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Abstract

Let G1, G2 be simple, connected, invertible graphs. The bridged graph is con-
structed from G1 and G2 by connecting selected pairs of vertices from G1 and G2 via
new edges. The HOMO-LUMO gap is the difference between the smallest positive
and largest negative eigenvalue of its adjacency matrix. The Kekulé pattern coin-
cides with “perfect matching”. In view of the importance of these two indices and
the generality of results, we consider the HOMO-LUMO gap on the edge-weighted
bridged graph. And in order to control structure, we present the integer program
of the maximum-weight matching with vertex weight. Then we give a model of
HOMO-LUMO gap and maximum-weight matching with the weight coefficient w.
The numerical results are presented.

1 Introduction

Let G be a simple, connected graph of order n with adjacency matrix A(G). The

eigenvalues of A(G) are called the spectrum of G, where λ1 ≥ λ2 ≥ · · · ≥ λn. A graph G

is invertible if its adjacency matrix A(G) is invertible ( [14, 15]).

The spectrum has been used in the Hükel molecular orbital (HMO) theory. A simple

linear relation between HMO π-electron energy and graph eigenvalues was discovered by

Günthard and Primas in the 1950s [4] and rediscovered by Cvetković and one of the
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present authors in the 1970s [2]. The π-electron energy levels Ei, i = 1, 2, · · · , n, meets
the relation

Ei = α + βλi

where α and β are constants and β < 0, λi is an eigenvalue of A (A is the adjacency

matrix of the molecular structural graph G). We usually express the energy in so-called

β-units, in which case Ei = λi. The HOMO-LUMO gap is the difference between the

energy of the highest occupied molecular orbital (HOMO) and the energy of the lowest

unoccupied molecular orbital (LUMO). The energy EHOMO = λk where k = n/2 for n

even and k = (n+1)/2 for n odd. The energy ELUMO = λk+1 for n even, and ELUMO = λk

for n odd. The HOMO-LUMO gap is ∆HL = λ+
s (A)−λ−

l (A), where λ+
s (A) is the smallest

positive eigenvalue, and λ−
l (A) is the largest negative eigenvalue of the adjacency matrix

A. For bipartite graphs it is always correct, and for a number of non-bipartite graphs it

also works.
In recent years, the HOMO-LUMO gap based on the spectrum of graph in mathe-

matical chemistry is researched variously. Zhang et al. ( [16, 17]) determined the acyclic

molecules with greatest HOMO-LUMO separation and further to ordering them. The

HOMO-LUMO gaps for some types of molecules were considered [8]. Bojan Mohar [10]

provided rather tight lower and upper bounds on the maximum value of the HOMO-

LUMO index among all graphs with given average degree. Soňa Pavlíková and Daniel

Ševčovič [11] constructed a mixed integer semidefinite program for maximization of the

HOMO-LUMO gap and gave the upper and lower bounds for the HOMO-LUMO spectral

gap. Li et al. in [9] obtained the bounds of the HOMO-LUMO index, and they indi-

cated that the HOMO-LUMO gap was responsible to the kinetic stability and reactivity

of conjugated molecules. Especially, if ∆HL = 0, then the underlying π-electron system

is predicted to be extremely reactive and is usually not capable of existence. So we hope

the HOMO-LUMO gap is as large as possible.
A Kekulé pattern is a chemical notion which coincides with “perfect matching” in

graph theory. The history of Kekulé pattern began in 1865, when August Kekulé invented

the structural formula of benzene [13]. Peter John and Horst Sachs [5] described algo-

rithms for calculating the number of Kekulé structures. Wenchen He and Wenjie He [5]

gave a review of the Peak-Valley path method which was one of important approaches

for investigating Kekulé structures of benzenoid hydrocarbons. The Kekulé pattern is
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important for the stability of aromatic system [12].

In view of the importance of the HOMO-LUMO gap and Kekulé pattern, we try to

consider them simultaneously. In chemistry, the bond orders are considered as the edge

weights of the corresponding graph. So we consider HOMO-LUMO gaps for edge-weighted

graphs. And for more general results, we pay attention to the maximum-weight matching,

not perfect matching. In order to study how to connect two molecules to get the stability

structure, we consider the bridged graph which is constructed from two disjoint invertible

graphs by bridging one’s vertices to the other’s through a bipartite graph.

