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Abstract

The energy of a graph is the sum of the absolute value of the eigenvalues of
its adjacency matrix. In this paper, the first bn−5

2 c largest energies of connected
bipartite unicyclic graphs on n ≥ 78 vertices are determined which generalize some
known results.

1 Introduction

Let G be a simple undirected graph with n vertices and A(G) be its adjacency matrix. Let

λ1(G), · · · , λn(G) be the eigenvalues of A(G). Then the energy of G, denoted by E(G),

is defined as E(G) =
∑n

i=1 |λi(G)| (see [4]). The study on the graph energy originated

from the total π-electron energy of conjugated hydrocarbons, which has an important

implication on thermodynamics and molecular structure. Its details can be found in an

appropriate textbook [3].

The characteristic polynomial det(xI−A(G)) of the adjacency matrix A(G) of a graph

G is also called the characteristic polynomial of G, written as φ(G, x) =
∑n

i=0 ai(G)xn−i.
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If G is a bipartite graph, then it is well known that φ(G, x) has the form

φ(G, x) =

bn/2c∑
i=0

a2i(G)xn−2i =

bn/2c∑
i=0

(−1)ib2i(G)xn−2i, (1)

where b2i(G) = |a2i(G)| = (−1)ia2i(G).

Assume that

φ̃(G, x) =

bn/2c∑
i=0

b2i(G)xn−2i.

The energy of a bipartite graph G on n vertices can be expressed in terms of the

Coulson integral formula [5]:

E(G) =
2

π

∫ +∞

0

1

x2
ln(

bn/2c∑
i=0

b2i(G)x2i)dx. (2)

Thus, by Eq. (2), E(G) is a strictly monotonically increasing function of those numbers

b2i(G) (i = 0, 1, · · · , bn/2c) for bipartite graphs. This observation provides a way of

comparing the energies of a pair of bipartite graphs as follows.

Defintion 1.1 Let G1 and G2 be two bipartite graphs of order n. If b2i(G1) ≤ b2i(G2)

for all i with 0 ≤ i ≤ bn/2c, then we write G1 � G2.

Furthermore, if G1 � G2 and there exists at least one index j such that b2j(G1) <

b2j(G2), then we write G1 ≺ G2. If b2j(G1) = b2j(G2) for all j, we write G1 ∼ G2.

According to the Coulson integral formula, we have the quasi-order method of comparing

the energies for two bipartite graphs G1 and G2 of order n that [5]:

G1 � G2 ⇒ E(G1) ≤ E(G2)

G1 ≺ G2 ⇒ E(G1) < E(G2).

In this paper, for sake of conciseness, we introduce the symbol ”⇀” as follows:

E(G1) < E(G2) ⇔ G1 ⇀ G2.

{P
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b
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Fig. 1. The graph C6(a, b)
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Throughout this paper, we use Pn and Cn to denote the n-vertex path and n-vertex

cycle, respectively. Let P l
n be the graph obtained by joining some vertex of Cl and one

of the end vertices of Pn−l (n > l). Let a and b be nonnegative integers. We denote by

C6(a, b) the graph obtained by attaching two pendent paths of length a and b to the unique
pendent vertex of P 6

7 , respectively (see Fig. 1). It is easy to see that C6(a, b) = C6(b, a)

and P 6
n = C6(0, n− 7).

Using the above quasi-order method, Hou et al. [8] proved that for n ≥ 7, P 6
n has

the maximal energy among all connected unicyclic bipartite n-vertex graphs except for

Cn. Gutman and Hou [7] shown that E(P 6
n) > E(Cn) by some numerical calculations

for n ≥ 12, but they did not give a rigorous mathematical proof. In [9], Hua further

investigated the second-maximal energy of bipartite unicyclic graph. By means of an ap-

propriate computer search and some numerical calculations, Gutman et al. [6] determined
the n-vertex bipartite unicyclic graphs with maximal, second-maximal and third-maximal

energy. But they could not give a rigorous mathematical proof. Thus they posed the fol-

lowing conjecture.

Conjecture 1 For all n ≥ 11, the n-vertex bipartite unicyclic graph with maximal energy
is C6(0, n−7). For all n ≥ 23, the n-vertex bipartite unicyclic graph with second-maximal

energy is C6(2, n − 9). For all n ≥ 27, the n-vertex bipartite unicyclic graph with third-

maximal energy is C6(4, n− 11).

Recently, using the Coulson integral formula for the energy of a graph, Huo et al.

