Ordering of Connected Bipartite Unicyclic Graphs with Large Energies*

Ji-Ming Guo ${ }^{a \dagger}$, Hua Qian ${ }^{a}$, Hai-Ying Shan ${ }^{b}$, Zhi-Wen Wang ${ }^{a}$
${ }^{a}$ Department of Mathematics, East China University of Science and Technology, Shanghai, P. R. China
${ }^{b}$ School of Mathematical Sciences, Tongji University, Shanghai, P. R. China

(Received October 11, 2018)

Abstract

The energy of a graph is the sum of the absolute value of the eigenvalues of its adjacency matrix. In this paper, the first $\left\lfloor\frac{n-5}{2}\right\rfloor$ largest energies of connected bipartite unicyclic graphs on $n \geq 78$ vertices are determined which generalize some known results.

1 Introduction

Let G be a simple undirected graph with n vertices and $A(G)$ be its adjacency matrix. Let $\lambda_{1}(G), \cdots, \lambda_{n}(G)$ be the eigenvalues of $A(G)$. Then the energy of G, denoted by $E(G)$, is defined as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}(G)\right|$ (see [4]). The study on the graph energy originated from the total π-electron energy of conjugated hydrocarbons, which has an important implication on thermodynamics and molecular structure. Its details can be found in an appropriate textbook [3].

The characteristic polynomial $\operatorname{det}(x I-A(G))$ of the adjacency matrix $A(G)$ of a graph G is also called the characteristic polynomial of G, written as $\phi(G, x)=\sum_{i=0}^{n} a_{i}(G) x^{n-i}$.

[^0]If G is a bipartite graph, then it is well known that $\phi(G, x)$ has the form

$$
\begin{equation*}
\phi(G, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{2 i}(G) x^{n-2 i}=\sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i} b_{2 i}(G) x^{n-2 i}, \tag{1}
\end{equation*}
$$

where $b_{2 i}(G)=\left|a_{2 i}(G)\right|=(-1)^{i} a_{2 i}(G)$.
Assume that

$$
\widetilde{\phi}(G, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{2 i}(G) x^{n-2 i}
$$

The energy of a bipartite graph G on n vertices can be expressed in terms of the Coulson integral formula [5]:

$$
\begin{equation*}
E(G)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{2 i}(G) x^{2 i}\right) d x \tag{2}
\end{equation*}
$$

Thus, by Eq. (2), $E(G)$ is a strictly monotonically increasing function of those numbers $b_{2 i}(G)(i=0,1, \cdots,\lfloor n / 2\rfloor)$ for bipartite graphs. This observation provides a way of comparing the energies of a pair of bipartite graphs as follows.

Defintion 1.1 Let G_{1} and G_{2} be two bipartite graphs of order n. If $b_{2 i}\left(G_{1}\right) \leq b_{2 i}\left(G_{2}\right)$ for all i with $0 \leq i \leq\lfloor n / 2\rfloor$, then we write $G_{1} \preceq G_{2}$.

Furthermore, if $G_{1} \preceq G_{2}$ and there exists at least one index j such that $b_{2 j}\left(G_{1}\right)<$ $b_{2 j}\left(G_{2}\right)$, then we write $G_{1} \prec G_{2}$. If $b_{2 j}\left(G_{1}\right)=b_{2 j}\left(G_{2}\right)$ for all j, we write $G_{1} \sim G_{2}$. According to the Coulson integral formula, we have the quasi-order method of comparing the energies for two bipartite graphs G_{1} and G_{2} of order n that [5]:

$$
\begin{aligned}
& G_{1} \preceq G_{2} \Rightarrow E\left(G_{1}\right) \leq E\left(G_{2}\right) \\
& G_{1} \prec G_{2} \Rightarrow E\left(G_{1}\right)<E\left(G_{2}\right) .
\end{aligned}
$$

In this paper, for sake of conciseness, we introduce the symbol " $\boldsymbol{~}$ " as follows:

$$
E\left(G_{1}\right)<E\left(G_{2}\right) \Leftrightarrow G_{1} \rightharpoonup G_{2}
$$

Fig. 1. The graph $C_{6}(a, b)$

Throughout this paper, we use P_{n} and C_{n} to denote the n-vertex path and n-vertex cycle, respectively. Let P_{n}^{l} be the graph obtained by joining some vertex of C_{l} and one of the end vertices of $P_{n-l}(n>l)$. Let a and b be nonnegative integers. We denote by $C_{6}(a, b)$ the graph obtained by attaching two pendent paths of length a and b to the unique pendent vertex of P_{7}^{6}, respectively (see Fig. 1). It is easy to see that $C_{6}(a, b)=C_{6}(b, a)$ and $P_{n}^{6}=C_{6}(0, n-7)$.

Using the above quasi-order method, Hou et al. [8] proved that for $n \geq 7, P_{n}^{6}$ has the maximal energy among all connected unicyclic bipartite n-vertex graphs except for C_{n}. Gutman and Hou [7] shown that $E\left(P_{n}^{6}\right)>E\left(C_{n}\right)$ by some numerical calculations for $n \geq 12$, but they did not give a rigorous mathematical proof. In [9], Hua further investigated the second-maximal energy of bipartite unicyclic graph. By means of an appropriate computer search and some numerical calculations, Gutman et al. [6] determined the n-vertex bipartite unicyclic graphs with maximal, second-maximal and third-maximal energy. But they could not give a rigorous mathematical proof. Thus they posed the following conjecture.

Conjecture 1 For all $n \geq 11$, the n-vertex bipartite unicyclic graph with maximal energy is $C_{6}(0, n-7)$. For all $n \geq 23$, the n-vertex bipartite unicyclic graph with second-maximal energy is $C_{6}(2, n-9)$. For all $n \geq 27$, the n-vertex bipartite unicyclic graph with thirdmaximal energy is $C_{6}(4, n-11)$.

Recently, using the Coulson integral formula for the energy of a graph, Huo et al. [11] and Andriantiana [1] independently proved that the bipartite unicyclic graph with maximal energy is $C_{6}(0, n-7)$ for $n \geq 11$. In [10], Huo et al. further characterized the unicyclic graph with maximal energy. Furthermore, Andriantiana and Wagner [2] showed that the unicyclic graph with second-maximal energy is $C_{6}(2, n-9)$ for $n \geq 28$; Zhu and Yang [18] proved that the n-vertex bipartite unicyclic graph with third-maximal energy is $C_{6}(4, n-11)$ for $n \geq 27$. Therefore the above conjecture has been completely solved. In this paper, we will give the first $\left\lfloor\frac{n-5}{2}\right\rfloor$ largest energies of connected bipartite unicyclic graphs with $n \geq 78$ vertices.