In this paper, we first give the semidefinite program of the HOMO-LUMO gap and

the integer program of maximum-weight matching. Then we give the representation of

bridged graphs. Next, we give the semidefinite program of the HOMO-LUMO gap on the

edge-weighted bridged graph. And in order to control structure, we consider the integer

program of the maximum-weight matching with vertex weight. Then we present a model

considering them at the same time. We provide the weight coefficient w, which makes

a balance between the HOMO-LUMO gap and maximum-weight matching. At last, we

consider three optimizations, and give the numerical results. They show the optimization

of HOMO-LUMO gap, the relation between the maximum-weight matching and vertex

weight, and show how to make a balance using w, respectively.

2 Semidefinite program of the HOMO-LUMO gap
and integer program of maximum-weight matching
(MWM)

In this section, suppose the graph G is invertible. The HOMO-LUMO gap is ∆HL =

λ+
s (A)−λ−

l (A), where λ+
s (A) is the smallest positive eigenvalue, and λ−

l (A) is the largest

negative eigenvalue of the adjacency matrix A. Then we can obtain( [11]):

λ+
s (A) =

1

λmax(A−1)
, λ−

l (A) =
1

λmin(A−1)

where λmax(A
−1) > 0 and λmin(A

−1) = −λmax(−A−1) < 0 are the maximum and

minimum eigenvalues of the inverse matrix A−1, respectively. We use ≤ to denote the

Löwner partial ordering on symmetric matrices. It means A ≤ B iff the matrix B − A

is positive semidefinite, that is B − A ≥ 0. Following [1], [3], the maximal and minimal
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eigenvalues of A−1 can be expressed as follows:

0 < λmax(A
−1) = min

A−1≤tI
t, 0 > λmin(A

−1) = max
sI≤A−1

s

Let µ = 1/t, η = −1/s, then we can get the following equations:

λ+
s (A) = max

µA−1≤I
µ, λ−

l (A) = − max
−ηA−1≤I

η

So we get the semidefinite program of the HOMO-LUMO gap for a invertible graph

G as follows:

∆HL(A) = max
µ,η≥0

µ+η

s.t. µA−1 ≤ I

−ηA−1 ≤ I

The maximum-weight matching is the matching which has maximum weight. The

integer program of maximum weight matching (MWM) is:

max
∑

e∈E(G)

cexe

s.t.
∑
v∈e

xe ≤ 1 ∀v ∈ V (G)

xe ∈ {0, 1} ∀e ∈ E(G)

where ce is the weight of the edge e, xe denotes whether to take the edge e as a

matching edge (If xe = 1, it is chosen as a matching edge; If xe = 0, it is not). V (G)

(E(G)) is the set of vertices (edges) of graph G.

3 Representation of bridged graphs

LetG1, G2 be simple, undirected, invertible graphs with n1, n2 vertices, respectively. A

bridged graph GB is constructed from disjoint invertible graphs G1 and G2 by connecting

selected pairs of vertices from G1 and G2 via new edges. Gk is the bipartite graph

G(V (G1), V (G2)) with the new edges. The adjacency matrix Ak of Gk is as follows:

Ak =

(
0 K
KT 0

)
where K is an n1 × n2 binary matrix.
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Now we consider the edge-weighted invertible graphs G1, G2 whose edge-weighted

adjacency matrices are A1, A2, respectively. The corresponding binary adjacency matrices

are A1 and A2. For the edge-weighted bridged graph GB, the edge-weighted adjacency

matrix AB of GB is:

AB =

(
A1 K
KT A2

)
where A1, A2 are both symmetric invertible matrices.

