Ordering of Connected Bipartite Unicyclic Graphs with Large Energies

Ji–Ming Guoa†, Hua Qiana, Hai–Ying Shanb, Zhi–Wen Wanga

aDepartment of Mathematics, East China University of Science and Technology, Shanghai, P. R. China
bSchool of Mathematical Sciences, Tongji University, Shanghai, P. R. China

(Received October 11, 2018)

Abstract

The energy of a graph is the sum of the absolute value of the eigenvalues of its adjacency matrix. In this paper, the first $\left\lfloor \frac{n-5}{2} \right\rfloor$ largest energies of connected bipartite unicyclic graphs on $n \geq 78$ vertices are determined which generalize some known results.

1 Introduction

Let G be a simple undirected graph with n vertices and $A(G)$ be its adjacency matrix. Let $\lambda_1(G), \cdots, \lambda_n(G)$ be the eigenvalues of $A(G)$. Then the energy of G, denoted by $E(G)$, is defined as $E(G) = \sum_{i=1}^{n} |\lambda_i(G)|$ (see [4]). The study on the graph energy originated from the total π-electron energy of conjugated hydrocarbons, which has an important implication on thermodynamics and molecular structure. Its details can be found in an appropriate textbook [3].

The characteristic polynomial $\det(xI - A(G))$ of the adjacency matrix $A(G)$ of a graph G is also called the characteristic polynomial of G, written as $\phi(G, x) = \sum_{i=0}^{n} a_i(G)x^{n-i}$.

*This research is supported by NSFC (No. 11371372); supported by the Fundamental Research Funds for the Central Universities (No. 22120180254).
†Corresponding author; Email addresses: jimingguo@hotmail.com (J.-M. Guo), 1017775696@qq.com (H. Qian), shan_haiying@tongji.edu.cn (H.-Y. Shan), (Z.-W. Wang)
If G is a bipartite graph, then it is well known that $\phi(G, x)$ has the form

$$\phi(G, x) = \sum_{i=0}^{\lfloor n/2 \rfloor} a_{2i}(G)x^{n-2i} = \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^ib_{2i}(G)x^{n-2i},$$

(1)

where $b_{2i}(G) = |a_{2i}(G)| = (-1)^ia_{2i}(G)$.

Assume that

$$\tilde{\phi}(G, x) = \sum_{i=0}^{\lfloor n/2 \rfloor} b_{2i}(G)x^{n-2i}.$$

The energy of a bipartite graph G on n vertices can be expressed in terms of the Coulson integral formula [5]:

$$E(G) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \ln(\sum_{i=0}^{\lfloor n/2 \rfloor} b_{2i}(G)x^{2i})dx.$$

(2)

Thus, by Eq. (2), $E(G)$ is a strictly monotonically increasing function of those numbers $b_{2i}(G)$ ($i = 0, 1, \ldots, \lfloor n/2 \rfloor$) for bipartite graphs. This observation provides a way of comparing the energies of a pair of bipartite graphs as follows.

Definition 1.1 Let G_1 and G_2 be two bipartite graphs of order n. If $b_{2i}(G_1) \leq b_{2i}(G_2)$ for all i with $0 \leq i \leq \lfloor n/2 \rfloor$, then we write $G_1 \preceq G_2$.

Furthermore, if $G_1 \preceq G_2$ and there exists at least one index j such that $b_{2j}(G_1) < b_{2j}(G_2)$, then we write $G_1 \prec G_2$. If $b_{2j}(G_1) = b_{2j}(G_2)$ for all j, we write $G_1 \sim G_2$.

According to the Coulson integral formula, we have the quasi-order method of comparing the energies for two bipartite graphs G_1 and G_2 of order n that [5]:

$$G_1 \preceq G_2 \Rightarrow E(G_1) \leq E(G_2)$$

$$G_1 \prec G_2 \Rightarrow E(G_1) < E(G_2).$$

In this paper, for sake of conciseness, we introduce the symbol "$\Rightarrow G_1 \rightarrow G_2$" as follows:

$$E(G_1) < E(G_2) \Leftrightarrow G_1 \rightarrow G_2.$$
Throughout this paper, we use P_n and C_n to denote the n-vertex path and n-vertex cycle, respectively. Let P_n^l be the graph obtained by joining some vertex of C_l and one of the end vertices of P_{n-l} ($n > l$). Let a and b be nonnegative integers. We denote by $C_6(a, b)$ the graph obtained by attaching two pendent paths of length a and b to the unique pendent vertex of P_n^6, respectively (see Fig. 1). It is easy to see that $C_6(a, b) = C_6(b, a)$ and $P_n^6 = C_6(0, n - 7)$.

Using the above quasi-order method, Hou et al. [8] proved that for $n \geq 7$, P_n^6 has the maximal energy among all connected unicyclic bipartite n-vertex graphs except for C_n. Gutman and Hou [7] shown that $E(P_n^6) > E(C_n)$ by some numerical calculations for $n \geq 12$, but they did not give a rigorous mathematical proof. In [9], Hua further investigated the second-maximal energy of bipartite unicyclic graph. By means of an appropriate computer search and some numerical calculations, Gutman et al. [6] determined the n-vertex bipartite unicyclic graphs with maximal, second-maximal and third-maximal energy. But they could not give a rigorous mathematical proof. Thus they posed the following conjecture.