Fig. 2. The graphs Y_{n}, Z_{n} and $\widehat{C_{6}}(2, n-11)$

Denote by $\mathcal{B U}(n)$ the set of all connected bipartite unicyclic graphs with n vertices. Denote by Y_{n} the graph obtained by attaching two pendent paths of length 2 to the unique pendent vertex of P_{n-4}^{6} (see Fig. 2). Denote by Z_{n} the graph obtained by attaching two pendent paths of length 2 and 4 to the unique pendent vertex of P_{n-6}^{6} (see Fig. 2). Denote by $\widehat{C_{6}}(2, n-11)$ the graph obtained by attaching two pendent paths of length 2 and $n-11$ to the unique pendent vertex of P_{9}^{6} (see Fig. 2). Now we give the main result of this paper.

Theorem 1.1 Let $G \in \mathcal{B U}(n), k=\left\lfloor\frac{n-7}{2}\right\rfloor, t=\left\lfloor\frac{k}{2}\right\rfloor$ and $l=\left\lfloor\frac{k-1}{2}\right\rfloor$. If $n \geq 78$, then the n-vertex connected bipartite unicyclic graphs with the first $\left\lfloor\frac{n-5}{2}\right\rfloor$ largest energies are as follows:

$$
\begin{aligned}
& C_{6}(0, n-7) \leftharpoonup C_{6}(2, n-9) \leftharpoonup C_{6}(4, n-11) \leftharpoonup Y_{n} \leftharpoonup C_{6}(6, n-13) \leftharpoonup \cdots \\
& \leftharpoonup C_{6}(2 t, n-7-2 t) \leftharpoonup C_{6}(2 l+1, n-8-2 l) \leftharpoonup \cdots \leftharpoonup C_{6}(9, n-16) \leftharpoonup \widehat{C_{6}}(2, n-11) \\
& \leftharpoonup C_{6}(7, n-14) \leftharpoonup Z_{n} .
\end{aligned}
$$

2 The basic strategy of the proof of Theorem 1.1

Let $\mathcal{B U}(n, l)$ be the set of connected bipartite unicyclic graphs of order n with one unique cycle of length l. Let $\mathcal{A}(n)=\left\{C_{6}(a, b) \mid 0 \leq a \leq b, a+b=n-7\right\}$. In [18], Zhu and Yang gave the following result:

Lemma 2.1 Let $k=\left\lfloor\frac{n-7}{2}\right\rfloor, t=\left\lfloor\frac{k}{2}\right\rfloor$ and $l=\left\lfloor\frac{k-1}{2}\right\rfloor$. Then we have the following quasiorder relation in $\mathcal{A}(n)$:

$$
\begin{aligned}
C_{6}(0, n-7) & \leftharpoonup C_{6}(2, n-9) \leftharpoonup C_{6}(4, n-11) \leftharpoonup \cdots \leftharpoonup C_{6}(2 t, n-7-2 t) \\
& \leftharpoonup C_{6}(2 l+1, n-8-2 l) \leftharpoonup \cdots \leftharpoonup C_{6}(5, n-12) \leftharpoonup C_{6}(3, n-10) \leftharpoonup C_{6}(1, n-8) .
\end{aligned}
$$

Let $C_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ be the unique cycle of $\mathcal{B U}(n, 6)$. For a graph $G \in \mathcal{B} \mathcal{U}(n, 6)$, let $N(G)=\left\{v_{i} \mid d_{G}\left(v_{i}\right) \geq 3, i=1,2, \ldots, 6\right\}$. Then we can classify the graphs in $\mathcal{B U}(n)$ into the following three classes.

$$
\begin{aligned}
& \mathcal{B U}_{1}=\{G \mid G \in \mathcal{B U}(n, l), l \neq 6\} ; \\
& \mathcal{B U}_{2}=\{G|G \in \mathcal{B} \mathcal{U}(n, 6),|N(G)| \neq 1\} ; \\
& \mathcal{B U}_{3}=\{G|G \in \mathcal{B U}(n, 6),|N(G)|=1\} .
\end{aligned}
$$

It follows that $\mathcal{B U}(n)=\mathcal{B U}_{1} \cup \mathcal{B U}_{2} \cup \mathcal{B U}_{3}$ and $\mathcal{A}(n) \subseteq \mathcal{B U}_{3}$.
For $n \geq 78$, our basic strategy of the proof of Theorem 1.1 is to prove the following results $\left(R_{1}\right)-\left(R_{3}\right)$:
$\left(R_{1}\right):$ For any $G \in \mathcal{B} \mathcal{U}_{1}$, we have $G \rightharpoonup Z_{n}$.
$\left(R_{2}\right)$: For any $G \in \mathcal{B} \mathcal{U}_{2}$, we have $G \rightharpoonup Z_{n}$.

$$
\left(R_{3}\right):(1) C_{6}(5, n-12) \rightharpoonup Z_{n} \rightharpoonup C_{6}(7, n-14) ;
$$

(2) $C_{6}(6, n-13) \rightharpoonup Y_{n} \rightharpoonup C_{6}(4, n-11)$;
(3) $C_{6}(7, n-14) \rightharpoonup \widehat{C_{6}}(2, n-11) \rightharpoonup C_{6}(9, n-16)$;
(4) For any $G \in \mathcal{B U}_{3} \backslash \mathcal{A}(n)$, if $G \neq Y_{n}, Z_{n}, \widehat{C_{6}}(2, n-11)$, then we have $G \rightharpoonup Z_{n}$.

It is easy to see that we can prove Theorem 1.1 by combining Lemma 2.1 and the above results $\left(R_{1}\right)-\left(R_{3}\right)$. We will prove the result $\left(R_{1}\right)$ in section 3 . Then we will prove the results $\left(R_{2}\right)$ and $\left(R_{3}\right)$ in sections 4 and 5 , respectively.

3 The proof of $\left(R_{1}\right)$

The quasi-order method mentioned above can be used to compare the energies of two bipartite graphs. However, it sometimes does not work [18]. In [17], Shan et al. presented a new method of comparing the energies of two subdivision bipartite graphs.

