorem 4(iii), we can find a y ∈ Rn,i
+ such that kerAk,i =

span y. Because ψK,i ∈ Rn,i
≥ for all x ∈ Rm,i

+ , finding an element in Z+(Li, K) is equivalent

to finding some γ ∈ R+ and x ∈ Rm,i
+ such that γy = ψK,i(x). Taking the logarithm of

γy = ψK,i(x) coordinate-wise yields log(γ)1 + log(y) = T>i , where 1 is the vector in Rn
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whose coordinates are all equal to 1. Hence, x ∈ E+(Li, K) if and only if there exists

γ ∈ R+ such that

log(y) = T̂>i ·
[

log(x)
− log(γ)

]
. (4.3)

Since δ̂ = dim(ker(T̂ )) = 0, T̂> has full range, log(y) ∈ Im T̂i
>

. Because log and − log

are bijective, we obtain Z+(Li, K) 6= ∅. By Theorem 5, Z+(N , K) 6= ∅.

For (ii) and (iii): Assume for the rest of this proof that Z+(N , K) 6= ∅ and fix

x∗ ∈ Z+(N , K). By Theorem 5, x∗ ∈ Z+(Li, K) for all i ∈ 1, 2, .., l. Thus, by Corollary

1 and Equation 4.3, we have Z+(Li, K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃R,i)
⊥
}

for each

linkage class Li. Since S̃⊥R = (
∑
S̃R,i)

⊥ = ∩S̃⊥R,i, the set{
x ∈ Rm

>

∣∣∣log(x)− log(x∗) ∈ (S̃R)⊥
}

= ∩
{
x ∈ Rm

>

∣∣∣log(x)− log(x∗) ∈ S̃⊥R,i
}
.

Thus, from Theorem 5, Z+(N , K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃R)⊥
}

. The last state-

ment follows from Corollary 2.

The result is valid for all weakly reversible PL-RDK systems. Theorem 6 extends the

existence statement of the Low Deficiency Theorem of [22] to higher deficiency systems

and complex balanced systems. On networks with inflow reactions, unlike the Higher

Deficiency Theorem of [18], the proof of Theorem 6 does not need the Müller and Regens-

burger Criterion ( [17], Statement(a) of Theorem 1).

Remark 5. To analyze the dynamics of Example 1, we use the translated network in

Example 2 with the same kinetic order matrix F (s. Equation 2.1). Given that the

system is PL-RDK, we have the augmented matrix T̂ in Equation 3.1 and δ̂ = 0. Since

the network in Example 2 is weakly reversible, from Theorem 6, we conclude the existence

and parametrization of (complex balanced) equilibria. We can infer that the system in

Example 1 has a positive equilibrium.

Remark 6. The forward statement of Theorem 6 can be reformulated as “If N is weakly

reversible and has zero kinetic reactant deficiency, then it has a complex balanced equi-

librium for any rate constant”. Applying the converse statement of the Müller and Re-

gensburger Criterion implies that the system has zero kinetic deficiency. Hence, PL-TIK

is a subset of the PL-RDK kinetics with δ̃ = 0. It also follows that the existence and
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parametrization statements of the Deficiency Zero Theorem in [22] are special cases of

the results in [17].

Example 3. We consider the example of a multisite phosphorylation system. Phos-

phorylation is a fundamental biochemical reaction that modulates protein activities in

cells. They are encountered in many intracellular processes such as signal transduction,

cell-cycle control, or nuclear signal integration. There are several publications dealing

with multisite phosphorylation system (Barik et al. [4]; Hermann-Kleiter and Baier [11];

Sadreev et al. [19]; Holstein et al. [12]).

Holstein et al. [12] describe this systems using networks of phosphorylation and dephos-

phorylation of a protein at n sites in a sequential distributive mechanism. The reaction

network under mass action is given by

R1,i : E1 + Ai−1,P → Ai−1,PE1

R2,i : Ai−1,PE1 → E1 + Ai−1,P

R3,i : Ai−1,PE1 → E1 + Ai,P

R4,i : E2 + Ai,P → Ai,PE2

R5,i : Ai,PE2 → E2 + Ai,P

R6,i : Ai,PE2 → E2 + Ai−1,P

for i = 1, . . . , n.

The kinetic order matrix F of the MAK system above is

F =

E1 E2 · · · Ai−1,P Ai−1,PE1 Ai,P Ai,PE2 · · ·



...
...

...
...

...
...

...
...