Conjecture 1 For all $n \geq 11$, the n-vertex bipartite unicyclic graph with maximal energy is $C_6(0, n - 7)$. For all $n \geq 23$, the n-vertex bipartite unicyclic graph with second-maximal energy is $C_6(2, n - 9)$. For all $n \geq 27$, the n-vertex bipartite unicyclic graph with third-maximal energy is $C_6(4, n - 11)$.

Recently, using the Coulson integral formula for the energy of a graph, Huo et al. [11] and Andriantiana [1] independently proved that the bipartite unicyclic graph with maximal energy is $C_6(0, n - 7)$ for $n \geq 11$. In [10], Huo et al. further characterized the unicyclic graph with maximal energy. Furthermore, Andriantiana and Wagner [2] showed that the unicyclic graph with second-maximal energy is $C_6(2, n - 9)$ for $n \geq 28$; Zhu and Yang [18] proved that the n-vertex bipartite unicyclic graph with third-maximal energy is $C_6(4, n - 11)$ for $n \geq 27$. Therefore the above conjecture has been completely solved. In this paper, we will give the first $\left\lfloor \frac{n-5}{2} \right\rfloor$ largest energies of connected bipartite unicyclic graphs with $n \geq 78$ vertices.

![Fig. 2. The graphs Y_n, Z_n and $\hat{C}_6(2, n - 11)$](image-url)
Denote by $BU(n)$ the set of all connected bipartite unicyclic graphs with n vertices. Denote by Y_n the graph obtained by attaching two pendent paths of length 2 to the unique pendent vertex of P_{n-4}^6 (see Fig. 2). Denote by Z_n the graph obtained by attaching two pendent paths of length 2 and 4 to the unique pendent vertex of P_{n-6}^6 (see Fig. 2). Denote by $\widehat{C}_6(2, n-11)$ the graph obtained by attaching two pendent paths of length 2 and $n-11$ to the unique pendent vertex of P_{9}^6 (see Fig. 2). Now we give the main result of this paper.

Theorem 1.1 Let $G \in BU(n)$, $k = \lfloor \frac{n-7}{2} \rfloor$, $t = \lfloor \frac{k}{2} \rfloor$ and $l = \lfloor \frac{k-1}{2} \rfloor$. If $n \geq 78$, then the n-vertex connected bipartite unicyclic graphs with the first $\lfloor \frac{n-5}{2} \rfloor$ largest energies are as follows:

\[
C_6(0, n-7) \leftarrow C_6(2, n-9) \leftarrow C_6(4, n-11) \leftarrow Y_n \leftarrow C_6(6, n-13) \leftarrow \cdots
\]

\[
\leftarrow C_6(2t, n-7 - 2t) \leftarrow C_6(2t + 1, n-8 - 2t) \leftarrow \cdots \leftarrow C_6(9, n-16) \leftarrow \widehat{C}_6(2, n-11)
\]

\[
\leftarrow C_6(7, n-14) \leftarrow Z_n.
\]

2 The basic strategy of the proof of Theorem 1.1

Let $BU(n, l)$ be the set of connected bipartite unicyclic graphs of order n with one unique cycle of length l. Let $\mathcal{A}(n) = \{C_6(a, b) \mid 0 \leq a \leq b, a + b = n - 7\}$. In [18], Zhu and Yang gave the following result:

Lemma 2.1 Let $k = \lfloor \frac{n-7}{2} \rfloor$, $t = \lfloor \frac{k}{2} \rfloor$ and $l = \lfloor \frac{k-1}{2} \rfloor$. Then we have the following quasi-order relation in $\mathcal{A}(n)$:

\[
C_6(0, n-7) \leftarrow C_6(2, n-9) \leftarrow C_6(4, n-11) \leftarrow \cdots \leftarrow C_6(2l, n-7 - 2t)
\]

\[
\leftarrow C_6(2l + 1, n-8 - 2t) \leftarrow \cdots \leftarrow C_6(5, n-12) \leftarrow C_6(3, n-10) \leftarrow C_6(1, n-8).
\]

Let $C_6 = v_1v_2v_3v_4v_5v_6v_1$ be the unique cycle of $BU(n, 6)$. For a graph $G \in BU(n, 6)$, let $N(G) = \{v_i \mid d_G(v_i) \geq 3, i = 1, 2, ..., 6\}$. Then we can classify the graphs in $BU(n)$ into the following three classes.

\[
BU_1 = \{G \mid G \in BU(n, l), l \neq 6\};
\]

\[
BU_2 = \{G \mid G \in BU(n, 6), |N(G)| \neq 1\};
\]

\[
BU_3 = \{G \mid G \in BU(n, 6), |N(G)| = 1\}.
\]
It follows that $BU(n) = BU_1 \cup BU_2 \cup BU_3$ and $A(n) \subseteq BU_3$.