Defintion 3.1 [17] Let e be a cut edge of a graph G, and let $G_{e}(k)$ denote the graph obtained by replacing e with a path of length $k+1$ (for simplicity of notations, we usually abbreviate $G_{e}(k)$ by $\left.G(k)\right)$. We say that $G(k)$ is a k-subdivision graph of G on the cut edge e. We also set $G(0)=G$.

Lemma 3.1 [17] Let G be a bipartite graph of order n and let $G(k)$ be a k-subdivision graph (of order $n+k$) of G on some cut edge e. Then we have:

$$
\widetilde{\phi}(G(k+2), x)=x \widetilde{\phi}(G(k+1), x)+\widetilde{\phi}(G(k), x) \quad(k \geq 0) .
$$

From the proof of Lemma 1.1 in [15], we have the following result.
Lemma 3.2 Let $G(k), H(k)$ be k-subdivision graphs on some cut edges of the bipartite graphs G and H of order n, respectively $(k \geq 0)$. Write $g_{k}=\widetilde{\phi}(G(k), x), h_{k}=\widetilde{\phi}(H(k), x)$, $f_{k}=h_{k+1} g_{k}-h_{k} g_{k+1}$ and $D E(k)=E(H(k))-E(G(k))$. If f_{0} is a polynomial with nonnegative coefficients, then

$$
D E(2 l)<D E(2 k)<D E(2 k+1)<D E(2 l+1)
$$

holds for all $k>l \geq 0$.

Lemma 3.3 [18] Let $G \in \mathcal{B U}_{1}$, if $G \neq C_{n}, P_{n}^{n-2}, P_{n}^{10}$, we have $G \rightharpoonup P_{n}^{10}$.
Now, we will use Lemma 3.2 to prove $P_{n}^{10} \rightharpoonup Z_{n}$ for $n \geq 15$.

Lemma 3.4 If $n \geq 14$, then $P_{n}^{10} \rightharpoonup Z_{n}$.

Proof. Let $G=P_{14}^{10}, H=Z_{14}$. Then P_{n}^{10} and Z_{n} are k-subdivision of G and H on some cut edges ($k=n-14$), respectively.
By some calculations we get:
$f_{0}=x\left(1+x^{2}\right)\left(1+3 x^{2}+x^{4}\right)\left(24+160 x^{2}+371 x^{4}+398 x^{6}+235 x^{8}+79 x^{10}+14 x^{12}+x^{14}\right)$ and $D E(0) \doteq 0.00077, D E(1) \doteq 0.0766$.

By Lemma 3.2, we have for $n \geqslant 14, E\left(P_{n}^{10}\right)<E\left(Z_{n}\right)$.
Next we prove $P_{n}^{n-2} \rightharpoonup Z_{n}$ when $n \geq 16$ and n is even. We need the following results.

Lemma 3.5 [18] Let h_{n} and g_{n} be monic polynomials of degree n about x with nonnegative coefficients satisfying that $h_{n}=x h_{n-1}+h_{n-2}$ and $g_{n}=x g_{n-1}+g_{n-2}$. Let $p(x)$ be a nonzero polynomial with nonnegative coefficients. Write $a_{n}=\frac{h_{n}+p(x)}{g_{n}}$ and $b_{n}=\frac{h_{n}-p(x)}{g_{n}}$. For each fixed $x>0$ and $n \geq 9$, we have:
(1) If $a_{n-8}>a_{n-4}$, then $a_{n-4}>a_{n}$.
(2) If $b_{n-8}<b_{n-4}$, then $b_{n-4}<b_{n}$.

Lemma 3.6 [18] Let $h_{n}, g_{n}, a_{n}, b_{n}, p(x)$ be defined as above. Then $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist.

Lemma 3.7 [18] (1) If $n=4 k$, then we have:
(i) $\widetilde{\phi}\left(C_{n}, x\right)=\widetilde{\phi}\left(P_{n}, x\right)+\widetilde{\phi}\left(P_{n-2}, x\right)-2$;
(ii) $\widetilde{\phi}\left(P_{n}^{n-2}, x\right)=\widetilde{\phi}\left(P_{n}, x\right)+\left(x^{2}+1\right) \widetilde{\phi}\left(P_{n-4}, x\right)+2\left(x^{2}+1\right)$.
(2) If $n=4 k+2$, then we have:
(i) $\widetilde{\phi}\left(C_{n}, x\right)=\widetilde{\phi}\left(P_{n}, x\right)+\widetilde{\phi}\left(P_{n-2}, x\right)+2$;
(ii) $\widetilde{\phi}\left(P_{n}^{n-2}, x\right)=\widetilde{\phi}\left(P_{n}, x\right)+\left(x^{2}+1\right) \widetilde{\phi}\left(P_{n-4}, x\right)-2\left(x^{2}+1\right)$.

Lemma 3.8 [18] (1) Let $h_{n}=\widetilde{\phi}\left(P_{n}, x\right)+\widetilde{\phi}\left(P_{n-2}, x\right)$. Then $h_{n}=x h_{n-1}+h_{n-2}$.
(2) Let $h_{n}^{\prime}=\widetilde{\phi}\left(P_{n}, x\right)+\left(x^{2}+1\right) \widetilde{\phi}\left(P_{n-4}, x\right)$. Then $h_{n}^{\prime}=x h_{n-1}^{\prime}+h_{n-2}^{\prime}$.

Lemma 3.9 If $n \geq 16$ and n is even, then $P_{n}^{n-2} \rightharpoonup Z_{n}$.

Proof. Let $h_{n}=\widetilde{\phi}\left(P_{n}, x\right)+\left(x^{2}+1\right) \widetilde{\phi}\left(P_{n-4}, x\right)$. From Lemmas 3.7 and 3.8, we have

$$
\widetilde{\phi}\left(P_{n}^{n-2}, x\right)= \begin{cases}h_{n}+2\left(x^{2}+1\right) & n=4 k \tag{3}\\ h_{n}-2\left(x^{2}+1\right) & n=4 k+2\end{cases}
$$

and $h_{n}=x h_{n-1}+h_{n-2}$. Let $g_{n}=\widetilde{\phi}\left(Z_{n}, x\right)$. By Lemma 3.1, we can see that $g_{n}=$ $x g_{n-1}+g_{n-2}$. Write $d_{n}=\frac{\tilde{\phi}\left(P_{n}^{n-2}, x\right)}{\tilde{\phi}\left(Z_{n}, x\right)}$. We assume that $x>0$ in the following. We consider the following two cases.
Case 1. $n=4 k$. Then $d_{n}=\frac{h_{n}+2\left(x^{2}+1\right)}{g_{n}}$. By some calculations we have

