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Abstract

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of a sim-
ple graph G of order n. A graph-spectrum-based invariant, resolvent energy, put
forward by Gutman et al. [Resolvent energy of graphs, MATCH Commun. Math.
Comput. Chem. 75 (2016) 279–290], is defined as ER(G) =

∑n
i=1 (n−λi)

−1. After
that two more resolvent energies defined in the literature, first one is Laplacian
resolvent energy (RL) and the second one is signless Laplacian resolvent energy
(RQ). In this paper we define normalized Laplacian resolvent energy (ERN), and
give some lower and upper bounds on ER, RL and ERN of graphs, and character-
ize the extremal graphs. In particular, we obtain some relations between Laplacian
resolvent energy (RL) with popular graph invariants, like Kirchhoff index and the
number of spanning trees of graphs. Moreover we compare between resolvent ener-
gies of different graph matrices.

1 Introduction

Throughout this paper we assume that graphs are finite, undirected and unweighted. Let

G = (V, E) be a simple graph of order |V (G)| (= n) with |E(G)| (= m) edges. The

maximum degree and the minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G),

respectively. If the vertices vi and vj are adjacent, we write vivj ∈ E(G). The adjacency
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matrix A(G) of a graph G is defined by A(G) = (aij)n×n, where

aij =

{
1 if vivj ∈ E(G),
0 Otherwise.

Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of A(G). In what follows, the adjacency

spectrum of the graph G, i.e., {λ1, λ2, . . . , λn} will be denoted by SA(G). Very recently,

Gutman et al. introduced the resolvent energy [21], and it is defined by

ER(G) =
n∑

i=1

1

n− λi

. (1)

For its basic mathematical properties, including various lower and upper bounds, see

[1, 18–22,28] and the references therein.

Let L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) be, respectively, the Laplacian

matrix and the signless Laplacian matrix of the graph G, where D(G) is the diagonal

matrix of vertex degrees. The eigenvalues of L(G) and Q(G) will be denoted by µ1 ≥

µ2 ≥ · · · ≥ µn = 0 and q1 ≥ q2 ≥ · · · ≥ qn, respectively. The Laplacian spectrum and

the signless Laplacian spectrum of graph G are denoted by SL(G) = {µ1, µ2, . . . , µn}

and SQ(G) = {q1, q2, . . . , qn}, respectively. The Laplacian resolvent energy and signless

Laplacian resolvent energy were recently put forward in [7] and are defined as

RL(G) =
n∑

i=1

1

n+ 1− µi

(2)

and

RQ(G) =
n∑

i=1

1

2n− 1− qi
, (3)

respectively. Since the interlacing property holds for L(G) and Q(G), it is easy to see

that RL(G) ≥ RL(H) and RQ(G) ≥ RQ(H), where H is a subgraph of G. For more

results on RL and RQ, we refer readers to the references [7, 25].

The normalized Laplacian matrix L(G) of graph G is defined as D−1/2(G)L(G)D−1/2(G)

(with the convention that if the degree of vi is 0, then d
−1/2
i = 0), with eigenvalues

ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn−1(G) ≥ ρn(G) = 0. The normalized Laplacian spectrum of

graph G is denoted by SN(G) = {ρ1, ρ2, . . . , ρn}. From the motivation of ER, RL and

RQ, taking into account that the condition ρi ≤ 2 (1 ≤ i ≤ n) is satisfied by all eigenvalues

of all n-vertex graphs, we also define the normalized Laplacian resolvent energy of a graph
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G as follows:

ERN(G) =
n∑

i=1

1

3− ρi
. (4)

Since the interlacing property does not satisfy for normalized Laplacian matrix of a graph,

ERN is quite different from RL and RQ. Moreover, ERN is not related with the number

of closed walks, so it is also different from ER.

As usual, Pn, Kn, Cn and Kp, q (p + q = n, p ≥ q) denote, respectively, the path,

the complete, the cycle, and the complete bipartite graph on n vertices. For a subset

W of E(G), let G − W be the subgraph of G obtained by deleting edges of W . When

more than one graph is under consideration, then we write λi (µi or qi or ρi) instead of

λi(G) (µi(G) or qi(G) or ρi(G)). Farrugia discussed about the increase in the resolvent

energy of a graph due to the addition of a new edge in [19]. In [1], Allem et al. presented

some results on the extremal resolvent energy of unicyclic graphs, bicyclic graphs and

tricyclic graphs. Ghebleh et al. [20] characterized the extremal graphs on the k-th smallest

resolvent energy. In [9], Das proved that ER(T ) < ER(S∗
n) < ER(K1, n−1) for any

tree T (� K1, n−1, S
∗
n, where S∗

n is a tree with maximum degree n− 2 of order n), and

ER(Cn) > ER(K1, n−1) for even n.

One of the referees mentioned the following: “resolvent energy” can be defined for any

matrix. By this, the entire theory of graph energies would be duplicated, which would be

a most unfortunate direction of future research in this area. His/her opinion is that one

should stop at the Laplacian matrices (adjacency, Laplacian, signless Laplacian, normal-

ized Laplacian). The comparison between any two resolvent energies will be reported in

Section 4. Results of this kind deserve to be published (on a single occasion) as a kind

of curiosity. The results in this paper are very far from being chemically relevant, which

additionally makes them of borderline suitability for MATCH.

The paper is organized as follows. In Section 2, we give a list of some previously known

results. In Section 3, we present some lower and upper bounds on ER, RL and ERN of

graph G and characterize graphs for which these bounds are best possible. In particular,

we obtain some relations between Laplacian resolvent energy (RL) with popular graph

invariants, like Kirchhoff index and the number of spanning trees of graphs. In Section

4, we compare between resolvent energies of different graph matrices. In the last section,

some concluding remarks are presented.
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2 Preliminaries
In this section, we shall list some previously known results that will be needed in the

next two sections. First we introduce some well-known results on majorization theory.

For this, suppose x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two non-increasing

sequences of real numbers, we say that x majorizes y and write x � y if
j∑

i=1

xi ≥
j∑

i=1

yi for 1 ≤ j ≤ n− 1, and
n∑

i=1

xi =
n∑

i=1

yi.

