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Abstract

The energy E(G) of a graph G is the sum of the absolute values of its eigen-
values. In this paper, we present several classes of non-self-complementary graphs,
satisfying E(G) = E(G), where G is the complement of G.

1 Introduction

Let G be a simple graph with n vertices. Let V (G) = {v1, v2, . . . , vn} be the vertex set of

G. The complement of a graph G is the graph G with vertex set V (G) = V (G) and two

vertices are adjacent in G if and only if they are not adjacent in G. A graph G is said to

be self-complementary if it is isomorphic to its complement. The line graph of G, denoted

by L(G) is a graph whose vertex set has one-to-one correspondence with the edges of G

and two vertices are adjacent in L(G) if and only if the corresponding edges are adjacent

in G [11].

The adjacency matrix of a graph G is a square matrix A(G) = [aij] of order n,

in which aij = 1 if the vertices vi and vj are adjacent and aij = 0, otherwise. The
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eigenvalues of A(G) are called the eigenvalues of G and their collection is called the

spectrum of G. Since A(G) is a real symmetric matrix, its eigenvalues can be labeled as

λ1 ≥ λ2 ≥ · · · ≥ λn. If λ1, λ2, . . . , λk are the distinct eigenvalues of G with respective

multiplicities m1,m2, . . . ,mk, then the spectrum of G is denoted by

Spec(G) =

(
λ1 λ2 · · · λk

m1 m2 · · · mk

)
.

The spectrum of the union of two graphs is the union of their spectra. Two graphs are
said to be cospectral if they have same spectra. More details about spectra of graphs can

be found in [7].

The energy of a graph G, denoted by E(G), is defined as the sum of the absolute

values of the eigenvalues of G. That is,

E(G) =
n∑

i=1

|λi|.

This concept was introduced by Gutman [9] in 1978. The energy of a graph is a quantity

closely related to the Ḧuckel molecular orbital total π-electron energy [10]. For more

about the graph energy, one can refer the book [15].

Two graphs G1 and G2 of the same order are said to be equienergetic if E(G1) =

E(G2). Cospectral graphs are always equienergetic. Several papers dealing with the

non-cospectral, equienergetic graphs have been appeared. Balakrishnan [2] constructed
equienergetic graphs on n vertices, using tensor product of graphs, for all n ≡ 0(mod 4).

Stevanović [24] gave the construction of equienergetic graphs for all n ≡ 0(mod 5). Ra-

mane and Walikar [20] constructed equienergetic graphs by join of two graphs for all

n ≥ 9. Indulal and Vijayakumar [14] gave equienergetic self-complementary graphs. Xu

and Hou [25] constructed equienergetic bipartite graphs. Ramane et al. [21] obtained the

energy of iterated line graphs of regular graphs and thus gave infinitely many pairs of

non-cospectral equienergetic graphs. In [19], the energy of the complement of iterated

line graphs of regular graphs is obtained and thus found equienergetic graphs. Bronkov et

al. [5] listed some equienergetic trees. Other results on equienergetic graphs can be found

in [1, 4, 8, 13, 16, 17, 23]. The purpose of this paper is to investigate the graphs satisfying

E(G) = E(G).

2 Graphs with E(G) = E(G)

If G is self-complementary then it is obvious that E(G) = E(G). Hence it is less trivial

to find the non-self-complementary graphs satisfying E(G) = E(G). We need following
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theorem.

Theorem 2.1. [22] Let G be an r-regular graph of order n with the eigenvalues r, λ2, . . . , λn.

Then the eigenvalues of G are n− r − 1,−λ2 − 1, . . . ,−λn − 1.

Let Kn be the complete graph on n vertices, Cn be the cycle on n vertices and Kp,q be

the complete bipartite graph on n = p+ q vertices. The smallest non-self-complementary

graph satisfying E(G) = E(G) is the cycle C4. Its eigenvalues are 2, 0, 0,−2 and the

eigenvalues of its complement, C4 = 2K2, are 1, 1,−1,−1. Thus E(C4) = E(C4) = 4.

The graph C4 is connected, whereas its complement is disconnected. The smallest non-

self-complementary graph satisfying E(G) = E(G), where both G and G are connected

is the cycle C6. The eigenvalues of C6 are 2, 1, 1,−1,−1,−2 and the eigenvalues of C6 are

3, 1, 0, 0,−2,−2. Thus E(C6) = E(C6) = 8.

Theorem 2.2. For n ≥ 2, if G = nKn, the union of n copies of Kn, then E(G) = E(G).

Proof. The eigenvalues of Kn are n − 1 and −1 (n − 1 times). Hence the spectrum of

G = nKn is

Spec(G) =

(
n− 1 −1
n n(n− 1)

)
.