$$
d_{20}-d_{16}=\frac{F(x)}{g_{16} g_{20}}<0,
$$

where $F(x)=-x^{2}\left(1+x^{2}\right)\left(2+x^{2}\right)\left(48+586 x^{2}+2167 x^{4}+3787 x^{6}+3649 x^{8}+2087 x^{10}+\right.$ $\left.733 x^{12}+157 x^{14}+19 x^{16}+x^{18}\right)$. By Lemma 3.5(1), we have $d_{4 k}<d_{4 k-4}$ when $k \geq 5$.
Case 2. $n=4 k+2$. The $d_{n}=\frac{h_{n}-2\left(x^{2}+1\right)}{g_{n}}$. By some calculations we have:

$$
d_{22}-d_{18}=\frac{H(x)}{g_{18} g_{22}}>0,
$$

where $H(x)=x^{2}\left(1+x^{2}\right)\left(152+1434 x^{2}+5472 x^{4}+11143 x^{6}+13471 x^{8}+10131 x^{10}+4817 x^{12}+\right.$ $\left.1435 x^{14}+257 x^{16}+25 x^{18}+x^{20}\right)$. Thus $d_{4 k-2}<d_{4 k+2}$ when $k \geq 5$ by Lemma 3.5(2).

From the proof of Lemma 3.6, we can show that $\lim _{k \rightarrow+\infty} d_{4 k}=\lim _{k \rightarrow+\infty} d_{4 k+2}$ exists which implies that $d_{n} \leq d_{16}$ for even number $n \geq 16$. Thus, if $n \geq 16$ and n is even, then

$$
\begin{aligned}
E\left(P_{n}^{n-2}\right)-E\left(Z_{n}\right) & =\frac{2}{\pi} \int_{0}^{+\infty} \ln d_{n} d x \\
& \leq \frac{2}{\pi} \int_{0}^{+\infty} \ln d_{16} d x \\
& =E\left(P_{16}^{14}\right)-E\left(Z_{16}\right) \\
& \doteq-0.02341<0 .
\end{aligned}
$$

Thus the result holds.
Finally, we prove that $C_{n} \rightharpoonup Z_{n}$ for $n \geq 36$.
Lemma 3.10 If $n \geq 36$ and n is even, then $C_{n} \rightharpoonup Z_{n}$.
Proof. Let $h_{n}=\widetilde{\phi}\left(P_{n}, x\right)+\widetilde{\phi}\left(P_{n-2}, x\right)$. From Lemmas 3.7 and 3.8, we have

$$
\widetilde{\phi}\left(C_{n}, x\right)= \begin{cases}h_{n}-2 & n=4 k \tag{4}\\ h_{n}+2 & n=4 k+2\end{cases}
$$

and $h_{n}=x h_{n-1}+h_{n-2}$. Let $g_{n}=\widetilde{\phi}\left(Z_{n}, x\right)$. By Lemma 3.1, we can see that $g_{n}=$ $x g_{n-1}+g_{n-2}$. Write $d_{n}=\frac{\tilde{\phi}\left(C_{n}, x\right)}{\tilde{\phi}\left(Z_{n}, x\right)}$. We assume that $x>0$ in the following. We consider the following two cases.
Case 1. $n=4 k$. Then $d_{n}=\frac{h_{n}-2}{g_{n}}$. By some calculations we have

$$
d_{24}-d_{20}=\frac{F(x)}{g_{20} g_{24}}>0,
$$

where $F(x)=x^{2}\left(1+x^{2}\right)\left(2+x^{2}\right)\left(4+x^{2}\right)\left(22+219 x^{2}+797 x^{4}+1379 x^{6}+1249 x^{8}+614 x^{10}+\right.$ $\left.162 x^{12}+21 x^{14}+x^{16}\right)$. By Lemma $3.5(2)$, we have $d_{4 k}>d_{4 k-4}$ when $k \geq 6$.
Case 2. $n=4 k+2$. Then $d_{n}=\frac{h_{n}+2}{g_{n}}$. By some calculations we have

$$
d_{22}-d_{18}=\frac{H(x)}{g_{18} g_{22}}<0,
$$

where $H(x)=-x^{2}\left(1+x^{2}\right)\left(4+x^{2}\right)\left(26+386 x^{2}+1517 x^{4}+2731 x^{6}+2691 x^{8}+1581 x^{10}+\right.$ $\left.576 x^{12}+130 x^{14}+17 x^{16}+x^{18}\right)$. Thus $d_{4 k-2}>d_{4 k+2}$ when $k \geq 5$ by Lemma 3.5(1).

From the proof of Lemma 3.6, we can show that $\lim _{k \rightarrow+\infty} d_{4 k}=\lim _{k \rightarrow+\infty} d_{4 k+2}$ exists which implies that $d_{n} \leq d_{38}$ for even number $n \geq 36$. Thus, if $n \geq 36$ and n is even, then

$$
\begin{aligned}
E\left(C_{n}\right)-E\left(Z_{n}\right) & =\frac{2}{\pi} \int_{0}^{+\infty} \ln d_{n} d x \\
& \leq \frac{2}{\pi} \int_{0}^{+\infty} \ln d_{38} d x \\
& =E\left(C_{38}\right)-E\left(Z_{38}\right) \\
& \doteq-0.00013<0 .
\end{aligned}
$$

Thus the result holds.
From Lemmas 3.3, 3.4, 3.9 and 3.10, we have the following.
Theorem 3.11 If $G \in \mathcal{B} \mathcal{U}_{1}$, then we have $G \rightharpoonup Z_{n}(n \geq 36)$.

4 The proof of $\left(R_{2}\right)$

In this section, we will prove the result $\left(R_{2}\right)$. We need to give a notation and introduce some lemmas.

A k-matching is a disjoint union of k edges in G. The number of k-matching is denoted by $m(G, k)$. We agree that $m(G, 0)=1$ and $m(G, k)=0(k<0)$. In order to compare the energies of two bipartite unicyclic graphs by Definition 1.1, we need to compute the numbers $b_{2 k}(G)$.