Lemma 2.1. [23] Let x = (x1, x2, . . . , xn) be a non-increasing sequence of real numbers

and
n∑

i=1

xi = s. Then x � y, where y = ( s
n
, . . . , s

n
).

Lemma 2.2. [23] For any convex (resp. concave) function g, if x � y, we have
n∑

i=1

g(xi) ≥
n∑

i=1

g(yi)

(
resp.

n∑
i=1

g(xi) ≤
n∑

i=1

g(yi)

)
.

Moreover, g is strictly convex (resp. strictly concave), then the above equality holds if and

only if x = y.

Lemma 2.3. (Courant-Weyl inequalities) [8] For a real symmetric matrix M of order n,

let θ1(M) ≥ θ2(M) ≥ · · · ≥ θn(M) denote its eigenvalues. If M1 and M2 are two real

symmetric matrices of order n and if M = M1 +M2, then for every i = 1, 2, . . . , n, we

have

θi(M1) + θ1(M2) ≥ θi(M) ≥ θi(M1) + θn(M2) .

Next we give results on the Laplacian spectrum of a graph.

Lemma 2.4. [24] Let G be a graph of order n with its Laplacian spectrum SL(G) =

{µ1, µ2, . . . , µn−1, 0}. Then SL(G) = {n−µn−1, n−µn−2, . . . , n−µ1, 0}, where G is the

complement of the graph G.

The join G1 ∨ G2 of graphs G1 and G2 is the graph obtained from the disjoint union of

G1 and G2 by adding all edges between V (G1) and V (G2).

Lemma 2.5. [10] Let G be a graph of order n with its Laplacian spectrum SL(G) =

{µ1, µ2, . . . , µn−1, 0}. Then SL(G ∨K1) = {n+ 1, µ1 + 1, µ2, . . . , µn−1 + 1, 0}.

A Relation between Laplacian eigenvalues and normalized Laplacian eigenvalues of a

graph is obtained as follows:
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Lemma 2.6. [5] Let G be a graph of order n with no isolated vertices. For each 1 ≤ i ≤ n,

we have
µi

∆
≤ ρi ≤

µi

δ
.

Lemma 2.7. [6] Let G be a graph of order n ≥ 2 without isolated vertices. Then
n

n−1
≤ ρ1 ≤ 2 with left equality holding if and only if G ∼= Kn, and right equality holding

if and only if one of connected components of G is bipartite.

LetH1 andH2 be two graphs obtained fromKn (n > 3) by deleting two independent edges

and two adjacent edges, respectively. The spectrums of them are given in the following

results:

Lemma 2.8. Let H1 be a graph defined above. Then

SA(H1) =
{
s, 0, 0, −1, . . . , −1︸ ︷︷ ︸

n−5

, t, −2
}
,

where s and t are the roots of x2 − (n− 3)x+ 6− 2n = 0.

Proof. By simple calculation, one can easily obtain that the characteristic polynomial of

A(H1) is

f(x) = x2(x+ 1)n−5 (x+ 2)
(
x2 − (n− 3)x+ 6− 2n

)
.

Hence we get the required result.

Lemma 2.9. Let H2 be a graph defined above. Then

SA(H2) =
{
a, b, −1, . . . , −1︸ ︷︷ ︸

n−3

, c
}
,

where a, b and c are the roots of x3 − (n− 3)x2 − (2n− 5)x+ n− 3 = 0.

Proof. The characteristic polynomial of A(H2) is

f(x) = (x+ 1)n−3
(
x3 − (n− 3)x2 − (2n− 5)x+ n− 3

)
.

Hence we get the required result.

For any non-trivial graph G, by Lemma 2.3, one can easily see that q1 ≥ λ1+ δ1 ≥ λ1+1,

where δ1 is the minimum non-isolated vertex degree. Here we characterize the extremal

graphs for bipartite graph G.
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Lemma 2.10. Let G be a bipartite graph of order n. Then q1 = 1 + λ1 if and only if

G ∼= tK2 ∪ (n− 2t)K1 (1 ≤ t ≤ bn
2
c).

Proof. Let q1 = 1+λ1. Then we have to prove that G ∼= tK2∪ (n−2t)K1 (1 ≤ t ≤ bn
2
c).

We consider the following two cases:

Case 1. G is a connected graph. It is well known that q1 ≥ µ1 ≥ ∆+ 1 ≥ 1 + λ1. Thus

we have q1 = ∆+ 1 = 1 + λ1. Since G is connected, µ1 = ∆+ 1 gives ∆ = n− 1. Again

λ1 = ∆ implies that G is isomorphic to a regular graph as G is connected. Since G is

bipartite, we conclude that G ∼= K2.

Case 2. G is a disconnected graph. Let Gi be the i-th connected component in G, 1 ≤

i ≤ k. Since q1(G) = 1 + λ1(G), one can easily see that λ1(G) = q1(G) − 1 ≥ ∆(G).

Moreover, we have λ1(G) ≤ ∆(G). Thus λ1(G) = ∆(G) and q1(G) = 1 + ∆(G). Also we

have

q1(G) = max
{
q1(G1), q1(G2), . . . , q1(Gk)

}
,

λ1(G) = max
{
λ1(G1), λ1(G2), . . . , λ1(Gk)

}
,

∆(G) = max
{
∆(G1), ∆(G2), . . . , ∆(Gk)

}
.

Claim 1. q1(G) and ∆(G) are belong to the same connected component.

Proof of Claim 1. By contradiction we prove this result. For this we assume that there

exits two connected components Gp and Gq (p 6= q) such that q1(Gp) = q1(G) 6= q1(Gq)

and ∆(Gq) = ∆(G) 6= ∆(Gp). Now, q1(Gq) ≥ ∆(Gq) + 1 = ∆(G) + 1 = q1(G) = q1(Gp).

Moreover, q1(Gp) = q1(G) ≥ q1(Gq). Therefore q1(G) = q1(Gp) = q1(Gq), a contradiction.

Claim 2. λ1(G) and ∆(G) are belong to the same connected component.