Then the corresponding binary adjacency matrix AB of GB is:

AB =

(
A1 K
KT A2

)
According to [11], if G1, G2 are invertible graphs, then the graph GB is invertible iff

S = A1 −KA−1
2 KT (the Schur complement) is invertible. In this case, we get

A−1
B =

(
A1 K
KT A2

)−1

=

(
S−1 −S−1KA−1

2

−A−1
2 KTS−1 A−1

2 + A−1
2 KTS−1KA−1

2

)
= QT

(
S−1 0
0 A−1

2

)
Q

where Q is an invertible matrix with the inverse Z = Q−1 given by:

Q =

(
I −KA−1

2

0 I

)
, Z =

(
I KA−1

2

0 I

)

4 A model for HOMO-LUMO gap and MWM
In this section, we propose a model of HOMO-LUMO gap and MWM. We consider

the semidefinite program of HOMO-LUMO gap on the edge-weighted bridged graph GB

first. For µ ≥ 0, we have µA−1
B ≤ I iff µZTA−1

B Z ≤ ZTZ, which means

µ

(
S−1 0
0 A−1

2

)
≤ ZTZ =

(
I KA−1

2

A−1
2 KT I + A−1

2 KTKA−1
2

)
We can do a similar operation for −ηA−1 ≤ I. Considering that the bipartite graph Gk

is not empty, we obtain the constraint
∑

i,j Kij ≥ 1. So we get the semidefinite program

of the HOMO-LUMO gap as follows:

max
µ,η≥0,K

µ+η

s.t.

(
I − µS−1 KA−1

2

A−1
2 KT I − µA−1

2 + A−1
2 KTKA−1

2

)
≥ 0 (4.1)

(
I + ηS−1 KA−1

2

A−1
2 KT I + ηA−1

2 + A−1
2 KTKA−1

2

)
≥ 0 (4.2)
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S = A1 −KA−1
2 KT (4.3)

Kij ∈ {0, 1}, ∀i ∈ [n1], j ∈ [n2] (4.4)∑
i,j

Kij ≥ 1, ∀i ∈ [n1], j ∈ [n2] (4.5)

In chemistry, since sometimes we need some structure to appear, we consider the vertex

weight. Since the vertex weight has some influence on the real meaning of HOMO-LUMO

gap, we only consider it for maximum-weight matching to control the structure. Assume

that the vertex-weighted matrices of G1, G2 are W1, W2, respectively. They are diagonal

matrices where every element is the weight of vertex.

Now, we consider the integer program of MWM on the vertex-weighted graph GB.

Let X = {X ij}(n1+n2)×(n1+n2) be the matching matrix, where X ij ∈ {0, 1} (if X ij = 1, it

means we choose edge eij as a matching edge; if X ij = 0, it is not chosen). Obviously, it

is a symmetric matrix, X ij = Xji. So the vertex-weighted matching matrix X is:

X = WXW, W =

(
W1 0
0 W2

)
where W is the vertex-weighted matrix of GB. Then we obtain the integer program of

MWM on the vertex-weighted graph GB:

max
X

1

2

∑
i,j

Xij

s.t. X = WXW (4.6)∑
j

X ij ≤ 1, ∀i ∈ [n1 + n2] (4.7)

X ij = {0, 1}, ∀i, j ∈ [n1 + n2] (4.8)

X ij = Xji, ∀i, j ∈ [n1 + n2] (4.9)

In view of the matching edges being included in the existing edges, so we need to add

a constraint. Let AB = {AB
ij}(n1+n2)×(n1+n2) be the binary adjacency matrix of GB. We

have

AB =

(
A1 K
KT A2

)
Then we can get the constraint:

X ij ≤ AB
ij, ∀i, j ∈ [n1 + n2] (4.10)
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Based on the importance of HOMO-LUMO gap and Kekulé pattern, and in order to

get more general results, so we consider the HOMO-LUMO gap and MWM simultaneously.

The optimization model is:

max
µ,η≥0,K,X

µ+η + w · 1
2

∑
i,j

Xij

with constraints (4.1)−(4.10), where w is the weight coefficient to make a balance between

the HOMO-LUMO gap and MWM.

In order to compute fast, we need to make some changes and relaxations. Because the

matrices KTK and S = A1 −KA−1
2 KT exist, the constraints (4.1), (4.2) are nonconvex.