Lemma 4.1 [8] Let $G \in \mathcal{B} \mathcal{U}(n, l)$. Let r be a positive integer. Then we have the following.

$$
b_{2 i}(G)= \begin{cases}m(G, i)+2 m\left(G-C_{l}, i-\frac{l}{2}\right), & l=4 r+2 \\ m(G, i)-2 m\left(G-C_{l}, i-\frac{l}{2}\right), & l=4 r\end{cases}
$$

Fig. 3. The graph $C_{6}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$

Let $C_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. We denote by $C_{6}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ the graph obtained by attaching a pendent path of $P_{a_{i}+1}$ to vertex v_{i} of C_{6} for $i=1,2, \ldots, 6$, respectively (see Fig. 3).

Lemma 4.2 If $n \geq 15$, then $C_{6}(2, n-8,0,0,0,0) \rightharpoonup Z_{n}$.

Proof. Let $G=C_{6}(2,8,0,0,0,0), H=Z_{16}$. Then $C_{6}(2, n-8,0,0,0,0)$ and Z_{n} are k-subdivision of G and H on some cut edges ($k=n-16$), respectively. By some calculations we get:
$f_{0}=x\left(1+x^{2}\right)\left(2+x^{2}\right)\left(6+73 x^{2}+284 x^{4}+519 x^{6}+507 x^{8}+283 x^{10}+90 x^{12}+15 x^{14}+x^{16}\right)$ and $D E(0) \doteq 0.0081, D E(1) \doteq 0.0315$.

By Lemma 3.2, we have for $n \geqslant 16, E\left(C_{6}(2, n-8,0,0,0,0)\right)<E\left(Z_{n}\right)$.
Let u be a vertex of a graph G, and T be a rooted tree. Let $G_{u}(T)$ be the graph obtained by attaching T to G such that the root of T is at u. When T is a path P_{k+1} with one of its end vertices as the root, then we simply write $G_{u}(T)$ as $G_{u}(k)$. The following three lemmas will be used in the proof of Theorem 4.8.

Lemma 4.3 [16] Let u be a vertex of a bipartite graph G and T be a tree of order $k+1$. If $G_{u}(T) \neq G_{u}(k)$, then $G_{u}(T) \prec G_{u}(k)$.

Lemma 4.4 [5] Let G be a graph and uv be an edge of G. Then

$$
m(G, k)=m(G-u v, k)+m(G-u-v, k-1) \quad\left(0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right) .
$$

Lemma 4.5 [5] For any T with order n, if $T \neq S_{n}, T \neq P_{n}$, then

$$
S_{n} \prec T \prec P_{n}
$$

Lemma 4.6 [8] Let $G \in G(n, l)$ where $l \not \equiv 0 \bmod 4$. If $G \neq P_{n}^{l}$ then $G \prec P_{n}^{l}$.

Lemma 4.7 [14] Let u be a non-isolated vertex of a bipartite graph G, w_{i} be a vertex of a bipartite graph $H_{i}(i=1,2)$. Let $G \cdot H_{i}$ be the coalescence graph of G and H_{i} at u and $w_{i}(i=1,2)$. Then we have:

If $H_{1} \succcurlyeq H_{2}$ and $H_{1}-w_{1} \succcurlyeq H_{2}-w_{2}$, then $G \cdot H_{1} \succcurlyeq G \cdot H_{2}$. Furthermore, if one of the two conditions is strict, then we have $G \cdot H_{1} \succ G \cdot H_{2}$.

Theorem 4.8 Let $\Gamma \in \mathcal{B U}_{2}$, then we have $\Gamma \prec Z_{n}(n \geq 15)$.

Proof. Let $C_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ be the unique cycle of Γ. Then $|N(\Gamma)| \geq 2$ for $n \geq 15$. From Lemma 4.3, we have $\Gamma \preceq C_{6}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ where $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=$ $n-6$. Let $G_{1}=C_{6}\left(a_{1}, n-8-a_{1}, 0,0,0,0\right)$ and $G_{2}=C_{6}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$. Without loss of generality, assume $a_{1}=\max \left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}>2$. We will prove $G_{2} \preceq G_{1}$. Take $G=P_{a_{1}}, H_{1}=C_{6}\left(0, n-8-a_{1}, 0,0,0,0\right)=P_{n-a_{1}}^{6}$ and $H_{2}=C_{6}\left(0, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$. Let u be an end vertex of G and w_{1}, w_{2} be the vertex of C_{6} in H_{1} and H_{2} corresponding to v_{1}, respectively.

It is easy to see that $G_{1}=G \cdot H_{1}$ and $G_{2}=G \cdot H_{2}$. By Lemmas 4.5, 4.6 we have $H_{2} \preceq H_{1}$ and $H_{2}-w_{2} \preceq H_{1}-w_{1}=P_{n-a_{1}-1}$.

Then, $G_{2} \prec G_{1}$ follows from Lemma 4.7.
Since $G_{1}=C_{6}\left(a_{1}, n-8-a_{1}, 0,0,0,0\right) \prec C_{6}(2, n-8,0,0,0,0)$, We have $\Gamma \prec C_{6}(2, n-$ $8,0,0,0,0)$. By Lemma 4.2, we get $\Gamma \prec Z_{n}$.

5 The proof of $\left(R_{3}\right)$

In this section, we first prove that (1) - (3) of R_{3} hold.

Lemma 5.1 If $n \geq 41$, then $Z_{n} \rightharpoonup C_{6}(7, n-14)$.

Proof. Let $G=Z_{41}, H=C_{6}(7,27)$. Then Z_{n} and $C_{6}(7, n-14)$ are k-subdivision of G and H on some cut edges $(k=n-41)$, respectively.
By some calculations we get:
$f_{0}=x\left(1+x^{2}\right)^{3}\left(12+339 x^{2}+1605 x^{4}+3219 x^{6}+3406 x^{8}+2090 x^{10}+770 x^{12}+168 x^{14}+20 x^{16}+x^{18}\right.$ and $D E(0) \doteq 0.00012, D E(1) \doteq 0.00201$.

By Lemma 3.2, we have for $n \geqslant 41, E\left(Z_{n}\right)<E\left(C_{6}(7, n-14)\right)$.

Lemma 5.2 If $n \geq 38$, then $C_{6}(5, n-12) \rightharpoonup Z_{n}$.
Proof. Let $G=C_{6}(5,26), H=Z_{38}$. Then $C_{6}(5, n-12)$ and Z_{n} are k-subdivision of G and H on some cut edges ($k=n-38$), respectively.