Proof of Claim 2. There exits a connected component Gp (1 ≤ p ≤ k) such that

λ1(G) = λ1(Gp). Then we have ∆(G) = λ1(G) = λ1(Gp) ≤ ∆(Gp) and ∆(G) ≥ ∆(Gp).

This implies that ∆(G) = ∆(Gp). This completes the proof of the Claim 2.

By Claims 1 and 2, we suppose that q1(G) & ∆(G) are in the same connected

component Gp (1 ≤ p ≤ k), and λ1(G) & ∆(G) are in the same connected component

Gq (1 ≤ q ≤ k), where p 6= q. Then q1(G) = q1(Gp), ∆(Gp) = ∆(G) = ∆(Gq) and
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λ1(G) = λ1(Gq). Now,

q1(Gq) ≥ ∆(Gq) + 1 = ∆(G) + 1 = q1(G) and q1(G) ≥ q1(Gq).

Thus we have q1(Gq) = q1(G) = q1(Gp). Hence q1(G), λ1(G) and ∆(G) are in the same

connected component Gq. Therefore q1(Gq) = λ1(Gq)+ 1 and λ1(Gq) = ∆(Gq). By Case

1, we have Gq
∼= K2 and hence ∆(G) = 1. Therefore G ∼= tK2∪(n−2t)K1 (1 ≤ t ≤ bn

2
c).

Conversely, if G ∼= tK2 ∪ (n− 2t)K1 (1 ≤ t ≤ bn
2
c), then q1 = 2 = 1 + λ1 holds.

We recall the definition of the k-th spectral moment of the graph G, which is defined as

Mk(G) =
n∑

i=1

λk
i .

In [21], the relation between resolvent energy and spectral moments is obtained as follows:

ER(G) =
1

n

∞∑
k=0

Mk(G)

nk

. (5)

Now we introduce the following transformations:

Let u be a non-isolated vertex of a simple graph G. If G1 and G2 are the graphs obtained

from G by identifying an end vertex and the internal vertex of path Pr to u (r ≥ 3),

respectively.

Transformation A: G2 −→ G1.

The following result is obtained in [17].

Lemma 2.11. [17] Let G1 and G2 be the graphs defined above. Then M2k(G1) < M2k(G2)

and M2k−1(G1) ≤ M2k−1(G2) for k ≥ 2.

Let uv be an edge of a complete graph Kn−s−t with n ≥ s + t + 3, s, t ≥ 1. If G3 is

the graph obtained from Kn−s−t by adding an edge between u and an end vertex of path

Ps+t, and G4 is the graph obtained from Kn−s−t by adding an edge between u and an end

vertex of path Ps, and another edge between v and an end vertex of another path Pt.

Transformation B: G4 −→ G3.

According to Lemma 2.11, we obtain a similar result on Transformation B. As the proof

of the following result is very similar to the proof of Lemma 2.11, we omit the proof.
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Lemma 2.12. Let G3 and G4 be the graphs defined above. Then M2k(G3) < M2k(G4)

and M2k−1(G3) ≤ M2k−1(G4) for k ≥ 2.

We now give results on resolvent energy which are obtained in [21].

Lemma 2.13. [21] Let G be a graph of order n. Then ER(G) ≤ 2n
n+1

with equality holding

if and only if G ∼= Kn.

Lemma 2.14. [21] If e is an edge in graph G, denote by G− e the subgraph obtained by

deleting e from G. For any edge e of G, we have ER(G− e) < ER(G).

3 Bounds on different resolvent energies of graphs

In this section we give some lower and upper bounds on ER, RL and ERN of graphs.

Recall that a kite Kin, ω is the graph obtained from a clique Kω and a path Pn−ω by

adding an edge between a vertex from the clique and an endpoint from the path. First

we give a lower bound on ER in terms of n and clique number ω.

Theorem 3.1. Let G be a connected graph of order n and clique number ω. Then

ER(G) ≥ ER(Kin, ω) with equality holding if and only if G ∼= Kin, ω.

Proof. If G ∼= Kin, ω, then the equality holds. Otherwise, G � Kin, ω. Then we have

to prove that ER(G) > ER(Kin, ω). First we assume that G is a tree. Then we have

G � Pn. Now we apply Transformation A on G several times (at least one time), we

obtain a path Pn. Hence by Lemma 2.11 in (5), we have ER(G) > ER(Pn). Next we

assume that G is not a tree. Let G′ be a subgraph of G with order n and clique number

ω such that G′ − E(Kω) is a forest. Then we have

G′ − E(Kω) =
ω⋃

i=1

Ti,

where Ti is a tree of order |V (Ti)| ≥ 1, 1 ≤ i ≤ ω. Therefore by Lemma 2.14, we have

ER(G) ≥ ER(G′) with equality holding if and only if G ∼= G′. For G′ ∼= Kin, ω, we

have ER(G) > ER(G′) = ER(Kin, ω) as G � Kin, ω. Otherwise, G′ � Kin, ω. We apply

Transformation A on G′ several times, we obtain a new graph G′′ such that

G′′ − E(Kω) =
ω⋃

i=1

Pni
,
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where Pni
is a path of order ni and n1 ≥ n2 ≥ · · · ≥ nω. If n2 = 1, then G′′ ∼= Kin, ω

and hence ER(G) ≥ ER(G′) > ER(G′′) = ER(Kin, ω). Otherwise, n2 ≥ 2. We apply

Transformation B on G′′ for several times until the resultant graph is isomorphic to

Kin, ω. Then by Lemmas 2.11 and 2.12 in (5), we obtain ER(G) ≥ ER(G′) ≥ · · · ≥

ER(G′′) > · · · > ER(Kin, ω). This completes the proof of the theorem.

Denote by Kn1, n2,..., nk
a complete k-partite graph of order n whose partition sets are of

size n1, n2, . . . , nk, respectively. Hereafter we always assume that n1 ≥ n2 ≥ · · · ≥ nk.

The Turán graph T (n, k) is a complete multipartite graph formed by partitioning a set of

n vertices into k subsets, with sizes as equal as possible, and connecting two vertices by

an edge if and only if they belong to different subsets. We now present an upper bound

on Laplacian resolvent energy of graphs in terms of order n and chromatic number k.