[11] and Andriantiana [1] independently proved that the bipartite unicyclic graph with

maximal energy is C6(0, n − 7) for n ≥ 11. In [10], Huo et al. further characterized the

unicyclic graph with maximal energy. Furthermore, Andriantiana and Wagner [2] showed

that the unicyclic graph with second-maximal energy is C6(2, n− 9) for n ≥ 28; Zhu and

Yang [18] proved that the n-vertex bipartite unicyclic graph with third-maximal energy

is C6(4, n − 11) for n ≥ 27. Therefore the above conjecture has been completely solved.

In this paper, we will give the first bn−5
2
c largest energies of connected bipartite unicyclic

graphs with n ≥ 78 vertices.
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C6(2,n-11)
^

Fig. 2. The graphs Yn, Zn and Ĉ6(2, n− 11)
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Denote by BU(n) the set of all connected bipartite unicyclic graphs with n vertices.

Denote by Yn the graph obtained by attaching two pendent paths of length 2 to the unique

pendent vertex of P 6
n−4 (see Fig. 2). Denote by Zn the graph obtained by attaching two

pendent paths of length 2 and 4 to the unique pendent vertex of P 6
n−6 (see Fig. 2). Denote

by Ĉ6(2, n−11) the graph obtained by attaching two pendent paths of length 2 and n−11

to the unique pendent vertex of P 6
9 (see Fig. 2). Now we give the main result of this

paper.

Theorem 1.1 Let G ∈ BU(n), k = bn−7
2
c, t = bk

2
c and l = bk−1

2
c. If n ≥ 78, then the

n-vertex connected bipartite unicyclic graphs with the first bn−5
2
c largest energies are as

follows:

C6(0, n− 7) ↼ C6(2, n− 9) ↼ C6(4, n− 11) ↼ Yn ↼ C6(6, n− 13) ↼ · · ·

↼ C6(2t, n− 7− 2t) ↼ C6(2l + 1, n− 8− 2l) ↼ · · · ↼ C6(9, n− 16) ↼ Ĉ6(2, n− 11)

↼ C6(7, n− 14) ↼ Zn.

2 The basic strategy of the proof of Theorem 1.1

Let BU(n, l) be the set of connected bipartite unicyclic graphs of order n with one unique

cycle of length l. Let A(n) = {C6(a, b) | 0 ≤ a ≤ b, a+ b = n− 7}. In [18], Zhu and Yang

gave the following result:

Lemma 2.1 Let k = bn−7
2
c, t = bk

2
c and l = bk−1

2
c. Then we have the following quasi-

order relation in A(n):

C6(0, n− 7) ↼ C6(2, n− 9) ↼ C6(4, n− 11) ↼ · · · ↼ C6(2t, n− 7− 2t)

↼ C6(2l + 1, n− 8− 2l) ↼ · · · ↼ C6(5, n− 12) ↼ C6(3, n− 10) ↼ C6(1, n− 8).

Let C6 = v1v2v3v4v5v6v1 be the unique cycle of BU(n, 6). For a graph G ∈ BU(n, 6),

let N(G) = {vi | dG(vi) ≥ 3, i = 1, 2, ..., 6}. Then we can classify the graphs in BU(n)

into the following three classes.

BU1 = {G | G ∈ BU(n, l), l 6= 6};

BU2 = {G | G ∈ BU(n, 6), |N(G)| 6= 1};

BU3 = {G | G ∈ BU(n, 6), |N(G)| = 1}.
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It follows that BU(n) = BU1 ∪ BU2 ∪ BU3 and A(n) ⊆ BU3.

For n ≥ 78, our basic strategy of the proof of Theorem 1.1 is to prove the following

results (R1)− (R3):

(R1): For any G ∈ BU1, we have G ⇀ Zn.

(R2): For any G ∈ BU2, we have G ⇀ Zn.

(R3): (1) C6(5, n− 12) ⇀ Zn ⇀ C6(7, n− 14);
(2) C6(6, n− 13) ⇀ Yn ⇀ C6(4, n− 11);
(3) C6(7, n− 14) ⇀ Ĉ6(2, n− 11) ⇀ C6(9, n− 16);
(4) For any G ∈ BU3\A(n), if G 6= Yn, Zn, Ĉ6(2, n− 11), then we have G ⇀ Zn.

It is easy to see that we can prove Theorem 1.1 by combining Lemma 2.1 and the

above results (R1)-(R3). We will prove the result (R1) in section 3. Then we will prove

the results (R2) and (R3) in sections 4 and 5, respectively.