By some calculations we get:

$$
f_{0}=x\left(1+x^{2}\right)^{3}\left(2+x^{2}\right)\left(6+120 x^{2}+334 x^{4}+317 x^{6}+136 x^{8}+27 x^{10}+2 x^{12}\right)
$$

and $D E(0) \doteq 0.000059, D E(1) \doteq 0.002223$.
By Lemma 3.2, we have for $n \geqslant 38, E\left(C_{6}(5, n-12)\right)<E\left(Z_{n}\right)$.

Lemma 5.3 [18] If $n \geq 27$, then $Y_{n} \rightharpoonup C_{6}(4, n-11)$.
Lemma 5.4 If $n \geq 19$, then $C_{6}(6, n-13) \rightharpoonup Y_{n}$.
Proof. Let $G=C_{6}(6,6), H=Y_{19}$. Then $C_{6}(6, n-13)$ and Y_{n} are k-subdivision of G and H on some cut edges ($k=n-38$), respectively.

By some calculations we get:

$$
f_{0}=x^{3}\left(1+x^{2}\right)^{3}\left(3+x^{2}\right)\left(41+216 x^{2}+343 x^{4}+245 x^{6}+87 x^{8}+15 x^{10}+x^{12}\right)
$$

and $D E(0) \doteq 0.0012, D E(1) \doteq 0.004577$.
By Lemma 3.2, we have for $n \geqslant 19, E\left(C_{6}(6, n-13)\right)<E\left(Y_{n}\right)$.
Lemma 5.5 If $n \geq 38$, then $C_{6}(7, n-14) \rightharpoonup \widehat{C_{6}}(2, n-11)$.
Proof. Let $G=C_{6}(6,24), H=\widehat{C_{6}}(2,27)$. Then $C_{6}(7, n-14)$ and $\widehat{C_{6}}(2, n-11)$ are k-subdivision of G and H on some cut edges $(k=n-38)$, respectively.

By some calculations we get:
$f_{0}=x\left(1+x^{2}\right)^{3}\left(3+x^{2}\right)\left(4+105 x^{2}+461 x^{4}+845 x^{6}+792 x^{8}+408 x^{10}+116 x^{12}+17 x^{14}+x^{16}\right)$
and $D E(0) \doteq 0.000011, D E(1) \doteq 0.002229$.
By Lemma 3.2, we have for $n \geqslant 38, E\left(C_{6}(7, n-14)\right)<E\left(\widehat{C_{6}}(2, n-11)\right)$.
Lemma 5.6 If $n \geq 78$, then $\widehat{C_{6}}(2, n-11) \rightharpoonup C_{6}(9, n-16)$.
Proof. Let $G=\widehat{C_{6}}(2,68), H=C_{6}(9,63)$. Then $\widehat{C_{6}}(2, n-11)$ and $C_{6}(9, n-16)$ are k-subdivision of G and H on some cut edges $(k=n-79)$, respectively.
By some calculations we get:

$$
\begin{aligned}
f_{0}=x\left(x^{2}+3\right)\left(x^{2}\right. & +1)^{2}\left(4+148 x^{2}+1158 x^{4}+4148 x^{6}+8223 x^{8}+9806 x^{10}\right. \\
& \left.+7358 x^{12}+3544 x^{14}+1091 x^{16}+207 x^{18}+22 x^{20}+x^{22}\right) .
\end{aligned}
$$

and $D E(0) \doteq 0.000001589, D E(1) \doteq 0.000432$.
By Lemma 3.2, we have for $n \geqslant 79, E\left(\widehat{C_{6}}(2, n-11)\right)<E\left(C_{6}(9, n-16)\right)$
For $n=78$, by directly calculation we have $E\left(C_{6}(9,62)\right)-E\left(\widehat{C_{6}}(2,67)\right) \doteq 0.00044$. So the result holds.

$\widetilde{C_{o}}(2, \mathrm{n}-8)$

$C_{6} *\left(P_{n-6}(2,2, n-11), i\right)$

Fig. 4. The graphs $\widetilde{C_{6}}(2, n-8)$ and $C_{6} *\left(P_{n-6}(2,2, n-11), i\right)$
In the following, we will prove that (4) of R_{3} holds.
Let $P_{n}(a, b, c)$ be a tree of order n obtained by attaching three pendant paths of length a, b and c to an isolated vertex with one of their end vertices, respectively, where $a+b+c=n-1$. We denote by $\widetilde{C_{6}}(2, n-8)$ the graph obtained by attaching two pendent paths of length 2 and $n-8$ to some vertex of C_{6} (see Fig. 4). Labeling the vertices of $P_{n-6}(2,2, n-1)$ with $w_{1}, w_{2}, \cdots w_{n-6}$, let $C_{6} *\left(P_{n-6}(2,2, n-11), i\right)$ be the graph obtained by joining the vertex w_{i} of $P_{n-6}(2,2, n-11)$ with some vertex, say v_{1}, of the cycle C_{6} (see Fig. 4). Let $P_{6} *\left(P_{n-6}(2,2, n-11), i\right)=C_{6} *\left(P_{n-6}(2,2, n-11), i\right)-v_{1} v_{2}$, where v_{2} is the vertex of the cycle of $C_{6} *\left(P_{n-6}(2,2, n-11), i\right)$ which is adjacent to v_{1}. The following lemma is an alternative form of Theorem 3.6 in [12].

Lemma 5.7 [12] Let T be a tree of order n. If $T \neq P_{n}, P_{n}(2,2, n-5)$, then $m(T, i) \leq$ $m\left(P_{n}(2,4, n-7), i\right)$, the equality holds if and only if $T=P_{n}(2,4, n-7)$.

Lemma 5.8 [17] Let e, e^{\prime} be cut edges of bipartite graphs G and H of order n, respectively. If $G(0) \preccurlyeq H(0)$ and $G(1) \preccurlyeq H(1)$, then we have $G(k) \preccurlyeq H(k)$ for all $k \geq 2$, with $G(k) \sim H(k)$ if and only if both the two relations $H(0) \sim G(0)$ and $H(1) \sim G(1)$ hold.

Lemma 5.9 If $n \geq 15$, then $\widetilde{C_{6}}(2, n-8) \prec Z_{n}$.
Proof. Let $G=\widetilde{C_{6}}(2,7), H=Z_{15}$. Then for $n \geq 15, \widetilde{C_{6}}(2, n-8)$ and Z_{n} are $(n-15)$ subdivision graph of G and H, respectively.