Theorem 3.2. Let G be a graph of order n with the chromatic number k. Then

RL(G) ≤ 2k − 1 +
1

n+ 1
− 2(2k + 2tk − n)

(t+ 2)(t+ 1)
,

where t =
⌊
n
k

⌋
. Moreover, the equality holds if and only if G ∼= T (n, k).

Proof. Since G has order n and the chromatic number k, we can assume that V (G) =

S1 ∪ S2 ∪ · · · ∪ Sk with Si ∩ Sj = ∅ (1 ≤ i 6= j ≤ k) such that for any edge vivj ∈ E(G),

vi ∈ Sp, vj ∈ Sq (1 ≤ p 6= q ≤ k) and |Si| = ni, 1 ≤ i ≤ k, n1 ≥ n2 ≥ · · · ≥ nk, where
k∑

i=1

ni = n. Therefore G is a subgraph of Kn1, n2, ..., nk
and hence

RL(G) ≤ RL(Kn1, n2, ..., nk
) (6)

with equality holding if and only if G ∼= Kn1, n2, ..., nk
. Since

SL(Kn1, n2, ..., nk
) =

{
n, . . . , n︸ ︷︷ ︸

k−1

, n− n1, . . . , n− n1︸ ︷︷ ︸
n1−1

, n− n2, . . . , n− n2︸ ︷︷ ︸
n2−1

, n− nk, . . . , n− nk︸ ︷︷ ︸
nk−1

, 0
}
.

Now,

RL(Kn1, n2, ..., nk
) = k − 1 +

1

n+ 1
+

k∑
i=1

ni − 1

ni + 1
= 2k − 1 +

1

n+ 1
− 2

k∑
i=1

1

ni + 1
. (7)

Since n1 ≥ n2 ≥ · · · ≥ nk with
k∑

i=1

ni = n = (n − tk)(t + 1) + (k + tk − n)t
(
t =

⌊
n
k

⌋ )
,

then by Lemma 2.1, we obtain

(n1, n2, . . . , nk) �
(
t+ 1, . . . , t+ 1︸ ︷︷ ︸

n−tk

, t, . . . , t︸ ︷︷ ︸
k+tk−n

)
.
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By Lemma 2.2 with the fact that f(x) = 1
x+1

for x > 0 is strictly convex, from (6) and
(7), we have

RL(G) ≤ 2k−1+
1

n+ 1
− 2(n− tk)

t+ 2
− 2(k + tk − n)

t+ 1
= 2k−1+

1

n+ 1
− 2(2k + 2tk − n)

(t+ 2)(t+ 1)
,

with equality holding if and only if G is the Turán Graph. This completes the proof of

the theorem.

A complete split graph CSn, α is a graph on n vertices consisting of a clique on n − α

vertices and a stable set on the remaining α vertices in which each vertex of the clique is

adjacent to each vertex of the stable set. Note that CSn, α
∼= Kα,1, 1, . . . , 1︸ ︷︷ ︸

n−α

. We now give

an upper bound on RL in terms of order n and independence number α.

Theorem 3.3. Let G be a graph of order n with independence number α. Then

RL(G) ≤ n− α + 1− 2

α + 1
+

1

n+ 1
(8)

with equality holding if and only if G ∼= CSn, α.

Proof. Since the independence number of graph G is α, therefore G is a subgraph of

CSn, α. For G ∼= CSn, α, since

SL(CSn, α) =
{
n, . . . , n︸ ︷︷ ︸

n−α

, n− α, . . . , n− α︸ ︷︷ ︸
α−1

, 0
}
,

then the equality in (8) holds. Otherwise, G � CSn, α. Then G is a proper subgraph of

CSn, α. By interlacing property, one can easily see that µi(G) ≤ µi(CSn, α) for 1 ≤ i ≤ n−1

and there exists at least one value (say j) such that µj(G) < µj(CSn, α). Hence we get

RL(G) =
n∑

i=1

1

n+ 1− µi(G)
<

n∑
i=1

1

n+ 1− µi(CSn, α)
= n− α +

α− 1

α + 1
+

1

n+ 1
.

This completes the proof of the theorem.

The Kirchhoff index of a connected graph G with order n is denoted by Kf(G) and is

defined as

Kf(G) = n

n−1∑
i=1

1

µi

.

The Kirchhoff index found noteworthy applications in chemistry, as a molecular structure

descriptor [2,27], and many of its mathematical properties have been established in [16,26]

and their references. Here we present a relation between Laplacian resolvent energy and

Kirchhoff index of graphs.
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Proposition 3.4. Let G be a graph of order n with its complement graph G. Then

Kf(G ∨K1) = (n+ 1)RL(G).

Proof. By Lemmas 2.4 and 2.5, we have

SL(G ∨K1) =
{
n+ 1, n− µn−1 + 1, n− µn−2 + 1, . . . , n− µ1 + 1, 0

}
. (9)

Hence

Kf(G ∨K1) =
n+ 1

n+ 1
+

n−1∑
i=1

n+ 1

n− µi + 1
= (n+ 1)RL(G).

Corollary 3.5. Let G be a graph of order n with m edges and maximum degree ∆. Then

RL(G) ≥ 1

n+ 1
+

1

n−∆
+

(n− 2)2

n2 − 2m− 2

with equality holding if and only if G ∼= Kn or G ∼= K1, n−1.

Proof. Using ∆ + 1 ≤ µ1 ≤ n and the arithmetic-harmonic-mean inequality, from the

proof of Proposition 3.4, we obtain

RL(G) =
1

n+ 1
+

1

n− µ1 + 1
+

n−1∑
i=2

1

n− µi + 1

≥ 1

n+ 1
+

1

n−∆
+

(n− 2)2

n−1∑
i=2

(n− µi + 1)

=
1

n+ 1
+

1

n−∆
+

(n− 2)2

n2 − 2m− 2
.

Moreover, the equality holds if and only if ∆ + 1 = µ1 = n and µ2 = µ3 = · · · = µn−1,

that is, if and only if G ∼= Kn or G ∼= K1, n−1, by Theorem 2.8 in [11].