3 The proof of (R1)
The quasi-order method mentioned above can be used to compare the energies of two

bipartite graphs. However, it sometimes does not work [18]. In [17], Shan et al. presented

a new method of comparing the energies of two subdivision bipartite graphs.

Defintion 3.1 [17] Let e be a cut edge of a graph G, and let Ge(k) denote the graph

obtained by replacing e with a path of length k+1 (for simplicity of notations, we usually

abbreviate Ge(k) by G(k)). We say that G(k) is a k-subdivision graph of G on the cut edge

e. We also set G(0)=G.

Lemma 3.1 [17] Let G be a bipartite graph of order n and let G(k) be a k-subdivision

graph (of order n+k) of G on some cut edge e. Then we have:

φ̃(G(k + 2), x) = xφ̃(G(k + 1), x) + φ̃(G(k), x) (k ≥ 0).

From the proof of Lemma 1.1 in [15], we have the following result.

Lemma 3.2 Let G(k), H(k) be k-subdivision graphs on some cut edges of the bipartite

graphs G and H of order n, respectively (k ≥ 0). Write gk = φ̃(G(k), x), hk = φ̃(H(k), x),

fk = hk+1gk − hkgk+1 and DE(k) = E(H(k)) − E(G(k)). If f0 is a polynomial with

nonnegative coefficients, then

DE(2l) < DE(2k) < DE(2k + 1) < DE(2l + 1)

holds for all k > l ≥ 0.
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Lemma 3.3 [18] Let G ∈ BU1, if G 6= Cn, P
n−2
n , P 10

n , we have G ⇀ P 10
n .

Now, we will use Lemma 3.2 to prove P 10
n ⇀ Zn for n ≥ 15.

Lemma 3.4 If n ≥ 14, then P 10
n ⇀ Zn.

Proof. Let G = P 10
14 , H = Z14. Then P 10

n and Zn are k-subdivision of G and H on some

cut edges (k = n− 14), respectively.

By some calculations we get:

f0 = x(1 + x2)(1 + 3x2 + x4)(24 + 160x2 + 371x4 + 398x6 + 235x8 + 79x10 + 14x12 + x14)

and DE(0)
.
= 0.00077 , DE(1)

.
= 0.0766.

By Lemma 3.2, we have for n > 14, E(P 10
n ) < E(Zn).

Next we prove P n−2
n ⇀ Zn when n ≥ 16 and n is even. We need the following results.

Lemma 3.5 [18] Let hn and gn be monic polynomials of degree n about x with nonnegative

coefficients satisfying that hn = xhn−1+hn−2 and gn = xgn−1+gn−2. Let p(x) be a nonzero

polynomial with nonnegative coefficients. Write an = hn+p(x)
gn

and bn = hn−p(x)
gn

. For each

fixed x > 0 and n ≥ 9, we have:

(1) If an−8 > an−4, then an−4 > an.

(2) If bn−8 < bn−4, then bn−4 < bn.

Lemma 3.6 [18] Let hn, gn, an, bn, p(x) be defined as above. Then lim
n→∞

an and lim
n→∞

bn

exist.

Lemma 3.7 [18] (1) If n = 4k, then we have:

(i) φ̃(Cn, x) = φ̃(Pn, x) + φ̃(Pn−2, x)− 2;

(ii) φ̃(P n−2
n , x) = φ̃(Pn, x) + (x2 + 1)φ̃(Pn−4, x) + 2(x2 + 1).

(2) If n = 4k + 2, then we have:

(i) φ̃(Cn, x) = φ̃(Pn, x) + φ̃(Pn−2, x) + 2;

(ii) φ̃(P n−2
n , x) = φ̃(Pn, x) + (x2 + 1)φ̃(Pn−4, x)− 2(x2 + 1).

Lemma 3.8 [18] (1) Let hn = φ̃(Pn, x) + φ̃(Pn−2, x). Then hn = xhn−1 + hn−2.

(2) Let h′
n = φ̃(Pn, x) + (x2 + 1)φ̃(Pn−4, x). Then h

′
n = xh

′
n−1 + h

′
n−2.

Lemma 3.9 If n ≥ 16 and n is even, then P n−2
n ⇀ Zn.
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Proof. Let hn = φ̃(Pn, x) + (x2 + 1)φ̃(Pn−4, x). From Lemmas 3.7 and 3.8, we have

φ̃(P n−2
n , x) =

{
hn + 2(x2 + 1) n = 4k

hn − 2(x2 + 1) n = 4k + 2
(3)

and hn = xhn−1 + hn−2. Let gn = φ̃(Zn, x). By Lemma 3.1, we can see that gn =

xgn−1 + gn−2. Write dn = φ̃(Pn−2
n ,x)

φ̃(Zn,x)
. We assume that x > 0 in the following. We consider

the following two cases.