Therefore E(G) = |n− 1|(n) + | − 1|n(n− 1) = 2n(n− 1).

Graph G = nKn is a regular graph of degree n − 1 on n2 vertices. By Theorem 2.1,

the spectrum of G is

Spec(G) =

(
n2 − n −n 0

1 n− 1 n(n− 1)

)
.

Therefore E(G) = |n2−n|+ |−n|(n−1)+ |0|n(n−1) = 2n(n−1). Hence E(G) = E(G).

The tensor product M ⊗N of the r× s matrix M = [mij] and t× u matrix N = [nij]

is defined as rt × su matrix got by replacing each entry mij of M by the double array

mijN . If α and β are the eigenvalues of the square matrices M and N respectively, then

αβ is the eigenvalue of M ⊗N . Suppose M and N commute. Then there is an ordering

α1, α2, . . . , αn of the eigenvalues of M and an ordering β1, β2, . . . , βn of the eigenvalues of

N such that the eigenvalues of M +N are α1 + β1, α2 + β2, . . . , αn + βn [12].

Lemma 2.3. The spectrum of the line graph of a complete bipartite graph Kp,q is

Spec(L(Kp,q)) =

(
p+ q − 2 p− 2 q − 2 −2

1 q − 1 p− 1 (p− 1)(q − 1)

)
.
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Proof. The adjacency matrix of L(Kp,q) can be written in the form of blocks as

A(L(Kp,q)) =


Jq − Iq Iq · · · Iq

Iq Jq − Iq · · · Iq
... . . . ...
Iq Iq · · · Jq − Iq


pq×pq

,

where Jq is the square matrix of order q with all entries equal to 1 and Iq is the identity

matrix of order q. Each row and column of A(L(Kp,q)) contains p blocks. Here, A(L(Kp,q))

can be expressed as

A(L(Kp,q)) = Ip ⊗ (Jq − 2Iq) + Jp ⊗ Iq. (1)

Since the eigenvalues of Ip are all ones and the eigenvalues of Jp are p and 0 (p−1 times),

by Eq. (1), the spectrum of L(Kp,q) is

Spec(L(Kp,q)) =

(
p+ q − 2 p− 2 q − 2 −2

1 q − 1 p− 1 (p− 1)(q − 1)

)
.

Theorem 2.4. For p, q ≥ 2, E (L(Kp,q)) = E
(
L(Kp,q)

)
.

Proof. From Lemma 2.3,

E (L(Kp,q)) = |p+ q − 2|+ |p− 2|(q − 1) + |q − 2|(p− 1) + | − 2|(p− 1)(q − 1)

= 4(pq − p− q + 1).

The line graph ofKp,q has pq vertices and it is a regular graph of degree p+q−2. Therefore

by Theorem 2.1, the spectrum of its complement is

Spec
(
L(Kp,q)

)
=

(
pq − p− q + 1 1− p 1− q 1

1 q − 1 p− 1 (p− 1)(q − 1)

)
.

Therefore

E
(
L(Kp,q)

)
= |pq − p− q + 1|+ |1− p|(q − 1) + |1− q|(p− 1) + |1|(p− 1)(q − 1)

= 4(pq − p− q + 1).

Hence E (L(Kp,q)) = E
(
L(Kp,q)

)
.

The Cartesian product of two graphs G1 and G2 is the graph G1 ×G2 with vertex set

V (G1)× V (G2) and in which the vertices (u1, u2) and (v1, v2) are adjacent if either u1 is

adjacent to v1 in G1 and u2 = v2 or u1 = v1 and u2 is adjacent to v2 in G2.

The tensor product of two graphs G1 and G2 is the graph G1 ⊗ G2 with vertex set

V (G1)× V (G2) and in which the vertices (u1, u2) and (v1, v2) are adjacent if and only if

u1 is adjacent to v1 in G1 and u2 is adjacent to v2 in G2.
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Theorem 2.5. [3] If λ1, λ2, . . . , λn are the eigenvalues of G1 and µ1, µ2, . . . , µm are the

eigenvalues of G2, then

(i) the eigenvalues of G1 ×G2 are λi + µj, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

(ii) the eigenvalues of G1 ⊗G2 are λiµj, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

In [4] it has been proved that E(Kp ×Kq) = E(Kp ⊗Kq). In the following theorem

we show that L(Kp,q) ∼= Kp ×Kq and L(Kp,q) ∼= Kp ⊗Kq.

Theorem 2.6. L(Kp,q) ∼= Kp ×Kq and L(Kp,q) ∼= Kp ⊗Kq.