For $n \geq 78$, our basic strategy of the proof of Theorem 1.1 is to prove the following results $(R_1)-(R_3)$:

(R_1): For any $G \in BU_1$, we have $G \rightarrow Z_n$.

(R_2): For any $G \in BU_2$, we have $G \rightarrow Z_n$.

(R_3): (1) $C_6(5, n - 12) \rightarrow Z_n \rightarrow C_6(7, n - 14)$;
(2) $C_6(6, n - 13) \rightarrow Y_n \rightarrow C_6(4, n - 11)$;
(3) $C_6(7, n - 14) \rightarrow \hat{C}_6(2, n - 11) \rightarrow C_6(9, n - 16)$;
(4) For any $G \in BU_3 \setminus A(n)$, if $G \neq Y_n, Z_n, \hat{C}_6(2, n - 11)$, then we have $G \rightarrow Z_n$.

It is easy to see that we can prove Theorem 1.1 by combining Lemma 2.1 and the above results $(R_1)-(R_3)$. We will prove the result (R_1) in section 3. Then we will prove the results (R_2) and (R_3) in sections 4 and 5, respectively.

3 The proof of (R_1)

The quasi-order method mentioned above can be used to compare the energies of two bipartite graphs. However, it sometimes does not work [18]. In [17], Shan et al. presented a new method of comparing the energies of two subdivision bipartite graphs.

Definition 3.1 [17] Let e be a cut edge of a graph G, and let $G_e(k)$ denote the graph obtained by replacing e with a path of length $k+1$ (for simplicity of notations, we usually abbreviate $G_e(k)$ by $G(k)$). We say that $G(k)$ is a k-subdivision graph of G on the cut edge e. We also set $G(0)=G$.

Lemma 3.1 [17] Let G be a bipartite graph of order n and let $G(k)$ be a k-subdivision graph (of order $n+k$) of G on some cut edge e. Then we have:

$$\tilde{\phi}(G(k+2), x) = x\tilde{\phi}(G(k+1), x) + \tilde{\phi}(G(k), x) \quad (k \geq 0).$$

From the proof of Lemma 1.1 in [15], we have the following result.

Lemma 3.2 Let $G(k), H(k)$ be k-subdivision graphs on some cut edges of the bipartite graphs G and H of order n, respectively ($k \geq 0$). Write $g_k = \tilde{\phi}(G(k), x)$, $h_k = \tilde{\phi}(H(k), x)$, $f_k = h_{k+1}g_k - h_kg_{k+1}$ and $DE(k) = E(H(k)) - E(G(k))$. If f_0 is a polynomial with nonnegative coefficients, then

$$DE(2l) < DE(2k) < DE(2k + 1) < DE(2l + 1)$$

holds for all $k > l \geq 0$.

-447-
Lemma 3.3 [18] Let $G \in \mathcal{BU}_1$, if $G \neq C_n, P_n^{n-2}, P_n^{10}$, we have $G \rightarrow P_n^{10}$.

Now, we will use Lemma 3.2 to prove $P_n^{10} \rightarrow Z_n$ for $n \geq 15$.

Lemma 3.4 If $n \geq 14$, then $P_n^{10} \rightarrow Z_n$.

Proof. Let $G = P_{14}^{10}$, $H = Z_{14}$. Then P_n^{10} and Z_n are k-subdivision of G and H on some cut edges ($k = n - 14$), respectively.

By some calculations we get:

$$f_0 = x(1 + x^2)(1 + 3x^2 + x^4)(24 + 160x^2 + 371x^4 + 398x^6 + 235x^8 + 79x^{10} + 14x^{12} + x^{14})$$

and $DE(0) = 0.00077$, $DE(1) = 0.0766$.

By Lemma 3.2, we have for $n \geq 14$, $E(P_n^{10}) < E(Z_n)$.

Next we prove $P_n^{n-2} \rightarrow Z_n$ when $n \geq 16$ and n is even. We need the following results.

Lemma 3.5 [18] Let h_n and g_n be monic polynomials of degree n about x with nonnegative coefficients satisfying that $h_n = xh_{n-1} + h_{n-2}$ and $g_n = xg_{n-1} + g_{n-2}$. Let $p(x)$ be a nonzero polynomial with nonnegative coefficients. Write $a_n = \frac{h_n + p(x)}{g_n}$ and $b_n = \frac{h_n - p(x)}{g_n}$. For each fixed $x > 0$ and $n \geq 9$, we have:

1. If $a_{n-8} > a_{n-4}$, then $a_{n-4} > a_n$.

2. If $b_{n-8} < b_{n-4}$, then $b_{n-4} < b_n$.

Lemma 3.6 [18] Let $h_n, g_n, a_n, b_n, p(x)$ be defined as above. Then $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist.

Lemma 3.7 [18] (1) If $n = 4k$, then we have:

(i) $\tilde{\phi}(C_n, x) = \tilde{\phi}(P_n, x) + \tilde{\phi}(P_{n-2}, x) - 2$;

(ii) $\tilde{\phi}(P_n^{n-2}, x) = \tilde{\phi}(P_n, x) + (x^2 + 1)\tilde{\phi}(P_{n-4}, x) + 2(x^2 + 1)$.