Case 1. n = 4k. Then dn = hn+2(x2+1)
gn

. By some calculations we have

d20 − d16 =
F (x)

g16g20
< 0,

where F (x) = −x2(1 + x2)(2 + x2)(48 + 586x2 + 2167x4 + 3787x6 + 3649x8 + 2087x10 +

733x12 + 157x14 + 19x16 + x18). By Lemma 3.5(1), we have d4k < d4k−4 when k ≥ 5.

Case 2. n = 4k + 2. The dn = hn−2(x2+1)
gn

. By some calculations we have:

d22 − d18 =
H(x)

g18g22
> 0,

where H(x) = x2(1+x2)(152+1434x2+5472x4+11143x6+13471x8+10131x10+4817x12+

1435x14 + 257x16 + 25x18 + x20). Thus d4k−2 < d4k+2 when k ≥ 5 by Lemma 3.5(2).

From the proof of Lemma 3.6, we can show that lim
k→+∞

d4k = lim
k→+∞

d4k+2 exists which

implies that dn ≤ d16 for even number n ≥ 16. Thus, if n ≥ 16 and n is even, then

E(P n−2
n )− E(Zn) =

2

π

∫ +∞

0

ln dndx

≤ 2

π

∫ +∞

0

ln d16dx

= E(P 14
16 )− E(Z16)

.
= −0.02341 < 0.

Thus the result holds.

Finally, we prove that Cn ⇀ Zn for n ≥ 36.

Lemma 3.10 If n ≥ 36 and n is even, then Cn ⇀ Zn.

Proof. Let hn = φ̃(Pn, x) + φ̃(Pn−2, x). From Lemmas 3.7 and 3.8, we have

φ̃(Cn, x) =

{
hn − 2 n = 4k

hn + 2 n = 4k + 2
(4)
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and hn = xhn−1 + hn−2. Let gn = φ̃(Zn, x). By Lemma 3.1, we can see that gn =

xgn−1 + gn−2. Write dn = φ̃(Cn,x)

φ̃(Zn,x)
. We assume that x > 0 in the following. We consider

the following two cases.

Case 1. n = 4k. Then dn = hn−2
gn

. By some calculations we have

d24 − d20 =
F (x)

g20g24
> 0,

where F (x) = x2(1+x2)(2+x2)(4+x2)(22+219x2+797x4+1379x6+1249x8+614x10+

162x12 + 21x14 + x16). By Lemma 3.5(2), we have d4k > d4k−4 when k ≥ 6.

Case 2. n = 4k + 2. Then dn = hn+2
gn

. By some calculations we have

d22 − d18 =
H(x)

g18g22
< 0,

where H(x) = −x2(1 + x2)(4 + x2)(26 + 386x2 + 1517x4 + 2731x6 + 2691x8 + 1581x10 +

576x12 + 130x14 + 17x16 + x18). Thus d4k−2 > d4k+2 when k ≥ 5 by Lemma 3.5(1).

From the proof of Lemma 3.6, we can show that lim
k→+∞

d4k = lim
k→+∞

d4k+2 exists which

implies that dn ≤ d38 for even number n ≥ 36. Thus, if n ≥ 36 and n is even, then

E(Cn)− E(Zn) =
2

π

∫ +∞

0

ln dndx

≤ 2

π

∫ +∞

0

ln d38dx

= E(C38)− E(Z38)

.
= −0.00013 < 0.

Thus the result holds.

From Lemmas 3.3, 3.4, 3.9 and 3.10, we have the following.

Theorem 3.11 If G ∈ BU1, then we have G ⇀ Zn (n ≥ 36).

4 The proof of (R2)
In this section, we will prove the result (R2). We need to give a notation and introduce

some lemmas.

A k-matching is a disjoint union of k edges in G. The number of k-matching is

denoted by m(G, k). We agree that m(G, 0) = 1 and m(G, k) = 0 (k < 0). In order

to compare the energies of two bipartite unicyclic graphs by Definition 1.1, we need to

compute the numbers b2k(G).
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Lemma 4.1 [8] Let G ∈ BU(n, l). Let r be a positive integer. Then we have the

following.

b2i(G) =


m(G, i) + 2m(G− Cl, i−

l

2
), l = 4r + 2

m(G, i)− 2m(G− Cl, i−
l

2
), l = 4r

{

{

{

{

{

{

Pa2a

Pa4a

Pa5a Pa6a

Pa1a

Pa3a

Fig. 3. The graph C6(a1, a2, a3, a4, a5, a6)

Let C6 = v1v2v3v4v5v6v1. We denote by C6(a1, a2, a3, a4, a5, a6) the graph obtained by

attaching a pendent path of Pai+1 to vertex vi of C6 for i = 1, 2, ..., 6, respectively (see

Fig. 3).