Proof. Suppose V1 and V2 be the partite sets of the vertex set of Kp,q, where |V1| = p

and |V2| = q. Corresponding to each vertex of V1, there is a clique of order q in L(Kp,q).

Without loss of generality consider two cliques of L(Kp,q) of order q with vertices labeled

as ui
1, u

i
2, . . . , u

i
q and vj1, v

j
2, . . . , v

j
q respectively. In L(Kp,q) the vertex ui

k is adjacent to vjk,

k = 1, 2, . . . , q. It is true with all p cliqes of order q. Hence L(Kp,q) ∼= Kp ×Kq.

In L(Kp,q), no two vertices among ui
1, u

i
2, . . . , u

i
q are adjacent. Similary no two vertices

among vj1, v
j
2, . . . , v

j
q are adajcent in L(Kp,q). Where as the vertices ui

k and vjl are adjacent

in L(Kp,q) for k, l = 1, 2, . . . , q and k 6= l. Hence L(Kp,q) ∼= Kp ⊗Kq.

In [18] it was reported that E (L(Kp,p)) = E
(
L(Kp,p)

)
, for p ≥ 2.

Remark: The graph L(K3,3) is self-complementary.

Proposition 2.7. If either p = 2 and q ≥ 2 or p ≥ 2 and q = 2, then L(Kp,q) is bipartite.

Proof. A graph G is bipartite if and only if for each eigenvalue λ of G, −λ is also its

eigenvalue [7]. Thus if either p = 2 and q ≥ 2 or p ≥ 2 and q = 2, by spectrum of L(Kp,q)

given in the proof of Theorem 2.4, we see that for every eiegnvalue λ of L(Kp,q), there is

an eigenvalue −λ of L(Kp,q). Hence the result.

Theorem 2.8. Let G = nKn, n ≥ 2. Then for m ≤ n, E(G×Km) = E(G×Km).

Proof. The spectrum of G = nKn is

Spec(G) =

(
n2 − n −n 0

1 n− 1 n(n− 1)

)
and the spectrum of Km is

Spec(Km) =

(
m− 1 −1

1 m− 1

)
.

Therefore by Theorem 2.5, the spectrum of G×Km is(
n2 − n+m− 1 n2 − n− 1 −n+m− 1 −n− 1 m− 1 −1

1 m− 1 n− 1 (n− 1)(m− 1) n2 − n (n2 − n)(m− 1)

)
.
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Therefore,

E(G×Km) = |n2 − n+m− 1|+ |n2 − n− 1|(m− 1) + | − n+m− 1|(n− 1)

+| − n− 1|(n− 1)(m− 1) + |m− 1|(n2 − n) + | − 1|(n2 − n)(m− 1)

= 2n(n− 1)(2m− 1).

The graph G×Km is a regular graph on mn2 vertices with regularity n2 −n+m− 1.

Therefore by Theorem 2.1 and spectrum of G×Km, the spectrum of G×Km is(
mn2 − n2 + n−m −n2 + n n−m n −m 0

1 m− 1 n− 1 (m− 1)(n− 1) n2 − n (n2 − n)(m− 1)

)
.

Therefore

E(G×Km) = |mn2 − n2 + n−m|+ | − n2 + n|(m− 1) + |n−m|(n− 1)

+|n|(m− 1)(n− 1) + | −m|(n2 − n) + |0|(n2 − n)(m− 1)

= 2n(n− 1)(2m− 1).

Hence, E(G×Km) = E(G×Km).

Remark: If G = nKn, n ≥ 2 then form > n, E(G×Km) = 4mn2−4n2−2mn+2n−2m+2

and E(G×Km) = 4mn2− 4n2− 2mn+4n− 2m. Therefore E(G×Km)−E(G×Km) =

2(n − 1). This shows that the energy difference of the graphs G × Km and G×Km is

independent of m.

A strongly regular graph with parameters (n, r, a, b) is an r-regular graph (0 < r <

n−1) on n vertices in which any two adjacent vertices have exactly a common neighbours

and any two non-adjacent vertices have exactly b common neighbours. If G is a strongly

regular graph with parameters (n, r, a, b) then its complement G is also strongly regular

graph with parameters (n, n − r − 1, n − 2r + b − 2, n − 2r + a). The strongly regular

graph has only three distinct eigenvalues [7].

Theorem 2.9. [7] If G is a strongly regular graph with parameters (n, r, a, b), then the

spectrum of G is r 1
2
(a− b+ t) 1

2
(a− b− t)

1 1
2
(n− 1− ∆

t
) 1

2
(n− 1 + ∆

t
)

 ,

where t =
√

(a− b)2 + 4(r − b) and ∆ = 2r + (n− 1)(a− b).

