
(Laplacian) Borderenergetic Graphs and
Bipartite Graphs∗

Bo Denga,c,d,† , Xueliang Lib , Haixing Zhaoc

aSchool of Mathematics and Statistics,
Qinghai Normal University, Xining, 810001, China

bCenter for Combinatorics and LPMC,
Nankai University, Tianjin 300071, China

cKey Laboratory of Tibetan Information Processing,
Ministry of Education, Qinghai Province, China

dCollege of Science,
Guangdong University of Petrochemical Technology,

Maoming 525000, Guangdong, China
Email: dengbo450@163.com, lxl@nankai.edu.cn, h.x.zhao@163.com

(Received February 22, 2019)

Abstract
A graph G of order n and size m is (Laplacian) borderenergetic if it has the

same (Laplacian) energy as the complete graph Kn does. In this paper, we prove
that when m < 2(n−1)2

n , a borderenergetic graph is not bipartite. Moreover, for a
borderenergetic bipartite graph, we present a lower bound of its largest eigenvalue
and an upper bound of its middle eigenvalue, respectively. Analogously, Laplacian
borderenergetic bipartite graphs is observed and some asymptotically tight bounds
on their first Zagreb indices are shown.

1 Introduction
All graphs considered in this paper are simple and undirected. Let G be a graph with

order n and size m. The complete graph of order n is denoted by Kn. The degree of

vertex vi in the graph G is denoted by di. The first Zagreb index [12, 16] of the graph G

is defined as

M1 = M1(G) =
n∑

i=1

d2i .
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For terminology and notation not given here, we refer to [1].

Let A(G) be an adjacency matrix of G and set λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues

of the adjacency matrix A(G). The nullity η(G) of the graph G is the multiplicity of the

eigenvalue zero in its adjacency spectrum. If D(G) is the diagonal matrix of the vertex

degrees of G, L(G) = D(G) − A(G) is the Laplacian matrix of G. Let µ1 ≥ µ2 ≥ · · · ≥

µn = 0 be the eigenvalues of L(G). The energy of a graph G [13,14], denoted by E(G), is

defined as

E(G) =
n∑

i=1

|λi| .

For additional information on graph energy and its applications in chemistry, we refer

to [14, 15, 18].

Recently, Gong et al. [10] proposed the concept of borderenergetic graphs, namely

graphs of order n satisfying E(G) = 2(n−1). The corresponding results on borderenergetic

graphs can be seen in [6, 17, 19, 20, 23].

Analogously, F. Tura [25] proposed the concept of Laplacian borderenergetic, i.e., L-

borderenergetic graphs. That is, a graph G of order n is L-borderenergetic if LE(G) =

LE(Kn), where LE(G) =
∑n

i=1 |µi − d| and d is the average degree of G. More results on

L-borderenergetic graphs, we can refer to [7–9, 21, 24–26].

Through the computer, the borderenergetic graphs with order 7 ≤ n ≤ 11 have been

found [10, 19, 23], we see that all these graphs are not bipartite. But until now the prop-

erties between a borderenergetic graph and a bipartite graph are not be surveyed. In

this paper we prove that when m < 2(n−1)2

n
, a borderenergetic graph is not bipartite.

Moreover, for a borderenergetic bipartite graph, we present a lower bound of its largest

eigenvalue and an upper bound of its middle eigenvalue, respectively. Analogously, Lapla-

cian borderenergetic bipartite graphs are observed and some asymptotically tight bounds

on their first Zagreb indices are given.

2 Borderenergetic bipartite graphs
In this section, some properties between a borderenergetic graph and a bipartite graph

are surveyed.

Lemma 1. [2, 3] The graph G is bipartite if and only if its eigenvalues are symmetric

with respect to the origin, i.e., if λi = −λn+1−i holds for i = 1, 2, · · ·n.
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Theorem 2. Let G be a borderenergetic graph and suppose m < 2(n−1)2

n
. Then G is not

bipartite.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λs > 0 > λ
′
1 ≥ λ

′
2 ≥ · · · ≥ λ

′
t be the eigenvalues of A(G). Note

that s and t are the numbers of positive eigenvalues and negative eigenvalues, respectively.