(2) If $n = 4k + 2$, then we have:

(i) $\tilde{\phi}(C_n, x) = \tilde{\phi}(P_n, x) + \tilde{\phi}(P_{n-2}, x) + 2$;

(ii) $\tilde{\phi}(P_n^{n-2}, x) = \tilde{\phi}(P_n, x) + (x^2 + 1)\tilde{\phi}(P_{n-4}, x) - 2(x^2 + 1)$.

Lemma 3.8 [18] (1) Let $h_n = \tilde{\phi}(P_n, x) + \tilde{\phi}(P_{n-2}, x)$. Then $h_n = xh_{n-1} + h_{n-2}$.

(2) Let $h' = \phi(P_n, x) + (x^2 + 1)\tilde{\phi}(P_{n-4}, x)$. Then $h' = xh'_{n-1} + h'_{n-2}$.

Lemma 3.9 If $n \geq 16$ and n is even, then $P_n^{n-2} \rightarrow Z_n$.
Proof. Let \(h_n = \tilde{\phi}(P_n, x) + (x^2 + 1)\tilde{\phi}(P_{n-4}, x) \). From Lemmas 3.7 and 3.8, we have

\[
\tilde{\phi}(P_n^{n-2}, x) = \begin{cases}
 h_n + 2(x^2 + 1) & n = 4k \\
 h_n - 2(x^2 + 1) & n = 4k + 2
\end{cases}
\]

and \(h_n = xh_{n-1} + h_{n-2} \). Let \(g_n = \tilde{\phi}(Z_n, x) \). By Lemma 3.1, we can see that \(g_n = xg_{n-1} + g_{n-2} \). Write \(d_n = \frac{\tilde{\phi}(P_n^{n-2}, x)}{\tilde{\phi}(Z_n, x)} \). We assume that \(x > 0 \) in the following. We consider the following two cases.

Case 1. \(n = 4k \). Then

\[
d_n = h_n + 2\left(x^2 + 1\right) g_n.
\]

By some calculations we have

\[
d_{20} - d_{16} = \frac{F(x)}{g_{16}g_{20}} < 0,
\]

where \(F(x) = -x^2(1 + x^2)(2 + x^2)(48 + 586x^2 + 2167x^4 + 3787x^6 + 3649x^8 + 2087x^{10} + 733x^{12} + 157x^{14} + 19x^{16} + x^{18}) \). By Lemma 3.5(1), we have \(d_{4k} < d_{4k-4} \) when \(k \geq 5 \).

Case 2. \(n = 4k + 2 \). The \(d_n = \frac{h_n - 2(x^2 + 1)}{g_n} \). By some calculations we have:

\[
d_{22} - d_{18} = \frac{H(x)}{g_{18}g_{22}} > 0,
\]

where \(H(x) = x^2(1 + x^2)(152 + 1434x^2 + 5472x^4 + 11143x^6 + 13471x^8 + 10131x^{10} + 4817x^{12} + 1435x^{14} + 257x^{16} + 25x^{18} + x^{20}) \). Thus \(d_{4k+2} < d_{4k+2} \) when \(k \geq 5 \) by Lemma 3.5(2).

From the proof of Lemma 3.6, we can show that \(\lim_{k \to +\infty} d_{4k} = \lim_{k \to +\infty} d_{4k+2} \) exists which implies that \(d_n \leq d_{16} \) for even number \(n \geq 16 \). Thus, if \(n \geq 16 \) and \(n \) is even, then

\[
E(P_{n-2}^n) - E(Z_n) = \frac{2}{\pi} \int_0^{+\infty} \ln d_n \, dx
\]

\[
\leq \frac{2}{\pi} \int_0^{+\infty} \ln d_{16} \, dx
\]

\[
= E(P_{16}^{14}) - E(Z_{16})
\]

\[
= -0.02341 < 0.
\]

Thus the result holds.

Finally, we prove that \(C_n \to Z_n \) for \(n \geq 36 \).

Lemma 3.10 If \(n \geq 36 \) and \(n \) is even, then \(C_n \to Z_n \).

Proof. Let \(h_n = \tilde{\phi}(P_n, x) + \tilde{\phi}(P_{n-2}, x) \). From Lemmas 3.7 and 3.8, we have

\[
\tilde{\phi}(C_n, x) = \begin{cases}
 h_n - 2 & n = 4k \\
 h_n + 2 & n = 4k + 2
\end{cases}
\]
and \(h_n = x h_{n-1} + h_{n-2} \). Let \(g_n = \bar{\phi}(Z_n, x) \). By Lemma 3.1, we can see that \(g_n = x g_{n-1} + g_{n-2} \). Write \(d_n = \frac{\bar{\phi}(C_n, x)}{\phi(Z_n, x)} \). We assume that \(x > 0 \) in the following. We consider the following two cases.

Case 1. \(n = 4k \). Then \(d_n = \frac{h_{n-2}}{g_n} \). By some calculations we have

\[
d_{24} - d_{20} = \frac{F(x)}{g_{20} g_{24}} > 0,
\]

where \(F(x) = x^2 (1 + x^2) (4 + x^2) (22 + 219 x^2 + 797 x^4 + 1379 x^6 + 1249 x^8 + 614 x^{10} + 162 x^{12} + 21 x^{14} + x^{16}) \). By Lemma 3.5(2), we have \(d_{4k} > d_{4k-4} \) when \(k \geq 6 \).