Let t(G) be the number of spanning trees of a graph G. It is well-known fact that

t(G) =
1

n

n−1∏
i=1

µi,

where µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0 are the Laplacian eigenvalues of graph G. Here we

present a lower bound on RL(G) of graphs.

Theorem 3.6. Let G be a graph of order n with its complement graph G. Then

RL(G) ≥ (n− 1)
(
t(G ∨K1)

)−1/(n−1)

+
1

n+ 1

with equality holding if and only if G ∼= Kn or G ∼= Kn.
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Proof. By the arithmetic-geometric-mean inequality with (9), we have

RL(G) =
1

n+ 1
+

n−1∑
i=1

1

n− µi(G) + 1

=
1

n+ 1
+

n∑
i=2

1

µi(G ∨K1)

≥ 1

n+ 1
+ (n− 1)

( n∏
i=2

µi(G ∨K1)
)−1/(n−1)

=
1

n+ 1
+ (n− 1)

(
t(G ∨K1)

)−1/(n−1)

,

which gives the required result. Moreover, one can easily see that the equality holds if

and only if µ1 = µ2 = · · · = µn−1. By [11], for connected graph G, we have µ1 = µ2 =

· · · = µn−1 if and only if G ∼= Kn. From the above results, we conclude that the equality

holds if and only if G ∼= Kn or G ∼= Kn. This completes the proof of the theorem.

We now give lower and upper bounds on the normalized Laplacian resolvent energy of

graphs in terms of order n.

Theorem 3.7. Let G be a graph of order n without isolated vertices. Then
(n− 1)2

2n− 3
+

1

3
≤ ERN(G) ≤ 2n

3
− 1− (−1)n

12

with left equality holding if and only if G ∼= Kn, and right equality holding if and only if

G ∼= bn−2
2
cK2 ∪ Pa, where a = n− 2 bn−2

2
c.

Proof. Since G does not contain any isolated vertex, then
n−1∑
i=1

ρi = n. Then by Lemma

2.1, we have

(ρ1, ρ2, . . . , ρn−1, 0) �
( n

n− 1
, . . . ,

n

n− 1︸ ︷︷ ︸
n−1

, 0
)
.

Since the function f(x) = 1
3−x

is strictly convex function for 0 ≤ x ≤ 2, by Lemma 2.2,

we obtain

ERN(G) =
n∑

i=1

1

3− ρi
≥ (n− 1)2

2n− 3
+

1

3

with equality holding if and only if ρi = n
n−1

, 1 ≤ i ≤ n − 1. Then by Lemma 2.7, the

above equality holds if and only G ∼= Kn. Moreover, from 0 ≤ ρi ≤ 2, we have

(ρ1, ρ2, . . . , ρn−1, 0) ≺


(2, . . . , 2︸ ︷︷ ︸

n/2

, 0, . . . , 0︸ ︷︷ ︸
n/2

) if n is even

(2, . . . , 2︸ ︷︷ ︸
(n−1)/2

, 1, 0, . . . , 0︸ ︷︷ ︸
(n−1)/2

) if n is odd.
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Similarly, by Lemma 2.2, we obtain

ERN(G) =
n∑

i=1

1

3− ρi
≤ 2n

3
− 1− (−1)n

12

with equality holding if and only if (ρ1, ρ2, . . . , ρn−1, 0) = (2, . . . , 2︸ ︷︷ ︸
n/2

, 0, . . . , 0︸ ︷︷ ︸
n/2

) for even

n and (ρ1, ρ2, . . . , ρn−1, 0) = (2, . . . , 2︸ ︷︷ ︸
(n−1)/2

, 1, 0, . . . , 0︸ ︷︷ ︸
(n−1)/2

) for odd n, which follows that G has

n/2 (resp. (n − 1)/2) connected components for even (resp. odd) n. From the given

condition that G does not contain any isolated vertex, we have G ∼= n
2
K2 for even n, and

G ∼= n−3
2
K2 ∪ P3 for odd n. This completes the proof of the theorem.

Theorem 3.8. Let G be a bipartite graph of order n without isolated vertices. Then

ERN(G) ≥ n

2
+

1

3
(10)

with equality holding if and only if G ∼= Kp, q (p+ q = n, p ≥ q).

Proof. Since G is bipartite, then ρ1 = 2 and hence
n−1∑
i=2

ρi = n − 2. By Lemma 2.1, we

have

(ρ2, ρ3, . . . , ρn−1) � (1, 1, . . . , 1).

Since the function f(x) = 1
3−x

is strictly convex function for 0 ≤ x ≤ 2, by Lemma 2.2,

we obtain ERN(G) =
n∑

i=1

1
3−ρi

≥ n
2
+ 1

3
. By [12], for any graph G, we have ρ2 = ρ3 =

· · · = ρn−1 if and only if G ∼= Kn or G ∼= Kp, q (p + q = n, p ≥ q). The equality in (10)

holds if and only if (ρ2, ρ3, . . . , ρn−1) = (1, 1, . . . , 1), that is, G ∼= Kp, q (p+ q = n, p ≥ q).

The Randić energy [3, 4] of graph G without isolated vertices is defined as

RE = RE(G) =
n∑

i=1

|ρi − 1|.

For several lower and upper bounds on Randić energy, see [3, 4, 13–15]. We now obtain a

relation between normalized Laplacian resolvent energy ERN and Randić energy RE.

Theorem 3.9. Let G be a graph of order n without isolated vertices. Then

RE(G) <

√
(n− 1)

(
27ERN(G)− 13n− 1

)
.
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Proof. From the definition we have

ERN(G) =
1

3

n∑
i=1

(
1− ρi

3

)−1

>
1

3

n∑
i=1

(
1 +

ρi
3
+

ρ2i
9

)

=
1

3

(
n+

n

3
+

1

9

n∑
i=1

ρ2i

)
.

From the above, we obtain

27

(
ERN(G)− 4n

9

)
>

n∑
i=1

ρ2i .

Using this result with

RE(G) =
n−1∑
i=1

|ρi − 1|,

we get

RE(G) ≤

√√√√(n− 1)
n−1∑
i=1

(ρ2i − 2ρi + 1) <

√
(n− 1)

(
27ERN(G)− 13n− 1

)
.