1 0 · · · 1 0 0 0 · · · R1,i

0 0 · · · 0 1 0 0 · · · R2,i

0 0 · · · 0 1 0 0 · · · R3,i

0 1 · · · 0 0 1 0 · · · R4,i

0 0 · · · 0 0 0 1 · · · R5,i

0 0 · · · 0 0 0 1 · · · R6,i
...

...
...

...
...

...
...

...

.

Thus, for n− site phosphorylation system, we have 2n linkage classes which are non-

weakly reversible. Using the same technique as done in Example 2 (see also Remark 1),

we construct a dynamically equivalent CRN of multisite phosphorylation system which is

a weakly reversible network as follow:
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R1,i : E1 + E2 + Ai−1,P → Ai−1,PE1 + E2

R2,i : Ai−1,PE1 + E2 → E1 + E2 + Ai−1,P

R3,i : Ai−1,PE1 + E2 → E1 + E2 + Ai,P

R4,i : E1 + E2 + Ai,P → Ai,PE2 + E1

R5,i : Ai,PE2 + E1 → E1 + E2 + Ai,P

R6,i : Ai,PE2 + E1 → E1 + E2 + Ai−1,P

for i = 1, . . . , n.

Here, the kinetic order matrices of the original and translated networks are assumed to be

the same, giving us dynamically equivalent systems (they have the same system of ordinary

differential equations). The T-matrix of system is

Tn =

· · · An−1pE1 E2 + Anp An−1pE2


[Tn−1] 0
... 0

...
0 1 0 0 An−1pE1

0 0 1 0 Anp
0 0 0 1 An−1pE2

.

It is proved in [22], that the columns of Tn are linearly independent, so is T̂ . Thus, δ̂ = 0.

Since the network is now weakly reversible, from Theorem 6, we have a complex balanced

equilibria (with parametrization).

Example 4. One can apply the results of chemical reaction network theory to epidemio-

logical problems, e.g. compartment models in epidemiology. Compartmental modeling is a

mathematical framework to simplify the modeling of infectious diseases. The population is

partitioned into compartments, with the assumption that every species in a compartment

has the same characteristics.

Consider a simple variation of SIR epidemic model with kinetic orders from R. We

have three state variables (three partitioning of the population): S-susceptible individuals,

I-infected individuals and R- recovered individuals. These variables represent the number

of people in each compartment at a particular time. The chemical kinetic system will be

R1 : I + S→ 2I

R2 : 2I→ 2R

R3 : 2R→ 2S
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R4 : 2S→ I + S

with kinetic order matrix

F =

S I R


1 1 0 R1

0 2 0 R2

0 0 2 R3

0.1 0 0 R4

.

The reaction R1 pertains to the infection flow through the interaction between the sus-

ceptible and the infected individuals. R2 is the recovery flow of the infected. R3 implies

temporal immunity of individuals. And, for the infection via the environment, we repre-

sent it as R4 with kinetic order 0.1. This is significantly below the kinetic order of R1

implying the strength of infection via interaction of infected and susceptible over the in-

fection via environmental causes. These SIRS model with both infection via contraction

of individuals and via environmental factors (but without lasting resistance to the disease)

can be seen in some fungal infection outbreak and flu infection outbreak. Constructing T̂ ,

we have

T̂ =

I + S 2I 2R 2S


1 0 0 0.1 S
1 2 0 0 I
0 0 2 0 R
1 1 1 1 L1

.

Note that the number of reactant complexes nr is 4 and q̂ = rank T̂ = 4. Thus, the kinetic

reactant deficiency δ̂ = 0 = (4 − 4). Since N is weakly reversible, from Theorem 6, we

have a complex balanced equilibria (with parametrization) for the “power law” epidemic

system.

5 Conclusions/Outlook

In conclusion, we summarize our main results and outline some perspectives for future

research.

1. We introduced the concept of kinetic reactant deficiency, for which we have shown

that zero kinetic reactant deficiency systems are precisely the PL-TIK systems in-

troduced in [22].
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2. We proved the existence, parametrization and uniqueness of complex balanced equi-

libria for all weakly reversible reactant-determined systems with zero kinetic reactant

deficiency for any choice of rate constants. This is a generalization of the “Weak

reversibility” theorem of PL-TLK system presented in [18].

3. We applied the theorem to the CRN representation of a power law approximation

of a specific SIRS model and multisite phosphorylation system of Holstein et al. [12]

and found that complex balanced steady states exist in these systems.

4. We plan to extend our weak reversibility result to more general kinetics like those

which are linear combinations of power laws.
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