Case 2. \(n = 4k + 2 \). Then \(d_n = \frac{h_{n+2}}{g_n} \). By some calculations we have

\[
d_{22} - d_{18} = \frac{H(x)}{g_{18} g_{22}} < 0,
\]

where \(H(x) = -x^2 (1 + x^2) (4 + x^2) (26 + 386 x^2 + 1517 x^4 + 2731 x^6 + 2691 x^8 + 1581 x^{10} + 576 x^{12} + 130 x^{14} + 17 x^{16} + x^{18}) \). Thus \(d_{4k+2} > d_{4k+2} \) when \(k \geq 5 \) by Lemma 3.5(1).

From the proof of Lemma 3.6, we can show that \(\lim_{k \to +\infty} d_{4k} = \lim_{k \to +\infty} d_{4k+2} \) exists which implies that \(d_n \leq d_{38} \) for even number \(n \geq 36 \). Thus, if \(n \geq 36 \) and \(n \) is even, then

\[
E(C_n) - E(Z_n) = \frac{2}{\pi} \int_{0}^{+\infty} \ln d_n \, dx \\
\leq \frac{2}{\pi} \int_{0}^{+\infty} \ln d_{38} \, dx \\
= E(C_{38}) - E(Z_{38}) \\
= -0.00013 < 0.
\]

Thus the result holds.

From Lemmas 3.3, 3.4, 3.9 and 3.10, we have the following.

Theorem 3.11 If \(G \in BU_1 \), then we have \(G \to Z_n \) (\(n \geq 36 \)).

4 The proof of \((R_2)\)

In this section, we will prove the result \((R_2)\). We need to give a notation and introduce some lemmas.

A \textit{k-matching} is a disjoint union of \(k \) edges in \(G \). The number of \textit{k-matching} is denoted by \(m(G, k) \). We agree that \(m(G, 0) = 1 \) and \(m(G, k) = 0 \) \((k < 0)\). In order to compare the energies of two bipartite unicyclic graphs by Definition 1.1, we need to compute the numbers \(b_{2k}(G) \).
Lemma 4.1 [8] Let $G \in \mathcal{BU}(n,l)$. Let r be a positive integer. Then we have the following.

$$b_{2i}(G) = \begin{cases}
 m(G,i) + 2m(G - C_l, i - \frac{l}{2}), & l = 4r + 2 \\
 m(G,i) - 2m(G - C_l, i - \frac{l}{2}), & l = 4r
\end{cases}$$

Let $C_6 = v_1v_2v_3v_4v_5v_6v_1$. We denote by $C_6(a_1, a_2, a_3, a_4, a_5, a_6)$ the graph obtained by attaching a pendent path of P_{a_i+1} to vertex v_i of C_6 for $i = 1, 2, ..., 6$, respectively (see Fig. 3).

Lemma 4.2 If $n \geq 15$, then $C_6(2, n-8, 0, 0, 0, 0) \to Z_n$.

Proof. Let $G = C_6(2, 8, 0, 0, 0, 0)$, $H = Z_{16}$. Then $C_6(2, n-8, 0, 0, 0, 0)$ and Z_n are k-subdivision of G and H on some cut edges ($k = n - 16$), respectively. By some calculations we get:

$$f_0 = x(1 + x^2)(2 + x^2)(6 + 73x^2 + 284x^4 + 519x^6 + 507x^8 + 283x^{10} + 90x^{12} + 15x^{14} + x^{16})$$

and $DE(0) = 0.0081$, $DE(1) = 0.0315$.

By Lemma 3.2, we have for $n \geq 16$, $E(C_6(2, n-8, 0, 0, 0, 0)) < E(Z_n)$.

Let u be a vertex of a graph G, and T be a rooted tree. Let $G_u(T)$ be the graph obtained by attaching T to G such that the root of T is at u. When T is a path P_{k+1} with one of its end vertices as the root, then we simply write $G_u(T)$ as $G_u(k)$. The following three lemmas will be used in the proof of Theorem 4.8.

Lemma 4.3 [16] Let u be a vertex of a bipartite graph G and T be a tree of order $k + 1$. If $G_u(T) \neq G_u(k)$, then $G_u(T) \prec G_u(k)$.
Lemma 4.4 [5] Let G be a graph and uv be an edge of G. Then
\[m(G, k) = m(G - uv, k) + m(G - u - v, k - 1) \quad (0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor). \]

Lemma 4.5 [5] For any T with order n, if $T \neq S_n, T \neq P_n$, then
\[S_n \prec T \prec P_n. \]

Lemma 4.6 [8] Let $G \in G(n, l)$ where $l \not\equiv 0 \mod 4$. If $G \neq P_n^4$, then $G \prec P_n^4$.