This completes the proof of the theorem.

4 Comparison between resolvent energies of different
graph matrices

In this section we compare between resolvent energies of different graph matrices. First

we find the difference between RL and RQ of graphs.

Theorem 4.1. Let G be a graph of order n > 2 with m edges. Then

RL(G)−RQ(G) >
(n− 2)(2m− n)

(2n− 1)[(n+ 1)(n− 2)− 2m+ n]
.

Proof. It is well known that qi ≤ n − 2 for i = 2, 3, . . . , n. Then n − 2 − qi ≥ 0,

i = 2, 3, . . . , n. If ∆ = n− 1, then µ1 = n and hence n− 2 + µ1 − q1 ≥ 0 as q1 ≤ 2n− 2.

Otherwise,∆ ≤ n−2. Since µ1 ≥ ∆+1 and q1 ≤ 2∆, we have n−2+µ1−q1 ≥ n−1−∆ ≥ 1.

Using the above results with (2), (3) and the arithmetic-harmonic-mean inequality, we
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have

RL(G)−RQ(G) =
n∑

i=1

(
1

n+ 1− µi

− 1

2n− 1− qi

)

=
n∑

i=1

n− 2 + µi − qi
(n+ 1− µi)(2n− 1− qi)

=
n− 2 + µ1 − q1

(n+ 1− µ1)(2n− 1− q1)
+

n∑
i=2

n− 2 + µi − qi
(n+ 1− µi)(2n− 1− qi)

≥
n∑

i=2

µi

(n+ 1− µi)(2n− 1− qi)
(11)

≥ 1

2n− 1

n−1∑
i=2

µi

n+ 1− µi

(12)

=
1

2n− 1

n−1∑
i=2

[
−1 +

n+ 1

n+ 1− µi

]

≥ 1

2n− 1

[
−n+ 2 +

(n+ 1) (n− 2)2

(n+ 1)(n− 2)− 2m+ µ1

]

≥ 1

2n− 1

[
−n+ 2 +

(n+ 1) (n− 2)2

(n+ 1)(n− 2)− 2m+ n

]

=
(n− 2)(2m− n)

(2n− 1)[(n+ 1)(n− 2)− 2m+ n]
.

From equality in (12), we have qi = 0 for i = 2, 3, . . . , n − 1. Then qn = 0 and hence

G ∼= K2 ∪ (n− 2)K1 or G ∼= nK1. Using this one can easily check that the inequality in

(11) is strict as n > 2. This completes the proof of the theorem.

Theorem 4.2. Let G be a graph of order n > 2. Then RL(G) > RQ(G).

Proof. Let m be the number of edges in G. For m ≤ 1, we have G ∼= Kn or G ∼= Kn − e

(e is any edge in Kn) and hence one can easily check that RL(G) > RQ(G). Otherwise,

m ≥ 2. Then µ2 > 0. From (12), we get the required result.

We now find the lower bound on ER(G)−RQ(G) of graphs.

Theorem 4.3. Let G be a graph of order n with m edges and maximum degree ∆. Then

ER(G)−RQ(G) ≥ n2(n−∆− 1)

n2(2n−∆− 1) + 2m
(13)

with equality holding if and only if G ∼= Kn.
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Proof. For n = 1, one can easily check that the result holds in (13). Otherwise, n ≥ 2.

By Lemma 2.3 on Q(G) = D(G) + A(G), we have θi(Q(G)) ≤ θ1(D(G)) + θi(A(G)) for

i = 1, 2, . . . , n, where θi(M) is the i-th largest eigenvalue of M . Thus we have qi ≤ ∆+λi

for i = 1, 2, . . . , n. Therefore 2n − 1 − qi ≥ 2n − ∆ − 1 − λi for i = 1, 2, . . . , n. Using

this result with arithmetic-harmonic-mean inequality, we obtain

ER(G)−RQ(G) =
n∑

i=1

[
1

n− λi

− 1

2n− 1− qi

]

≥
n∑

i=1

[
1

n− λi

− 1

2n−∆− 1− λi

]
(14)

=
n∑

i=1

n−∆− 1(
n− λi

)(
2n−∆− 1− λi

)
≥ n2 (n−∆− 1)

n∑
i=1

(
n− λi

)(
2n−∆− 1− λi

) (15)

=
n2 (n−∆− 1)

n2(2n−∆− 1) + 2m

as
n∑

i=1

λi = 0 and
n∑

i=1

λ2
i = 2m.

The first part of the proof is done.

Suppose that equality holds in (13). Then the equality holds in (15). By arithmetic-

harmonic-mean inequality, we have(
n− λ1

)(
2n−∆− 1− λ1

)
= · · · =

(
n− λn

)(
2n−∆− 1− λn

)
,

that is,

(λi − λj)
(
3n−∆− 1− (λi + λj)

)
= 0 for all 1 ≤ i < j ≤ n as n ≥ 2.

For 1 ≤ i < j ≤ n, we have λi+λj ≤ 2λ1 ≤ 2(n−1) < 3n−∆−1. From these results, we

conclude that λ1 = λ2 = · · · = λn. Since
n∑

i=1

λi = 0, we have λi = 0 for all i, 1 ≤ i ≤ n.

Thus we have G ∼= Kn.

Conversely, let G ∼= Kn. Then λi = qi = 0 for all i, 1 ≤ i ≤ n and m = ∆ = 0. Thus we

have
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ER(G)−RQ(G) =
n− 1

2n− 1
=

n2(n−∆− 1)

n2(2n−∆− 1) + 2m
.

From the above result, one can easily compare ER(G) and RQ(G) of graph G in the

following:

Theorem 4.4. Let G be a graph of order n > 1. Then ER(G) > RQ(G).