Then
s∑

i=1

λi +
t∑

j=1

λ
′

j = 0 . (1)

And we have
s∑

i=1

λ2
i +

t∑
j=1

(λ
′

j)
2 = 2m . (2)

Since G is borderenergetic, we obtain
s∑

i=1

λi +
t∑

j=1

(−λ
′

j) = 2(n− 1) . (3)

Hence, by (1) and (3), we get
s∑

i=1

λi =
t∑

j=1

(−λ
′

j) = n− 1 . (4)

By contradiction, ifG is bipartite, then by Lemma 1 the eigenvalues of A(G) are symmetric

about the origin. Thus, by (2), it arrives that
s∑

i=1

λ2
i =

t∑
j=1

(λ
′

j)
2 = m . (5)

Bearing in mind that s = t ≤ bn
2
c when G is bipartite. As f(x) = x2 is a convex function

on x ∈ R, we use the Jensen inequality to obtain the inequality below.(
λ1 + λ2 + · · ·+ λs

s

)2

≤ λ2
1 + λ2

2 + · · ·+ λ2
s

s
,

(
n− 1

s

)2

≤ m

s
.

By above inequality, we get

(n− 1)2

m
≤ s. (6)

Due to m < 2(n−1)2

n
, we have (n−1)2

m
> n

2
. So we see that s > n

2
, which contracts with

s ≤ bn
2
c and means that G is not bipartite.
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Obviously, from Theorem 2, we can see that, if G is borderenergetic and bipartite,

then the numbers of positive eigenvalues and negative eigenvalues of A(G) are not less

than (n−1)2

m
, respectively.

Theorem 3. Let G be a borderenergetic graph. If G is bipartite, then the numbers of

positive eigenvalues and negative eigenvalues of A(G) are not less than (n−1)2

m
, respectively.

Proof. Let s and t be the numbers of positive eigenvalues and negative eigenvalues of

A(G), respectively. Since G is bipartite, we have s = t. From (6) in the proof of Theorem

2, we see that

(n− 1)2

m
≤ s = t .

When G is a connected k-cyclic graph, we know that m = n + k − 1. Then using

Theorem 2, we can get Corollary 4.

Corollary 4. Let G be a connected borderenergetic graph. If G is a k-cyclic graph with

k ≤ n− 3, then G is not bipartite.

Proof. By k ≤ n− 3, we get

k < n− 3 +
2

n
=

2(n− 1)2

n
− n+ 1.

Then

n+ k − 1 <
2(n− 1)2

n
.

Since G is a k-cyclic graph, we see that m = n+ k − 1 and

m <
2(n− 1)2

n
.

As G is a borderenergetic graph, by Theorem 2, the result holds.

Note that the order n is not less than 7 for any connected borderenergetic graph

G [10]. From Corollary 4, if n = 7, there are no k-cyclic (0 ≤ k ≤ 4) bipartite graphs as

borderenergetic graphs. If n = 8, there are no k-cyclic (0 ≤ k ≤ 5) bipartite graphs as

borderenergetic graphs. We have the similar results for the cases n = 9, 10, 11, · · · .
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It is well known that, for almost all graphs, their nullities are 0. Now we consider
such borderenergetic bipartite graphs satisfying their nullities are 0, and we survey their

largest eigenvalues and middle eigenvalues. Gutman [11] in 1974 given the following lower

and upper bounds on the energy of a bipartite graph G.

E(G) ≥
√

4m+ n(n− 2)(detA(G))2/n. (7)

E(G) ≤
√

2mn− 4m+ 2n(detA(G))2/n. (8)

Theorem 5. Let G be a borderenergetic bipartite graph with η(G) = 0. Then

λ1 ≥
√

2(n− 1)2 −mn+ 2m

n
.

Proof. By Lemma 1 and η(G) = 0, we see that the order n of G is even and

detA(G) = (−1)n/2λ2
1λ

2
2 · · ·λ2

n/2.

Since G is borderenergetic, by (8), we have

2(n− 1) ≤
√

2mn− 4m+ 2n(detA(G))2/n ,

4(n− 1)2 ≤ 2mn− 4m+ 2n((−1)n/2λ2
1λ

2
2 · · ·λ2

n/2)
2/n ,

≤ 2mn− 4m+ 2n(λ
2·n

2
1 )2/n ,

= 2mn− 4m+ 2nλ2
1 .

From above, we obtain

λ1 ≥
√

2(n− 1)2 −mn+ 2m

n
.