Lemma 4.7 [14] Let u be a non-isolated vertex of a bipartite graph G, w_i be a vertex of a bipartite graph H_i $(i = 1, 2)$. Let $G \cdot H_i$ be the coalescence graph of G and H_i at u and w_i $(i = 1, 2)$. Then we have:

If $H_1 \succeq H_2$ and $H_1 - w_1 \succeq H_2 - w_2$, then $G \cdot H_1 \succeq G \cdot H_2$. Furthermore, if one of the two conditions is strict, then we have $G \cdot H_1 \succ G \cdot H_2$.

Theorem 4.8 Let $\Gamma \in BU_2$, then we have $\Gamma < Z_n$ $(n \geq 15)$.

Proof. Let $C_6 = v_1v_2v_3v_4v_5v_6v_1$ be the unique cycle of Γ. Then $|N(\Gamma)| \geq 2$ for $n \geq 15$.

From Lemma 4.3, we have $\Gamma \succeq C_6(a_1, a_2, a_3, a_4, a_5, a_6)$ where $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = n - 6$. Let $G_1 = C_6(a_1, n - 8 - a_1, 0, 0, 0, 0)$ and $G_2 = C_6(a_1, a_2, a_3, a_4, a_5, a_6)$. Without loss of generality, assume $a_1 = \max\{a_1, a_2, a_3, a_4, a_5, a_6\} > 2$. We will prove $G_2 \succeq G_1$.

Take $G = P_{a_1}$, $H_1 = C_6(0, n - 8 - a_1, 0, 0, 0, 0) = P_6^{n-a_1}$ and $H_2 = C_6(0, a_2, a_3, a_4, a_5, a_6)$.

Let u be an end vertex of G and w_1, w_2 be the vertex of C_6 in H_1 and H_2 corresponding to v_1, respectively.

It is easy to see that $G_1 = G \cdot H_1$ and $G_2 = G \cdot H_2$. By Lemmas 4.5, 4.6 we have $H_2 \succeq H_1$ and $H_2 - w_2 \succeq H_1 - w_1 = P_{n-a_1-1}$.

Then, $G_2 \prec G_1$ follows from Lemma 4.7.

Since $G_1 = C_6(a_1, n - 8 - a_1, 0, 0, 0, 0) \prec C_6(2, n - 8, 0, 0, 0, 0)$, We have $\Gamma \prec C_6(2, n - 8, 0, 0, 0, 0)$. By Lemma 4.2, we get $\Gamma < Z_n$. \hfill \blacksquare

5 The proof of (R_3)

In this section, we first prove that (1) – (3) of R_3 hold.

Lemma 5.1 If $n \geq 41$, then $Z_n \rightarrow C_6(7, n - 14)$.
Proof. Let $G = Z_{41}$, $H = C_6(7, 27)$. Then Z_n and $C_6(7, n - 14)$ are k-subdivision of G and H on some cut edges ($k = n - 41$), respectively.

By some calculations we get:

$$f_0 = x(1 + x^2)^3(12 + 339x^2 + 1605x^4 + 3219x^6 + 3406x^8 + 2090x^{10} + 770x^{12} + 168x^{14} + 20x^{16} + x^{18})$$

and $DE(0) \approx 0.00012$, $DE(1) \approx 0.00201$.

By Lemma 3.2, we have for $n \geq 41$, $E(Z_n) < E(C_6(7, n - 14))$.

Lemma 5.2 If $n \geq 38$, then $C_6(5, n - 12) \rightarrow Z_n$.

Proof. Let $G = C_6(5, 26)$, $H = Z_{38}$. Then $C_6(5, n - 12)$ and Z_n are k-subdivision of G and H on some cut edges ($k = n - 38$), respectively.

By some calculations we get:

$$f_0 = x(1 + x^2)^3(2 + x^2)(6 + 120x^2 + 334x^4 + 317x^6 + 136x^8 + 27x^{10} + 2x^{12})$$

and $DE(0) \approx 0.000059$, $DE(1) \approx 0.002223$.

By Lemma 3.2, we have for $n \geq 38$, $E(C_6(5, n - 12)) < E(Z_n)$.

Lemma 5.3 [18] If $n \geq 27$, then $Y_n \rightarrow C_6(4, n - 11)$.

Lemma 5.4 If $n \geq 19$, then $C_6(6, n - 13) \rightarrow Y_n$.

Proof. Let $G = C_6(6, 6)$, $H = Y_{19}$. Then $C_6(6, n - 13)$ and Y_n are k-subdivision of G and H on some cut edges ($k = n - 38$), respectively.

By some calculations we get:

$$f_0 = x^3(1 + x^2)^3(3 + x^2)(41 + 216x^2 + 343x^4 + 245x^6 + 87x^8 + 15x^{10} + x^{12})$$

and $DE(0) \approx 0.0012$, $DE(1) \approx 0.004577$.

By Lemma 3.2, we have for $n \geq 19$, $E(C_6(6, n - 13)) < E(Y_n)$.

Lemma 5.5 If $n \geq 38$, then $C_6(7, n - 14) \rightarrow 2C_6(2, n - 11)$.

Proof. Let $G = C_6(6, 24)$, $H = 2C_6(2, 27)$. Then $C_6(7, n - 14)$ and $2C_6(2, n - 11)$ are k-subdivision of G and H on some cut edges ($k = n - 38$), respectively.