From Theorems 4.2 and 4.4, it is natural to ask the question: which one is true RL(G) >

ER(G) or ER(G) > RL(G)? For G ∼= Kn (n > 2), RL(G) = n−1+ 1
n+1

> 2n
n+1

= ER(G)

and for G ∼= Kn, RL(G) = n
n+1

< 1 = ER(G). These two examples show us that ER(G)

and RL(G) are incomparable in general case. It motivates us to find out some classes of

graphs such that RL(G) > ER(G) or ER(G) > RL(G) holds. We now compare ER(G)

and RL(G) of bipartite graph G as follows:

Theorem 4.5. Let G be a bipartite graph of order n with no isolated vertices. Then

RL(G) ≥ ER(G) with equality holding if and only if G ∼= n
2
K2 (n is even).

Proof. Using Lemma 2.3 on Q(G) = D(G) + A(G), we have qi ≥ δ + λi. Since G has no

isolated vertices, δ ≥ 1 and hence qi ≥ 1 + λi for i = 1, 2, . . . , n. Since G is bipartite, we

have n− λi ≥ n+ 1− µi for i = 1, 2, . . . , n. Hence

RL(G)− ER(G) =
n∑

i=1

[
1

n+ 1− µi

− 1

n− λi

]
≥ 0.

The first part of the proof is done.

Suppose that RL(G) = ER(G) holds. Then δ = 1 and qi = 1 + λi, 1 ≤ i ≤ n. Since

G is bipartite with no isolated vertices, by Lemma 2.10, we have G ∼= n
2
K2 (n is even).

Conversely, one can easily see that RL = ER holds for n
2
K2 (n is even).

By some examples we showed that RL(G) and ER(G) are incomparable, but we have the

following result:

Theorem 4.6. Let G be a graph of order n (> 3). Then RL(G) + RL(G) > ER(G) +

ER(G).
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Proof. It is well known that either G or G must be connected. Without loss of generality
we can assume that G is connected. For G ∼= Kn, we have

SL(G) =
{
n, . . . , n︸ ︷︷ ︸

n−1

, 0
}
, SL(G) = SA(G) = {0, . . . , 0︸ ︷︷ ︸

n

}, SA(G) =
{
n− 1,−1, . . . , −1︸ ︷︷ ︸

n−1

}
and hence

RL(G) +RL(G) = n >
3n+ 1

n+ 1
= ER(G) + ER(G),

as n > 3. For G ∼= Kn − e, we have

SL(G) =
{
n, . . . , n︸ ︷︷ ︸

n−2

, n− 2, 0
}
, SL(G) = {2, 0, . . . , 0︸ ︷︷ ︸

n−1

}, SA(G) = {1, 0, . . . , 0︸ ︷︷ ︸
n−2

, −1}

and SA(G) =
{n− 3 +

√
n2 + 2n− 7

2
, 0, −1, . . . , −1︸ ︷︷ ︸

n−3

,
n− 3−

√
n2 + 2n− 7

2

}
.

Since n ≥ 4, we have

RL(G) +RL(G) =
n2 − 2

n+ 1
+

n+ 2

3n− 3
> 3 +

1

n− 1
− 1

n
− 3

n+ 1
− 1

n+ 4

= ER(G) + ER(G).

Otherwise, G is a subgraph of H1 or H2 (see definition before Lemma 2.8). By Lemmas

2.8 and 2.9, we have

ER(H1) =
n− 5

n+ 1
+

2

n
+

1

n+ 2
+

2n− (s+ t)

(n− s)(n− t)

=
n− 5

n+ 1
+

2

n
+

1

n+ 2
+

2n− (n− 3)

n2 − (n− 3)n+ 6− 2n

= 2 +
2

n
+

1

n+ 2
− 3

n+ 6
− 6

n+ 1

and

ER(H2) =
n− 3

n+ 1
+

3n2 − 2n(a+ b+ c) + ab+ ac+ bc

(n− a)(n− b)(n− c)

=
n− 3

n+ 1
+

3n2 − 2n(n− 3) + 5− 2n

n3 − (n− 3)n2 − (2n− 5)n+ n− 3

= 2− 4

n+ 1
− 2n− 8

n2 + 6n− 3
. (16)

After simple calculation, we have ER(H1) < ER(H2). Since G is a proper subgraph ofH2,

we have ER(G) < ER(H2) by Lemma 2.14. Using these results with the fact that G is the
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subgraph ofH1 orH2, again by Lemma 2.14, we obtain that ER(G)+ER(G) < 2ER(H2).

It is well known that µi(G) = n− µn−i(G) for i = 1, 2, . . . , n− 1. Then we have

RL(G) +RL(G) =
n−1∑
i=1

[
1

n+ 1− µi(G)
+

1

µn−i(G) + 1

]
+

2

n+ 1

=
n−1∑
i=1

[
1

n+ 1− µi(G)
+

1

µi(G) + 1

]
+

2

n+ 1

=
n−1∑
i=1

n+ 2

(n+ 1− µi(G))(1 + µi(G))
+

2

n+ 1
. (17)

Since f(x) = (n + 1 − x)(x + 1) is an increasing function on x ≤ n/2 and a decreasing

function on x ≥ n/2, we have f(x) ≤ (n + 2)2/4. Using this result in (17) with (16), we

obtain

RL(G) +RL(G) ≥ 4(n− 1)

n+ 2
+

2

n+ 1
≥ 2ER(H2)

as n ≥ 4. From the above results, we obtain ER(G) + ER(G) < 2ER(H2) ≤ RL(G) +

RL(G), which completes the proof of the theorem.

Now we would like to compare between ERN(G) and ER(G) of graph G.

Proposition 4.7. Let G be a graph of order n > 2. Then ERN(G) > ER(G).

Proof. If G has no isolated vertices, then by Lemma 2.13 and Theorem 3.7, we have

ERN(G) ≥ (n− 1)2

2n− 3
+

1

3
>

2n

n+ 1
= ER(G) as n > 2.

Otherwise, G has isolated vertices. Let k ≥ 1 be the number of isolated vertices in G.