By some calculations we get:
$\widetilde{\phi}(G(0))=19 x+129 x^{3}+322 x^{5}+391 x^{7}+252 x^{9}+87 x^{11}+15 x^{13}+x^{15}$;
$\widetilde{\phi}(H(0))=23 x+145 x^{3}+347 x^{5}+410 x^{7}+259 x^{9}+88 x^{11}+15 x^{13}+x^{15} ;$
$\widetilde{\phi}(G(1))=4+68 x^{2}+297 x^{4}+574 x^{6}+581 x^{8}+326 x^{10}+101 x^{12}+16 x^{14}+x^{16}$;
$\widetilde{\phi}(H(1))=4+76 x^{2}+325 x^{4}+612 x^{6}+606 x^{8}+334 x^{10}+102 x^{12}+16 x^{14}+x^{16}$.
Then $G(0) \prec H(0), G(1) \prec H(1)$. By Lemma 5.8, we have $\widetilde{C_{6}}(2, n-8) \prec Z_{n}$.

Lemma 5.10 If $n \geq 16$, then $C_{6} *\left(P_{n-6}(2,2, n-11), 3\right) \rightharpoonup Z_{n}$.
Proof. Let $G=C_{6} *\left(P_{10}(2,2,5), 3\right), H=Z_{16}$. Then $C_{6} *\left(P_{n-6}(2,2, n-11), 3\right)$ and Z_{n} are k-subdivision of G and H on some cut edges ($k=n-16$), respectively.

By some calculations we get:

$$
f_{0}=x^{3}\left(1+x^{2}\right)^{5}\left(47+216 x^{2}+211 x^{4}+84 x^{6}+15 x^{8}+x^{10}\right)
$$

and $D E(0) \doteq 0.04092, D E(1) \doteq 0.04633$.
By Lemma 3.2, we have for $n \geqslant 16, E\left(C_{6} *\left(P_{n-6}(2,2, n-11), 3\right)\right)<E\left(Z_{n}\right)$.
The following lemma is an alternative form of Theorem 2.2 in [13] which will be used to compare the matching numbers of two trees.

Lemma 5.11 [13] Let $a+b=c+d$ with $0 \leq a \leq b$ and $0 \leq c \leq d$. Let $a<c$. Then we have:
(1) If a is even, then $m\left(P_{a} \cup P_{b}, i\right) \geq m\left(P_{c} \cup P_{d}, i\right)$. Furthermore, there exists at least one index i such that the above inequality is strict.
(2) If a is odd, then $m\left(P_{a} \cup P_{b}, i\right) \leq m\left(P_{c} \cup P_{d}, i\right)$. Furthermore, there exists at least one index i such that the above inequality is strict.

Lemma 5.12 If $n \geq 14$, then $C_{6} *\left(P_{n-6}(2,2, n-11), i\right) \preceq C_{6} *\left(P_{n-6}(2,2, n-11), 3\right)$ for $i=2, \ldots, n-9$.

Proof. Take $H_{1}=H_{2}=P_{n-6}(2,2, n-11), v_{1}=w_{3}$ and $v_{2}=w_{i}$. Then $H_{1}-v_{1}=$ $P_{2} \cup P(2,2, n-14)$ and

$$
H_{2}-v_{2}= \begin{cases}P_{i-1} \cup P(2,2, n-11-i) & \text { if } 2 \leq i \leq n-11 \\ P_{2} \cup P_{2} \cup P_{n-11} & \text { if } i=n-10 \\ P_{1} \cup P_{n-8} & \text { if } i=n-9\end{cases}
$$

By some calculations we have $P_{1} \cup P_{5} \prec P_{2} \cup P(2,2,1)$ and $P_{1} \cup P_{6} \prec P_{2} \cup P(2,2,2)$. Then by Lemma 5.8, we have $H_{2}-v_{2} \prec H_{1}-v_{1}$ for $i=n-9$.

Since $P_{2} \cup P_{2} \cup P_{n-11}$ is subgraph of $P_{2} \cup P(2,2, n-14), H_{2}-v_{2} \prec H_{1}-v_{1}$ for $i=n-10$.
Since $\widetilde{\phi}\left(P_{2} \cup P(2,2, n-14), x\right)=\widetilde{\phi}\left(2 P_{2} \cup P_{n-11}, x\right)+\widetilde{\phi}\left(2 P_{2} \cup P_{1} \cup P_{n-14}, x\right)$
$\widetilde{\phi}\left(P_{i-1} \cup P(2,2, n-11-i), x\right)=\widetilde{\phi}\left(P_{2} \cup P_{i-1} \cup P_{n-8-i}, x\right)+\widetilde{\phi}\left(P_{i-1} \cup P_{2} \cup P_{1} \cup P_{n-11-i}, x\right)$.
By Lemma 5.11, we have $P_{i-1} \cup P_{n-8-i} \preceq P_{2} \cup P_{n-11}$ and $P_{i-1} \cup P_{n-i-11} \preceq P_{2} \cup P_{n-14}$ for $2 \leq i \leq n-11$.

Hence $P_{i-1} \cup P(2,2, n-11-i) \preceq P_{2} \cup P(2,2, n-14)$ for $2 \leq i \leq n-11$.
Then $H_{2}-v_{2} \prec H_{1}-v_{1}$ for $2 \leq i \leq n-9$. Let $G=P_{7}^{6}$ and u be the vertex of degree 1 of G. By Lemma 4.7, we have $C_{6} *\left(P_{n-6}(2,2, n-11), i\right) \preceq C_{6} *\left(P_{n-6}(2,2, n-11), 3\right)$.

Lemma 5.13 [16] Let u be a vertex of a bipartite graph G. Denote by $G_{u}(a, b)$ the graph obtained by attaching to G two pendent paths of length a and b at u (as shown in Fig.4). Let a, b, c, d be nonnegative integers with $a \leq b, c \leq d, a+b=c+d$, and $a<c$. If u is a non-isolated vertex of a bipartite graph G, then the following statements are true:
(1) If a is even, then $G_{u}(a, b) \succ G_{u}(c, d)$;
(2) If a is odd, then $G_{u}(a, b) \prec G_{u}(c, d)$.

Theorem 5.14 Let $G \in \mathcal{B} \mathcal{U}_{3} \backslash \mathcal{A}_{n}$. If $G \neq Y_{n}, Z_{n}, \widehat{C_{6}}(2, n-11)$, then $G \prec Z_{n}$.