Lemma 4.2 If n ≥ 15, then C6(2, n− 8, 0, 0, 0, 0) ⇀ Zn.

Proof. Let G = C6(2, 8, 0, 0, 0, 0), H = Z16. Then C6(2, n − 8, 0, 0, 0, 0) and Zn are

k-subdivision of G and H on some cut edges (k = n− 16), respectively.

By some calculations we get:

f0 = x(1 + x2)(2 + x2)(6 + 73x2 + 284x4 + 519x6 + 507x8 + 283x10 + 90x12 + 15x14 + x16)

and DE(0)
.
= 0.0081 , DE(1)

.
= 0.0315.

By Lemma 3.2, we have for n > 16, E(C6(2, n− 8, 0, 0, 0, 0)) < E(Zn).

Let u be a vertex of a graph G, and T be a rooted tree. Let Gu(T ) be the graph

obtained by attaching T to G such that the root of T is at u. When T is a path Pk+1 with

one of its end vertices as the root, then we simply write Gu(T ) as Gu(k). The following

three lemmas will be used in the proof of Theorem 4.8.

Lemma 4.3 [16] Let u be a vertex of a bipartite graph G and T be a tree of order k+1.

If Gu(T ) 6= Gu(k), then Gu(T ) ≺ Gu(k).
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Lemma 4.4 [5] Let G be a graph and uv be an edge of G. Then

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1) (0 ≤ k ≤ bn
2
c).

Lemma 4.5 [5] For any T with order n, if T 6= Sn, T 6= Pn, then

Sn ≺ T ≺ Pn

Lemma 4.6 [8] Let G ∈ G(n, l) where l 6≡ 0 mod 4. If G 6= P l
n then G ≺ P l

n.

Lemma 4.7 [14] Let u be a non-isolated vertex of a bipartite graph G, wi be a vertex of

a bipartite graph Hi (i = 1, 2). Let G ·Hi be the coalescence graph of G and Hi at u and

wi (i = 1, 2). Then we have:

If H1 < H2 and H1 − w1 < H2 − w2, then G · H1 < G · H2. Furthermore, if one of the

two conditions is strict, then we have G ·H1 � G ·H2.

Theorem 4.8 Let Γ ∈ BU2, then we have Γ ≺ Zn (n ≥ 15).

Proof. Let C6 = v1v2v3v4v5v6v1 be the unique cycle of Γ. Then |N(Γ)| ≥ 2 for n ≥ 15.

From Lemma 4.3, we have Γ � C6(a1, a2, a3, a4, a5, a6) where a1+ a2+ a3+ a4+ a5+ a6 =

n − 6. Let G1 = C6(a1, n − 8 − a1, 0, 0, 0, 0) and G2 = C6(a1, a2, a3, a4, a5, a6). Without

loss of generality, assume a1 = max{a1, a2, a3, a4, a5, a6} > 2. We will prove G2 � G1.

Take G = Pa1 , H1 = C6(0, n− 8− a1, 0, 0, 0, 0) = P 6
n−a1

and H2 = C6(0, a2, a3, a4, a5, a6).

Let u be an end vertex of G and w1, w2 be the vertex of C6 in H1 and H2 corresponding

to v1, respectively.

It is easy to see that G1 = G ·H1 and G2 = G ·H2. By Lemmas 4.5, 4.6 we have

H2 � H1 and H2 − w2 � H1 − w1 = Pn−a1−1.

Then, G2 ≺ G1 follows from Lemma 4.7.

Since G1 = C6(a1, n− 8− a1, 0, 0, 0, 0) ≺ C6(2, n− 8, 0, 0, 0, 0), We have Γ ≺ C6(2, n−

8, 0, 0, 0, 0). By Lemma 4.2, we get Γ ≺ Zn.

5 The proof of (R3)

In this section, we first prove that (1)− (3) of R3 hold.

Lemma 5.1 If n ≥ 41, then Zn ⇀ C6(7, n− 14).
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Proof. Let G = Z41, H = C6(7, 27). Then Zn and C6(7, n − 14) are k-subdivision of G

and H on some cut edges (k = n− 41), respectively.