By some calculations we get:

$$f_0 = x(1 + x^2)^3(3 + x^2)(4 + 105x^2 + 461x^4 + 845x^6 + 792x^8 + 408x^{10} + 116x^{12} + 17x^{14} + x^{16})$$
and $DE(0) \doteq 0.000011$, $DE(1) \doteq 0.002229$.

By Lemma 3.2, we have for $n \geq 38$, $E(C_6(n, n-14)) < E(C_6(2, n-11))$. \blacksquare

Lemma 5.6 If $n \geq 78$, then $\tilde{C}_6(2, n-11) \rightarrow C_6(n, n-16)$.

Proof. Let $G = \tilde{C}_6(2, 68)$, $H = C_6(9, 63)$. Then $\tilde{C}_6(2, n-11)$ and $C_6(n, n-16)$ are k-subdivision of G and H on some cut edges ($k = n-79$), respectively.

By some calculations we get:

$$f_0 = x(x^2 + 3)(x^2 + 1)^2(4 + 148x^2 + 1158x^4 + 4148x^6 + 8223x^8 + 9806x^{10} + 7358x^{12} + 3544x^{14} + 1091x^{16} + 207x^{18} + 22x^{20} + x^{22}).$$

and $DE(0) \doteq 0.000001589$, $DE(1) \doteq 0.000432$.

By Lemma 3.2, we have for $n \geq 79$, $E(\tilde{C}_6(2, n-11)) < E(C_6(9, n-16))$.

For $n = 78$, by directly calculation we have $E(C_6(9, 62)) - E(\tilde{C}_6(2, 67)) \doteq 0.00044$. So the result holds. \blacksquare

![Graphs](image_url)

Fig. 4. The graphs $\tilde{C}_6(2, n-8)$ and $C_6 \ast (P_{n-6}(2, 2, n-11), i)$

In the following, we will prove that (4) of R_3 holds.

Let $P_n(a, b, c)$ be a tree of order n obtained by attaching three pendent paths of length a, b and c to an isolated vertex with one of their end vertices, respectively, where $a+b+c = n-1$. We denote by $\tilde{C}_6(2, n-8)$ the graph obtained by attaching two pendent paths of length 2 and $n-8$ to some vertex of C_6 (see Fig. 4). Labeling the vertices of $P_{n-6}(2, 2, n-1)$ with $w_1, w_2, \cdots, w_{n-6}$, let $C_6 \ast (P_{n-6}(2, 2, n-11), i)$ be the graph obtained by joining the vertex v_i of $P_{n-6}(2, 2, n-11)$ with some vertex, say v_1, of the cycle C_6 (see Fig. 4). Let $P_6 \ast (P_{n-6}(2, 2, n-11), i) = C_6 \ast (P_{n-6}(2, 2, n-11), i) - v_1v_2$, where v_2 is the vertex of the cycle of $C_6 \ast (P_{n-6}(2, 2, n-11), i)$ which is adjacent to v_1. The following lemma is an alternative form of Theorem 3.6 in [12].

Lemma 5.7 [12] Let T be a tree of order n. If $T \neq P_n, P_n(2, 2, n-5)$, then $m(T, i) \leq m(P_n(2, 4, n-7), i)$, the equality holds if and only if $T = P_n(2, 4, n-7)$.

Lemma 5.8 [17] Let e, e' be cut edges of bipartite graphs G and H of order n, respectively. If $G(0) \preceq H(0)$ and $G(1) \preceq H(1)$, then we have $G(k) \preceq H(k)$ for all $k \geq 2$, with $G(k) \sim H(k)$ if and only if both the two relations $H(0) \sim G(0)$ and $H(1) \sim G(1)$ hold.

Lemma 5.9 If $n \geq 15$, then $\widetilde{C}_6(2, n - 8) \prec Z_n$.

Proof. Let $G = \widetilde{C}_6(2, 7), H = Z_{15}$. Then for $n \geq 15$, $\widetilde{C}_6(2, n - 8)$ and Z_n are $(n - 15)$-subdivision graph of G and H, respectively.

By some calculations we get:

$$\begin{align*}
\tilde{\phi}(G(0)) &= 19x + 129x^3 + 322x^5 + 391x^7 + 252x^9 + 87x^{11} + 15x^{13} + x^{15}; \\
\tilde{\phi}(H(0)) &= 23x + 145x^3 + 347x^5 + 410x^7 + 259x^9 + 88x^{11} + 15x^{13} + x^{15}; \\
\tilde{\phi}(G(1)) &= 4 + 68x^2 + 297x^4 + 574x^6 + 581x^8 + 326x^{10} + 101x^{12} + 16x^{14} + x^{16}; \\
\tilde{\phi}(H(1)) &= 4 + 76x^2 + 325x^4 + 612x^6 + 606x^8 + 334x^{10} + 102x^{12} + 16x^{14} + x^{16}.
\end{align*}$$

Then $G(0) \prec H(0), G(1) \prec H(1)$. By Lemma 5.8, we have $\widetilde{C}_6(2, n - 8) \prec Z_n$. \blacksquare

Lemma 5.10 If $n \geq 16$, then $C_6 \ast (P_{n-6}(2, 2, n-11), 3) \rightarrow Z_n$.