We can assume that G ∼= H ∪ kK1. Then SA(G) = SA(H) ∪ {0, . . . , 0︸ ︷︷ ︸
k

} and SN(G) =

SN(H) ∪ {0, . . . , 0︸ ︷︷ ︸
k

}. From the above, we have ERN(H) ≥ ER(H). Using these results

with n ≥ 3 and k ≥ 1, we obtain

ERN(G) = ERN(H) +
k

3
≥ ER(H) +

k

3
=

n−k∑
i=1

1

n− k − λi(H)
+

k

3

>

n−k∑
i=1

1

n− λi(H)
+

k

n
= ER(G).
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Next we would like to compare between ERN(G) and RL(G) of graph G. For n ≥ 3,

ERN(Kn) =
(n− 1)2

2n− 3
+

1

3
< n− 1 +

1

n+ 1
= RL(Kn)

and

ERN(K1, n−1) =
n

2
+

1

3
> 2 +

1

n+ 1
− 2

n
= RL(K1, n−1).

Thus ERN(G) and RL(G) are incomparable. Hence it is interesting to find some classes

of graphs such that one is always greater than the other. Now we give the following two

classes of graphs in which ERN(G) > RL(G).

Theorem 4.8. Let G be a graph of order n > 2 with no isolated vertices. If ∆ ≤ n
2
, then

ERN(G) > RL(G).

Proof. Since ∆ ≤ n
2
, we have 2 ≤ n−2

∆−1
. Using this with Lemma 2.6, for any i, we obtain

µi ≤ n ≤ n− 2 +
n− 2

∆− 1
, i.e., µi

(
1− 1

∆

)
≤ n− 2, i.e., 3− ρi ≤ 3− µi

∆
≤ n+ 1− µi.

Since n ≥ 3, we have

ERN(G) =
n−1∑
i=1

1

3− ρi
+

1

3
≥

n−1∑
i=1

1

n+ 1− µi

+
1

3
> RL(G).

This completes the proof of the theorem.

Theorem 4.9. Let G be a bipartite graph of order n ≥ 3. Then ERN(G) > RL(G).

Proof. Let k be the number of isolated vertices in G. We consider the following cases:

Case 1. k = 0. Let p and q be the sizes of bipartition of G. Then p + q = n. Without

loss of generality, we can assume that p ≥ q. It is clear that G must be a subgraph of

Kp, q, and then µi(G) ≤ µi(Kp, q), i = 1, . . . , n. It is well known that

SL(Kp, q) =
{
n, p, . . . , p︸ ︷︷ ︸

q−1

, q, . . . , q︸ ︷︷ ︸
p−1

, 0
}
.

Since
1

p+ 1
+

1

q + 1
≥ 4

n+ 2
,

we obtain

RL(G) ≤ RL(Kp, q) =
p− 1

p+ 1
+

q − 1

q + 1
+

n+ 2

n+ 1
≤ 3 +

1

n+ 1
− 8

n+ 2
.
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Using the above result with Theorem 3.8, we get

ERN(G) ≥ n

2
+

1

3
> 3 +

1

n+ 1
− 8

n+ 2
≥ RL(G)

as n ≥ 3.

Case 2. k ≥ 1. We can assume that G ∼= H ∪ kK1. Then SL(G) = SL(H) ∪ {0, . . . , 0︸ ︷︷ ︸
k

}

and SN(G) = SN(H) ∪ {0, . . . , 0︸ ︷︷ ︸
k

}. If k ≥ n− 2, then G ∼= K2 ∪ (n− 2)K1 or G ∼= nK1,

and hence one can easily check that ERN(G) > RL(G) as n ≥ 3. Otherwise, k ≤ n− 3,

which implies that H has order at least 3. Then by Case 1, we have ERN(H) > RL(H).

Using these results with n ≥ 3 and k ≥ 1, we obtain

ERN(G) = ERN(H) +
k

3
> RL(H) +

k

3
=

n−k∑
i=1

1

n− k + 1− µi(H)
+

k

3

>

n−k∑
i=1

1

n+ 1− µi(H)
+

k

n+ 1
= RL(G).

This completes the proof of the theorem.

Theorem 4.10. Let G be a graph of order n > 2. If d2(G) < n− 1 and d2(G) < n− 1,

then ERN(G) + ERN(G) > RL(G) + RL(G), where d2(G) and d2(G) are the second

maximum degrees of G and its complement graph G, respectively.

Proof. It is clear that either G or G is connected. Moreover, d2(G) < n− 1 and d2(G) <

n− 1 are given. Without loss of generality, we can assume that G is connected. From the

condition that d2(G) < n− 1, then G has at most one vertex of degree n− 1. Therefore,

we can assume that G ∼= tK1 ∪H, where t ≤ 1 and H is a graph with order n− t and no

isolated vertices. By Theorem 3.7, we get

ERN(G)+ERN(G) ≥ (n− 1)2

2n− 3
+

(n− t− 1)2

2n− 2t− 3
+

t+ 2

3
≥ (n− 1)2

2n− 3
+

(n− 2)2

2n− 5
+1. (18)

It is easy to check that (n+ 1− µi(G))(1 + µi(G)) ≥ n+ 1 as 0 ≤ µi(G) ≤ n. Using this

result in (17), we have

RL(G) +RL(G) ≤ (n+ 2)(n− 1)

n+ 1
+

2

n+ 1
= n.

Combining the above result and the result in (18) with the fact that (n−1)2

2n−3
+ (n−2)2

2n−5
+1 > n

(n > 2), we can get the required result.
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Remark 4.11. From the above theorem, we can see that ERN(G)+ERN(G) > RL(G)+

RL(G) is true for most cases. However, for the nearly complete graphs, the result does

not hold.

5 Conclusion

From the motivation of resolvent energy (ER), Laplacian resolvent energy (ENL) and

signless Laplacian resolvent energy (RQ), in this paper, we defined the normalized Lapla-

cian resolvent energy (ERN) and obtained several bounds on them. Therefore, we con-

firmed that

ERN > ER > RQ, and RL > RQ,

for a graph with order n ≥ 3. In particular, we proved that ERN > RL ≥ ER for

a bipartite graph without isolated vertices. However, RL & ERN and RL & ER are

incomparable in general, which is showed by some examples in last section. By computer,

we checked that RL > ER is true for all connected graphs with order 3 ≤ n ≤ 9. Is it

true that RL > ER for all connected graphs with order n ≥ 3? We leave it as an open

problem for future research.
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