We use a new variable C, where C = KTK. We notice Kij = {0, 1} is equivalent to

Kij(1−Kij) = 0, i.e. Kij = K2
ij. We can get

Cjj =
∑
i

K2
ij =

∑
i

Kij (4.11)

The nonconvex constraint C = KTK can be relaxed by a convex matrix inequality con-

straint C ≥ KTK. Notice that the inequality constraint with (4.11) is tight: Assume

L = C −KTK, then L ≥ 0. We know Ljj = Cjj −
∑

iKij = 0. It means diag(L) = 0. So

we can get L = 0 and C = KTK. According to the Schur complement theorem [7], the

inequality constraint can be rewritten as follows:(
C KT

K I

)
≥ 0

where I is an n1 × n1 identity matrix.

According to [11], let G be an undirected vertex-labeled graph on m vertices with

an invertible adjacency matrix A. G is arbitrarily bridgeable over the first {1, · · · , kA}

vertices of G if the kA × kA upper principal sub-matrix is a null matrix, i.e. (A−1)ij = 0

for all i, j = [kA]. So we assume G2 is arbitrarily bridgeable, then if the n1 × n2 matrix

K satisfies: Kij = 0 for j = kA2 + 1, · · · , n2, we have KA−1
2 KT = 0, i.e. S = A1. Based

on it, constraints (4.1), (4.2) are as follows:(
I − µA−1

1 KA−1
2

A−1
2 KT I − µA−1

2 + A−1
2 CA−1

2

)
≥ 0

(
I + ηA−1

1 KA−1
2

A−1
2 KT I + ηA−1

2 + A−1
2 CA−1

2

)
≥ 0
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So we can obtain the optimization model of the HOMO-LUMO gap and MWM with
linear matrix constraints and integer constraints:

max
µ,η≥0,K,C,X

µ+η + w · 1
2

∑
i,j

Xij

s.t.

(
I − µA−1

1 KA−1
2

A−1
2 KT I − µA−1

2 + A−1
2 CA−1

2

)
≥ 0 (4.12)

(
I + ηA−1

1 KA−1
2

A−1
2 KT I + ηA−1

2 + A−1
2 CA−1

2

)
≥ 0 (4.13)

(
C KT

K I

)
≥ 0 (4.14)

Cjj =
∑
i

Kij (4.15)

Kij = 0, ∀i ∈ [n1], j ∈ {kA2 + 1, · · · , n2} (4.16)

Kij ∈ {0, 1}, ∀i ∈ [n1], j ∈ [n2] (4.17)∑
i,j

Kij ≥ 1, ∀i ∈ [n1], j ∈ [n2] (4.18)∑
j

X ij ≤ 1, ∀i ∈ [n1 + n2] (4.19)

X ij = {0, 1}, ∀i, j ∈ [n1 + n2] (4.20)

X ij = Xji, ∀i, j ∈ [n1 + n2] (4.21)

X = WXW (4.22)

AB =

(
A1 K
KT A2

)
(4.23)

X ij ≤ AB
ij, ∀i, j ∈ [n1 + n2] (4.24)

5 Numerical results

In this section, to illustrate the applicability of the proposed model, we consider three

cases: optimization of HOMO-LUMO gap, optimization of MWM, comprehensive op-

timization of HOMO-LUMO gap and MWM. Some examples have been solved using

SeDumi solver within the Yalmip MATLAB. In view of organic molecules, carbon is

very important. So in this section, we consider the max degree. We denote max degree

by d. We add the constraint:
∑

j A
B
ij ≤ d, ∀i ∈ [n1 + n2], where d = 3. When we
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consider the optimization of MWM, comprehensive optimization of HOMO-LUMO gap

and MWM, in order to get matching edges as much as possible, we add the constraint:
1
2

∑
i,j X ij ≥ n+m−1

2
.