By some calculations we get:

f0 = x(1+x2)3(12+339x2+1605x4+3219x6+3406x8+2090x10+770x12+168x14+20x16+x18

and DE(0)
.
= 0.00012 , DE(1)

.
= 0.00201.

By Lemma 3.2, we have for n > 41, E(Zn) < E(C6(7, n− 14)).

Lemma 5.2 If n ≥ 38, then C6(5, n− 12) ⇀ Zn.

Proof. Let G = C6(5, 26), H = Z38. Then C6(5, n − 12) and Zn are k-subdivision of G

and H on some cut edges (k = n− 38), respectively.

By some calculations we get:

f0 = x(1 + x2)3(2 + x2)(6 + 120x2 + 334x4 + 317x6 + 136x8 + 27x10 + 2x12)

and DE(0)
.
= 0.000059 , DE(1)

.
= 0.002223.

By Lemma 3.2, we have for n > 38, E(C6(5, n− 12)) < E(Zn).

Lemma 5.3 [18] If n ≥ 27, then Yn ⇀ C6(4, n− 11).

Lemma 5.4 If n ≥ 19, then C6(6, n− 13) ⇀ Yn.

Proof. Let G = C6(6, 6), H = Y19. Then C6(6, n − 13) and Yn are k-subdivision of G

and H on some cut edges (k = n− 38), respectively.

By some calculations we get:

f0 = x3(1 + x2)3(3 + x2)(41 + 216x2 + 343x4 + 245x6 + 87x8 + 15x10 + x12)

and DE(0)
.
= 0.0012 , DE(1)

.
= 0.004577.

By Lemma 3.2, we have for n > 19, E(C6(6, n− 13)) < E(Yn).

Lemma 5.5 If n ≥ 38, then C6(7, n− 14) ⇀ Ĉ6(2, n− 11).

Proof. Let G = C6(6, 24), H = Ĉ6(2, 27). Then C6(7, n − 14) and Ĉ6(2, n − 11) are

k-subdivision of G and H on some cut edges (k = n− 38), respectively.

By some calculations we get:

f0 = x(1+x2)3(3+x2)(4+105x2+461x4+845x6+792x8+408x10+116x12+17x14+x16)
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and DE(0)
.
= 0.000011 , DE(1)

.
= 0.002229.

By Lemma 3.2, we have for n > 38, E(C6(7, n− 14)) < E(Ĉ6(2, n− 11)).

Lemma 5.6 If n ≥ 78, then Ĉ6(2, n− 11) ⇀ C6(9, n− 16).

Proof. Let G = Ĉ6(2, 68), H = C6(9, 63). Then Ĉ6(2, n − 11) and C6(9, n − 16) are

k-subdivision of G and H on some cut edges (k = n− 79), respectively.

By some calculations we get:

f0 = x(x2 + 3)(x2 + 1)2(4 + 148x2 + 1158x4 + 4148x6 + 8223x8 + 9806x10

+7358x12 + 3544x14 + 1091x16 + 207x18 + 22x20 + x22).

and DE(0)
.
= 0.000001589 , DE(1)

.
= 0.000432.

By Lemma 3.2, we have for n > 79, E(Ĉ6(2, n− 11)) < E(C6(9, n− 16))

For n = 78, by directly calculation we have E(C6(9, 62))−E(Ĉ6(2, 67))
.
= 0.00044. So

the result holds.
{ Pn-8

C6
(2,n- )8 C6

* ( ( ), )P 2,2,n-11 in-6

v1

v2

w1 w2 w3 wi w
n-11 w

n-10 w
n-9 w

n-8

w
n-7

w
n-6

Fig. 4. The graphs C̃6(2, n− 8) and C6 ∗ (Pn−6(2, 2, n− 11), i)

In the following, we will prove that (4) of R3 holds.

Let Pn(a, b, c) be a tree of order n obtained by attaching three pendant paths of

length a, b and c to an isolated vertex with one of their end vertices, respectively, where

a+ b+ c = n−1. We denote by C̃6(2, n−8) the graph obtained by attaching two pendent

paths of length 2 and n − 8 to some vertex of C6 (see Fig. 4). Labeling the vertices of

Pn−6(2, 2, n−1) with w1, w2, · · ·wn−6, let C6 ∗ (Pn−6(2, 2, n−11), i) be the graph obtained

by joining the vertex wi of Pn−6(2, 2, n−11) with some vertex, say v1, of the cycle C6 (see

Fig. 4). Let P6 ∗ (Pn−6(2, 2, n − 11), i) = C6 ∗ (Pn−6(2, 2, n − 11), i) − v1v2, where v2 is

the vertex of the cycle of C6 ∗ (Pn−6(2, 2, n− 11), i) which is adjacent to v1. The following

lemma is an alternative form of Theorem 3.6 in [12].