Theorem 2.10. If G is a strongly regular graph with parameters (4n2, 2n2 − n, n2 −

n, n2 − n), n > 1, then E(G) = E(G).
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Proof. By Theorem 2.9,

Spec(G) =

(
2n2 − n n −n

1 2n2 − 1 2n2 + n− 1

)
.

Therefore,

E(G) = |2n2 − n|+ |n|(2n2 − n) + | − n|(2n2 + n− 1)

= 2n(2n− 1)(n+ 1).

The graph G is a regular graph on 4n2 vertices with regularity 2n2 − n. Therefore by

Theorem 2.1 and the spectrum of G, we have

Spec(G) =

(
2n2 + n− 1 −n− 1 n− 1

1 2n2 − n 2n2 + n− 1

)
.

Therefore

E(G) = |2n2 + n− 1|+ | − n− 1|(2n2 − n) + |n− 1|(2n2 + n− 1)

= 2n(2n− 1)(n+ 1).

Hence, E(G) = E(G).

Remark: If n = 2 in Theorem 2.10, then we get a strongly regular graph with parameters

(16, 6, 2, 2), which is a Shrikhande graph [6]. Energy of Shrikhande graph and of its

complement is 36.

Theorem 2.11. If G is a strongly regular graph with parameters (n2, 3n−3, n, 6), n > 2,

then E(G) = E(G).

Proof. By Theorem 2.9,

Spec(G) =

(
3n− 3 n− 3 −3

1 3n− 3 n2 − 3n+ 2

)
.

Therefore,

E(G) = |3n− 3|+ |n− 3|(3n− 3) + | − 3|(n2 − 3n+ 2)

= 6(n− 1)(n− 2).

The graph G is a regular graph on n2 vertices with regularity 3n − 3. Therefore by

Theorem 2.1 and the spectrum of G, we have

Spec(G) =

(
n2 − 3n+ 2 2− n 2

1 3n− 3 n2 − 3n+ 2

)
.
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Therefore

E(G) = |n2 − 3n+ 2|+ |2− n|(3n− 3) + |2|(n2 − 3n+ 2)

= 6(n− 1)(n− 2).

Hence, E(G) = E(G).

3 Some more graphs satisfying E(G) = E(G)

E(L(Kn)) = E
(
L(Kn)

)
if and only if n = 6 [19].

The spectrum of C4 ×K2 is

Spec(C4 ×K2) =

(
3 1 −1 −3
1 3 3 1

)
.

By Theorem 2.1,

Spec(C4 ×K2) =

(
4 2 0 −2
1 1 3 3

)
.

Therefore E (C4 ×K2) = E
(
C4 ×K2

)
= 12.

The strongly regular graph with parameters (50, 7, 0, 1) is a Moore graph MG and its

spectrum is

Spec(MG) =

(
7 2 −3
1 28 21

)
and

Spec(MG) =

(
42 2 −3
1 21 28

)
.

By Theorem 2.5 the spectrum of MG×K2 is

Spec
(
MG×K2

)
=

(
43 41 3 1 −2 −4
1 1 21 21 28 28

)
.

The graph MG×K2 is a regular graph on 100 vertices with regularity 43. By Theorem

2.1

Spec
(
MG×K2

)
=

(
56 3 1 −2 −4 −42
1 28 28 21 21 1

)
.

Therefore E
(
MG×K2

)
= E

(
MG×K2

)
= 336.

The strongly regular graph with parameters (16, 5, 0, 2) is a Clebsch graph CG and its

spectrum is
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Spec(CG) =

(
5 1 −3
1 10 5

)
and

Spec(CG) =

(
10 −2 2
1 10 5

)
.

By Theorem 2.5 the spectrum of CG×K2 is

Spec
(
CG×K2

)
=

(
11 9 3 1 −1 −3
1 1 5 5 10 10

)
.

The graph CG×K2 is a regular graph on 32 vertices with regularity 11. By Theorem 2.1

Spec
(
CG×K2

)
=

(
20 2 0 −2 −4 −10
1 10 10 5 5 1

)
.

Therefore E
(
CG×K2

)
= E

(
CG×K2

)
= 80.

4 Conclusion

In this paper we have attempted to give the non-self-complementary graphs whose energy

is equal to the energy of its complement. Several classes of non-self-complementary graphs,

satisfying E(G) = E(G) are reported. All graphs given in this paper are regular. Out

of which many are strongly regular graphs. Following problems can be taken for further

study on this topic.

(i) Discussion of the non-self-complementary, non-regular graphs satisfying E(G) = E(G).

(ii) Finding structural and spectral properties of graphs satisfying E(G) = E(G).
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