5.1 Optimization of HOMO–LUMO gap

Let the weight coefficient w = 0. We get the objective function max
µ,η≥0,K,C

µ+η with

constraints (4.12)−(4.18). G1 and G2 are depicted in Figure 1: (a). Then G2 is arbitrarily

bridgeable on {V1}, {V2}, {V3}, {V4}, {V5}, {V1, V3}, {V2, V3} · · · We obtain the results with

the bridging vertices {V1, V3} (simply, {1,3}) of G2 in Figure 2: (a). From the figure, the

bridging way is G2 : 3 → G1 : 5. The maximum HOMO-LUMO gap is 0.631749.

G1 G2

1 1

1

1

1

1 1

11
1

1

2

3 4

5

1 1

1

1

1

1 1

11

1

2

3 4

5

6

G1 G2

1 1

1

1

1

1 1

11
1

1

2

3 4

5

1 1

1

1

1

1 1

11

1

2

3 4

5

6

G1 G2

1 1

2

1

2

1 1

2

1

2

3 4

5

2 1

1

2

1

1

1

2

3 4

5

6

(a) (b)

Figure 1. the edge-weighted invertible graphs G1, G2

As shown in Figure 1: (b), let the edge weights of G1, G2 be {1, 2, 1, 2, 1} and

{2, 1, 2, 1, 1, 2}, respectively. Then the results with the bridging vertices {1, 3} are shown

in Figure 2: (b). The bridging way is G2 : 1 → G1 : 1, G2 : 3 → G1 : 3. The maximum

HOMO-LUMO gap is 1.455941.

G1 G2

1 1

1

1

1

1 1

1
1

1

2

3 4

5
1 1

1

1 1

11

1

2

3 4

5

6

G1 G2

1 1

2

1

1 1

2
2

1

2

3 4

5

2 1

2

1

11

1

2

3 4

5

6

(a) HL = 0.631749 (b) HL = 1.455941

Figure 2. the results of optimal bridging way and HOMO-LUMO gap (HL)

5.2 Optimization of MWM

We use vertex weight to control the matching structure and ensure some structure

appear. So we consider the relation between the maximum-weight matching and vertex

weight. We consider the objective function max
X

1
2

∑
i,j

Xij with constraints (4.16)− (4.24).

Assume that the vertex-weighted matricesW1, W2 of G1 and G2 are diag(0.5, 2, 1, 1, 2) and
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diag(2, 1, 1, 2, 0.5, 4), respectively. We choose the bridging vertices {1, 3}. From Figure 3:

(a), we can see that the bridging way is G2 : 1 → G1 : 5. The matching edges are denoted

by thick lines. There may be no edge between G2 : 3 and G1 : 5, although the bridging

way is not unique. In order to ensure that the structure appears, we consider to add the

vertex weights of G2 : 3 and G1 : 5. We denote the multiple by t. It means the weights

of G2 : 3 and G1 : 5 are t, 2t, respectively. Then we get the results in Figure 3: (b), (c).

When t = {3, 4, 5 · · · }, the optimal bridging way is G2 : 3 → G1 : 5. In fact, when t is

around 2.7, it arrives the threshold to ensure that the edge between G2 : 3 and G1 : 5

appears.

G1 G2

1(0.5)

2(2)

3(1) 4(1)

5(2t)

1(2)

2(1)

3(t)
4(2)

5(0.5)
6(4)

(b) t = {2} (c) t = {3, 4, 5 · · ·}(a) t = {1}

G1 G2

1(0.5)

2(2)

3(1) 4(1)

5(2t)

1(2)

2(1)

3(t) 4(2)

5(0.5)
6(4)

G1 G2

1(0.5)

2(2)

3(1) 4(1)

5(2t)

1(2)

2(1)

3(t) 4(2)

5(0.5)
6(4)

Figure 3. the relation between MWM and vertex weight

5.3 Comprehensive optimization of HOMO-LUMO gap and
MWM

Now we consider the comprehensive optimization of HOMO-LUMO gap and MWM.

Let G1, G2 be the edge-weighted graphs as shown in Figure 1: (b) with W1 = diag(0.5, 2,

1, 1, 6) and W2 = diag(2, 1, 3, 2, 0.5, 4). Then we compute the optimal value with bridging

vertices {1, 3} and different weight coefficient w.