Proof. Let $C_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ be the unique cycle of G. Since $|N(G)|=1$, without loss of generality, we assume that $d_{G}\left(v_{1}\right) \geq 3$. We consider the following two cases.

Case 1. $d_{G}\left(v_{1}\right) \geqslant 4$. From Lemmas 4.3 and 5.13 , we can get that the graph with maximal energy in this case is $\widetilde{C_{6}}(2, n-8)$. Furthermore, by Lemma 5.9 , we get $G \prec Z_{n}$.

Case 2. $d_{G}\left(v_{1}\right)=3$. Since $G \in \mathcal{B U}_{3} \backslash \mathcal{A}_{n}$, we have $G-C_{6} \neq P_{n-6}$. We distinguish the following two subcases.

Subcase 2.1. $G-C_{6} \neq P_{n-6}(2,2, n-11)$. From Lemma 4.1, we can get the following
two equations:

$$
\begin{aligned}
b_{2 k}(G) & =m(G, k)+2 m\left(G-C_{6}, k-3\right) \\
b_{2 k}\left(Z_{n}\right) & =m\left(Z_{n}, k\right)+2 m\left(P_{n-6}(2,4, n-13), k-3\right) .
\end{aligned}
$$

Since $G-C_{6} \neq P_{n-6}, P_{n-6}(2,2, n-11)$, by Lemma 5.7 , we have $m\left(G-C_{6}, k-3\right) \leq$ $m\left(P_{n-6}(2,4, n-13), k-3\right)$. Then $m\left(P_{4} \cup\left(G-C_{6}\right), k-1\right) \leq m\left(P_{4} \cup P_{n-6}(2,4, n-13), k-1\right)$. Moreover, from Lemma 4.4,

$$
\begin{aligned}
m(G, k) & =m\left(G-v_{1} v_{2}, k\right)+m\left(P_{4} \cup\left(G-C_{6}\right), k-1\right) \\
m\left(Z_{n}, k\right) & =m\left(P_{n}(2,4, n-7), k\right)+m\left(P_{4} \cup P_{n-6}(2,4, n-13), k-1\right) .
\end{aligned}
$$

Since $G \notin \mathcal{A}_{n}, G \neq Y_{n}$, we get $G-v_{1} v_{2} \neq P_{n}, P_{n}(2,2, n-5)$. From Lemma 5.7, we have $m\left(G-v_{1} v_{2}, k\right) \leq m\left(P_{n}(2,4, n-7), k\right)$, the equality holds if and only if $G-v_{1} v_{2}=$ $P_{n}(2,4, n-7)$. Hence $b_{2 k}(G) \leq b_{2 k}\left(Z_{n}\right)$. Since $G \neq Z_{n}$, we have $G-v_{1} v_{2} \neq P_{n}(2,4, n-7)$. Then $G \prec Z_{n}$.

Subcase 2.2. $G-C_{6}=P_{n-6}(2,2, n-11)$. Then $G=C_{6} *\left(P_{n-6}(2,2, n-11), i\right)$. Note that $G=Y_{n}$ when $i=1 ; G=\widehat{C_{6}}(2, n-11)$ when $i=n-8$. By Lemmas 4.1 we have $C_{6} *\left(P_{n-6}(2,2, n-11), i\right) \preceq C_{6} *\left(P_{n-6}(2,2, n-11), 3\right)$ for for $2 \leq i \leq n-9$. Then by Lemma 5.10, we can get $C_{6} *\left(P_{n-6}(2,2, n-11), i\right) \prec Z_{n}$ when $2 \leqslant i \leqslant n-9$. So we have $G \prec Z_{n}$. We complete the proof.

References

[1] E. O. D. Andriantiana, Unicyclic biparitite graphs with maximum energy, MATCH Commun. Math. Comput. Chem. 66 (2011) 913-926.
[2] E. O. D. Andriantiana, S. Wagner, Unicyclic graphs with large energy, Lin. Algebra Appl. 435 (2011) 1399-1414.
[3] C. A. Coulson, B. O'Leary, R. B. Mallion, Hückel Theory for Organic Chemists, Academic Press, London, 1978.
[4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forsch. Graz. 103 (1978) 1-22.
[5] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta. 45 (1977) 79-87.
[6] I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second-maximal and third-maximal energy, MATCH Commun. Math. Comput. Chem. 58 (2007) 75-82.
[7] I. Gutman, Y. Hou, Bipartite unicyclic graphs with greatest energy, MATCH Commun. Math. Comput. Chem. 43 (2001) 17-28.
[8] Y. Hou, I. Gutman, C. W. Woo, Unicyclic graphs with maximal energy, Lin. Algebra Appl. 356 (2002) 27-36.
[9] H. Hua, Bipartite unicyclic graphs with large energy, MATCH Commun. Math. Comput. Chem. 58 (2007) 57-73.
[10] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, Eur. J. Comb. 32 (2011) 662-673.
[11] B. Huo, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, Lin. Algebra Appl. 434 (2011) 1370-1377.
[12] N. Li, S. Li, On the extremal energies of trees, MATCH Commum. Math. Comput. Chem. 59 (2008) 291-314.
[13] H. Y. Shan, J. Y. Shao, Graph energy change due to edge grafting operations and its applications, MATCH Commun. Math. Comput. Chem. 64 (2010) 25-40.
[14] H. Y. Shan, J. Y. Shao, The proof of a conjecture on the comparison of the energies of trees, J. Math. Chem. 50 (2012) 2637-2647.
[15] H. Y. Shan, J. Y. Shao, L. Zhang, C. X. He, Proof of a conjecture on trees with large energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 703-720.
[16] H. Y. Shan, J. Y. Shao, F. Gong, Y. Liu, An edge grafting theorem on the energy of unicyclic and bipartite graphs, Lin. Algebra Appl. 433 (2010) 547-556.
[17] H. Y. Shan, J. Y. Shao, L. Zhang, C. X. He, A new method of comparing the energies of subdivison bipartite graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 721-740.
[18] J. Zhu, J. Yang, Bipartite unicyclic graphs with large energies, J. Appl. Math. Comput. 48 (2015) 533-552.

[^0]: *This research is supported by NSFC (No. 11371372); supported by the Fundamental Research Funds for the Central Universities (No. 22120180254).
 ${ }^{\dagger}$ Corresponding author; Email addresses: jimingguo@hotmail.com(J.-M. Guo), 1017775696@qq.com(H. Qian), shan_haiying@tongji.edu.cn)(H.-Y. Shan), (Z.-W. Wang)