Lemma 5.7 [12] Let T be a tree of order n. If T 6= Pn, Pn(2, 2, n − 5), then m(T, i) ≤

m(Pn(2, 4, n− 7), i), the equality holds if and only if T = Pn(2, 4, n− 7).
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Lemma 5.8 [17] Let e, e′ be cut edges of bipartite graphs G and H of order n , respec-

tively. If G(0) 4 H(0) and G(1) 4 H(1), then we have G(k) 4 H(k) for all k ≥ 2, with

G(k) ∼ H(k) if and only if both the two relations H(0) ∼ G(0) and H(1) ∼ G(1) hold.

Lemma 5.9 If n ≥ 15, then C̃6(2, n− 8) ≺ Zn.

Proof. Let G = C̃6(2, 7), H = Z15. Then for n ≥ 15, C̃6(2, n − 8) and Zn are (n − 15)-

subdivision graph of G and H, respectively.

By some calculations we get:

φ̃(G(0)) = 19x+ 129x3 + 322x5 + 391x7 + 252x9 + 87x11 + 15x13 + x15;

φ̃(H(0)) = 23x+ 145x3 + 347x5 + 410x7 + 259x9 + 88x11 + 15x13 + x15;

φ̃(G(1)) = 4 + 68x2 + 297x4 + 574x6 + 581x8 + 326x10 + 101x12 + 16x14 + x16;

φ̃(H(1)) = 4 + 76x2 + 325x4 + 612x6 + 606x8 + 334x10 + 102x12 + 16x14 + x16.

Then G(0) ≺ H(0), G(1) ≺ H(1). By Lemma 5.8, we have C̃6(2, n− 8) ≺ Zn.

Lemma 5.10 If n ≥ 16, then C6 ∗ (Pn−6(2, 2, n− 11), 3) ⇀ Zn.

Proof. Let G = C6 ∗ (P10(2, 2, 5), 3), H = Z16. Then C6 ∗ (Pn−6(2, 2, n− 11), 3) and Zn

are k-subdivision of G and H on some cut edges (k = n− 16), respectively.

By some calculations we get:

f0 = x3(1 + x2)5(47 + 216x2 + 211x4 + 84x6 + 15x8 + x10)

and DE(0)
.
= 0.04092 , DE(1)

.
= 0.04633.

By Lemma 3.2, we have for n > 16, E(C6 ∗ (Pn−6(2, 2, n− 11), 3)) < E(Zn).

The following lemma is an alternative form of Theorem 2.2 in [13] which will be used

to compare the matching numbers of two trees.

Lemma 5.11 [13] Let a+ b = c+ d with 0 ≤ a ≤ b and 0 ≤ c ≤ d. Let a < c. Then we

have:

(1) If a is even, then m(Pa ∪Pb, i) ≥ m(Pc ∪Pd, i). Furthermore, there exists at least one

index i such that the above inequality is strict.

(2) If a is odd, then m(Pa ∪ Pb, i) ≤ m(Pc ∪ Pd, i). Furthermore, there exists at least one

index i such that the above inequality is strict.

Lemma 5.12 If n ≥ 14, then C6 ∗ (Pn−6(2, 2, n− 11), i) � C6 ∗ (Pn−6(2, 2, n− 11), 3) for

i = 2, . . . , n− 9.
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Proof. Take H1 = H2 = Pn−6(2, 2, n − 11) , v1 = w3 and v2 = wi. Then H1 − v1 =

P2 ∪ P (2, 2, n− 14) and

H2 − v2 =


Pi−1 ∪ P (2, 2, n− 11− i) if 2 ≤ i ≤ n− 11;

P2 ∪ P2 ∪ Pn−11 if i = n− 10;

P1 ∪ Pn−8 if i = n− 9.

By some calculations we have P1 ∪ P5 ≺ P2 ∪ P (2, 2, 1) and P1 ∪ P6 ≺ P2 ∪ P (2, 2, 2).

Then by Lemma 5.8, we have H2 − v2 ≺ H1 − v1 for i = n− 9.

Since P2∪P2∪Pn−11 is subgraph of P2∪P (2, 2, n−14), H2−v2 ≺ H1−v1 for i = n−10.