Theorem 6. Let G be a borderenergetic bipartite graph with η(G) = 0. Then

λn/2 ≤

√
4(n− 1)2 − 4m

n(n− 2)
.

Proof. Similar to the proof of Theorem 5, we note that the order n of G is even and

detA(G) = (−1)n/2λ2
1λ

2
2 · · ·λ2

n/2 .

Since G is borderenergetic, by (7), we get

2(n− 1) ≥
√

4m+ n(n− 2)(detA(G))2/n ,
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4(n− 1)2 ≥ 4m+ n(n− 2)((−1)n/2λ2
1λ

2
2 · · ·λ2

n/2)
2/n ,

≥ 4m+ n(n− 2)(λ
2·(n

2
)

n/2 )2/n ,

= 4m+ n(n− 2)λ2
n/2 .

Thus, we have

λn/2 ≤

√
4(n− 1)2 − 4m

n(n− 2)
.

3 Laplacian borderenergetic bipartite graphs

When a graph is bipartite, the Laplacian spectrum and signless Laplacian spectrum are

the same. So here we only discuss the former case. In this section, some asymptotically

tight bounds on the first Zagreb index of a Laplacian borderenergetic bipartite graph are

shown.

Lemma 7. [4] Let G be a bipartite graph of order n with m edges. Then

LE(G) ≤ 4m

n
+

√
(n− 2)

(
2M − 8m2

n2

)
, (9)

where

M = m+
M1

2
− 2m2

n
.

Lemma 8. [5] Let G be a bipartite graph of order n with m edges and the first Zagreb

index M1. Then

LE(G) ≥ 2m

n
+

√
2M1 + 4m− 8m2

n
− 12m2

n2
. (10)

Through applying Lemma 7 and Lemma 8, we obtain the following results.

Theorem 9. Let G be a L-borderenergetic bipartite graph. Then

M1 ≥
(2(n− 1)− 4m/n)2

n− 2
+

8m2

n2
+

4m2

n
− 2m.

If G is
√

4k2
1 − 2k1 + 4- regular, and m = k1n + k2, where k1 > 0 and k2 ≥ 0, then the

lower bound above is asymptotically tight.
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Proof. Since G is a L-borderenergetic bipartite graph, by Lemma 7, we have

2(n− 1) ≤ 4m

n
+

√
(n− 2)

(
2M − 8m2

n2

)
. (11)

From (11), it arrives at

M ≥ (2(n− 1)− 4m/n)2

2(n− 2)
+

4m2

n2
. (12)

Due to M = m+ M1

2
− 2m2

n
, we obtain

M1 ≥
(2(n− 1)− 4m/n)2

n− 2
+

8m2

n2
+

4m2

n
− 2m. (13)

When m = k1n+ k2, by the right hand of (13), we get

(2(n− 1)− 4m/n)2

n− 2
+

8m2

n2
+

4m2

n
− 2m

=
4n(k1n+ k2)

2 + 4n(n− 1)2 − 2(k1n+ k2)(n
2 + 6n− 8)

n(n− 2)
. (14)

If G is
√

4k2
1 − 2k1 + 4-regular, then

M1 = n(4k2
1 − 2k1 + 4). (15)

Using (15) to divide (14) and computing the limit as n tends to infinity, we have

lim
n→∞

4n(k1n+ k2)
2 + 4n(n− 1)2 − 2(k1n+ k2)(n

2 + 6n− 8)

n(n− 2)

n(4k2
1 − 2k1 + 4)

= 1 .

Thus, it means that the lower bound of (13) is asymptotically tight when G is√
4k2

1 − 2k1 + 4-regular, and m = k1n+ k2, where k1 > 0 and k2 ≥ 0.

Contrarily, an upper bound, in terms of its order and size, on the first Zagreb index
of a Laplacian borderenergetic bipartite graph is given below.

Theorem 10. Let G be a L-borderenergetic bipartite graph. Then

M1 ≤
(2(n− 1)− 2m/n)2

2
+

4m2

n
+

6m2

n2
− 2m.

Proof. As G is a L-borderenergetic bipartite graph, by Lemma 8, we get

2(n− 1) ≤ 2m

n
+

√
2M1 + 4m− 8m2

n
− 12m2

n2
. (16)

Obviously, by (16), we have

M1 ≤
(2(n− 1)− 2m/n)2

2
+

4m2

n
+

6m2

n2
− 2m.
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