Table 1 shows the computational results with weight coefficient, optimal value,

HOMO–LUMO gap, w·MWM (MWM), bridging way and matching way. From it, we

can see that the bridging way and matching way change as w increases. As shown in

Figure 4, the dashed lines are the bridging ways and the thick lines are matching edges.

Obviously, when w is small, the optimal value depends on the HOMO-LUMO gap. So

the matching is not maximum. When w is large, the matching is more important, so the

bridging way changes and the HOMO-LUMO gap is not optimal. Specially, w = 0.008 is

the threshold value of w. In addition, if w is large enough, there is always the bridging

way: G2 : 3 → G1 : 5.

But for G1, G2 with W1 = diag(0.5, 2, 1, 1, 2) and W2 = diag(2, 1, 1, 2, 0.5, 4), the

optimal bridging way does not change any more. As shown in Figure 5, the HOMO-
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(a) 0 ≤ w < 0.008

G1 G2

1(0.5)

2(2)

3(1) 4(1)

5(6)

1(2)

2(1)

3(3)
4(2)

5(0.5)

6(4)

2

11

2

1

2

1

2

2

1

1

(b) w ≥ 0.008

G1 G2

1(0.5)

2(2)

3(1)
4(1)

5(6)

1(2)

2(1)

3(3) 4(2)

5(0.5)

6(4)

2

11

2

1

2

1

2

2

1

1

Figure 4. the results of different weight coefficient w with W1 = diag(0.5, 2, 1, 1, 6)
and W2 = diag(2, 1, 3, 2, 0.5, 4)

LUMO gap and MWM can be maximum simultaneously. The optimal bridging way is

independent of w. And G1 : 5 is not connected by G2 : 3.

G1 G2

1(0.5)

2(2)

3(1) 4(1)

5(2)

1(2)

2(1)

3(1) 4(2)

5(0.5)
6(4)

2

11

2

1

2

1

2

2

1

1

Figure 5. the results of different weight coefficient w with W1 = diag(0.5, 2, 1, 1, 2)
and W2 = diag(2, 1, 1, 2, 0.5, 4)

In a word, w makes a balance between the HOMO-LUMO gap and MWM. When

w is small enough, the HOMO-LUMO gap is more important, so the bridging way will

make it as large as possible. When w is large enough, the bridging way will get the

maximum-weight matching. If there is a bridging way to make the HOMO-LUMO gap

and MWM maximum at the same time, then w can not influence it. We also provide a

way by changing vertex weight to control the structure.

Table 1. the computational results with various weight coefficient w

weight coefficient optimal value HOMO-LUMO gap w ·MWM(MWM) bridging way:G2 → G1 matching way
0.004 1.527941 1.4559 0.072(18) 1 → 1; 3 → 3 G1 : 2− 3, 4− 5;G2 : 1− 2, 3− 4, 5− 6
0.006 1.563941 1.4559 0.108(18) 1 → 1; 3 → 3 G1 : 2− 3, 4− 5;G2 : 1− 2, 3− 4, 5− 6
0.008 1.609365 1.4174 0.192(24) 1 → 2; 3 → 5 G1 : 1− 2, 3− 4;G2 : 1− 2, 5− 6;G1 : 5−G2 : 3
0.02 1.897365 1.4174 0.48(24) 1 → 2; 3 → 5 G1 : 1− 2, 3− 4;G2 : 1− 2, 5− 6;G1 : 5−G2 : 3
0.05 2.617365 1.4174 1.2(24) 1 → 2; 3 → 5 G1 : 1− 2, 3− 4;G2 : 1− 2, 5− 6;G1 : 5−G2 : 3
0.1 3.817365 1.4174 2.4(24) 1 → 2; 3 → 5 G1 : 1− 2, 3− 4;G2 : 1− 2, 5− 6;G1 : 5−G2 : 3
0.2 6.217365 1.4174 4.8(24) 1 → 2; 3 → 5 G1 : 1− 2, 3− 4;G2 : 1− 2, 5− 6;G1 : 5−G2 : 3
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comments and suggestions, which helped to improve this paper.
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