Since φ̃(P2 ∪ P (2, 2, n− 14), x) = φ̃(2P2 ∪ Pn−11, x) + φ̃(2P2 ∪ P1 ∪ Pn−14, x)

φ̃(Pi−1∪P (2, 2, n−11−i), x) = φ̃(P2∪Pi−1∪Pn−8−i, x)+ φ̃(Pi−1∪P2∪P1∪Pn−11−i, x).

By Lemma 5.11, we have

Pi−1 ∪ Pn−8−i � P2 ∪ Pn−11 and Pi−1 ∪ Pn−i−11 � P2 ∪ Pn−14 for 2 ≤ i ≤ n− 11.

Hence Pi−1 ∪ P (2, 2, n− 11− i) � P2 ∪ P (2, 2, n− 14) for 2 ≤ i ≤ n− 11.

Then H2 − v2 ≺ H1 − v1 for 2 ≤ i ≤ n− 9. Let G = P 6
7 and u be the vertex of degree

1 of G. By Lemma 4.7, we have C6 ∗ (Pn−6(2, 2, n−11), i) � C6 ∗ (Pn−6(2, 2, n−11), 3).

Lemma 5.13 [16] Let u be a vertex of a bipartite graph G. Denote by Gu(a, b) the graph

obtained by attaching to G two pendent paths of length a and b at u (as shown in Fig.4).

Let a, b, c, d be nonnegative integers with a ≤ b, c ≤ d, a+ b = c+ d, and a < c. If u is a

non-isolated vertex of a bipartite graph G, then the following statements are true:

(1) If a is even, then Gu(a, b) � Gu(c, d);

(2) If a is odd, then Gu(a, b) ≺ Gu(c, d).

Theorem 5.14 Let G ∈ BU3\An. If G 6= Yn, Zn, Ĉ6(2, n− 11), then G ≺ Zn.

Proof. Let C6 = v1v2v3v4v5v6v1 be the unique cycle of G. Since |N(G)| = 1, without

loss of generality, we assume that dG(v1) ≥ 3. We consider the following two cases.

Case 1. dG(v1) > 4. From Lemmas 4.3 and 5.13, we can get that the graph with

maximal energy in this case is C̃6(2, n− 8). Furthermore, by Lemma 5.9, we get G ≺ Zn.

Case 2. dG(v1) = 3. Since G ∈ BU3\An, we have G− C6 6= Pn−6. We distinguish the

following two subcases.

Subcase 2.1. G− C6 6= Pn−6(2, 2, n− 11). From Lemma 4.1, we can get the following
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two equations:

b2k(G) = m(G, k) + 2m(G− C6, k − 3);

b2k(Zn) = m(Zn, k) + 2m(Pn−6(2, 4, n− 13), k − 3).

Since G− C6 6= Pn−6, Pn−6(2, 2, n− 11), by Lemma 5.7, we have m(G− C6, k − 3) ≤

m(Pn−6(2, 4, n−13), k−3). Thenm(P4∪(G−C6), k−1) ≤ m(P4∪Pn−6(2, 4, n−13), k−1).

Moreover, from Lemma 4.4,

m(G, k) = m(G− v1v2, k) +m(P4 ∪ (G− C6), k − 1);

m(Zn, k) = m(Pn(2, 4, n− 7), k) +m(P4 ∪ Pn−6(2, 4, n− 13), k − 1).

Since G 6∈ An, G 6= Yn, we get G − v1v2 6= Pn, Pn(2, 2, n − 5). From Lemma 5.7, we

have m(G− v1v2, k) ≤ m(Pn(2, 4, n− 7), k), the equality holds if and only if G− v1v2 =

Pn(2, 4, n−7). Hence b2k(G) ≤ b2k(Zn). Since G 6= Zn, we have G−v1v2 6= Pn(2, 4, n−7).

Then G ≺ Zn.

Subcase 2.2. G−C6 = Pn−6(2, 2, n− 11). Then G = C6 ∗ (Pn−6(2, 2, n− 11), i). Note

that G = Yn when i = 1; G = Ĉ6(2, n − 11) when i = n − 8. By Lemmas 4.1 we have

C6 ∗ (Pn−6(2, 2, n − 11), i) � C6 ∗ (Pn−6(2, 2, n − 11), 3) for for 2 ≤ i ≤ n − 9. Then by

Lemma 5.10, we can get C6 ∗ (Pn−6(2, 2, n− 11), i) ≺ Zn when 2 6 i 6 n− 9. So we have

G ≺ Zn. We complete the proof.
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