Proof. Let $G = C_6 \ast (P_{10}(2, 2, 5), 3), H = Z_{16}$. Then $C_6 \ast (P_{n-6}(2, 2, n-11), 3)$ and Z_n are k-subdivision of G and H on some cut edges ($k = n - 16$), respectively.

By some calculations we get:

$$f_0 = x^3(1 + x^2)^5(47 + 216x^2 + 211x^4 + 84x^6 + 15x^8 + x^{10})$$

and $DE(0) = 0.04092, DE(1) = 0.04633$.

By Lemma 3.2, we have for $n \geq 16$, $E(C_6 \ast (P_{n-6}(2, 2, n-11), 3)) < E(Z_n)$. \blacksquare

The following lemma is an alternative form of Theorem 2.2 in [13] which will be used to compare the matching numbers of two trees.

Lemma 5.11 [13] Let $a + b = c + d$ with $0 \leq a \leq b$ and $0 \leq c \leq d$. Let $a < c$. Then we have:

1. If a is even, then $m(P_a \cup P_b, i) \geq m(P_c \cup P_d, i)$. Furthermore, there exists at least one index i such that the above inequality is strict.
2. If a is odd, then $m(P_a \cup P_b, i) \leq m(P_c \cup P_d, i)$. Furthermore, there exists at least one index i such that the above inequality is strict.

Lemma 5.12 If $n \geq 14$, then $C_6 \ast (P_{n-6}(2, 2, n-11), i) \leq C_6 \ast (P_{n-6}(2, 2, n-11), 3)$ for $i = 2, \ldots, n - 9$.

-455-
Proof. Take $H_1 = H_2 = P_{n-6}(2,2,n-11)$, $v_1 = w_3$ and $v_2 = w_i$. Then $H_1 - v_1 = P_2 \cup P(2,2,n-14)$ and

$$H_2 - v_2 = \begin{cases} P_{i-1} \cup P(2,2,n-11-i) & \text{if } 2 \leq i \leq n-11; \\ P_2 \cup P_2 \cup P_{n-11} & \text{if } i = n-10; \\ P_1 \cup P_{n-8} & \text{if } i = n-9. \end{cases}$$

By some calculations we have $P_1 \cup P_5 < P_2 \cup P(2,2,1)$ and $P_1 \cup P_6 < P_2 \cup P(2,2,2)$. Then by Lemma 5.8, we have $P_{i-1} \cup P(2,2,n-11)$ is subgraph of $P_2 \cup P(2,2,n-14)$, $H_2 - v_2 < H_1 - v_1$ for $i = n-10$.

Since $\overline{\phi}(P_2 \cup P(2,2,n-14), x) = \overline{\phi}(2P_2 \cup P_{n-11}, x) + \overline{\phi}(2P_2 \cup P_{i-1} \cup P_{n-11-i}, x)$

By Lemma 5.11, we have $P_{i-1} \cup P_{n-8-i} \leq P_2 \cup P_{i-1} \cup P_{n-11-i}$ and $P_{i-1} \cup P_{n-8-i} \leq P_2 \cup P_{n-14}$ for $2 \leq i \leq n-11$.

Hence $P_{i-1} \cup P(2,2,n-11-i) \leq P_2 \cup P(2,2,n-14)$ for $2 \leq i \leq n-11$.

Then $H_2 - v_2 < H_1 - v_1$ for $2 \leq i \leq n-9$. Let $G = P_i^v$ and u be the vertex of degree 1 of G. By Lemma 4.7, we have $C_6 \ast (P_{n-6}(2,2,n-11), i) \leq C_6 \ast (P_{n-6}(2,2,n-11), 3)$.

Lemma 5.13 [16] Let u be a vertex of a bipartite graph G. Denote by $G_u(a,b)$ the graph obtained by attaching to G two pendent paths of length a and b at u (as shown in Fig.4).

Let a,b,c,d be nonnegative integers with $a \leq b$, $c \leq d$, $a + b = c + d$, and $a < c$. If u is a non-isolated vertex of a bipartite graph G, then the following statements are true:

1. If a is even, then $G_u(a,b) \succ G_u(c,d)$;
2. If a is odd, then $G_u(a,b) < G_u(c,d)$.

Theorem 5.14 Let $G \in BU_3 \setminus A_n$. If $G \neq Y_n, Z_n, \overline{C_6}(2,n-11)$, then $G \prec Z_n$.

Proof. Let $C_6 = v_1v_2v_3v_4v_5v_6v_1$ be the unique cycle of G. Since $|N(G)| = 1$, without loss of generality, we assume that $d_G(v_1) \geq 3$. We consider the following two cases.

Case 1. $d_G(v_1) \geq 4$. From Lemmas 4.3 and 5.13, we can get that the graph with maximal energy in this case is $\overline{C_6}(2,n-8)$. Furthermore, by Lemma 5.9, we get $G \prec Z_n$.

Case 2. $d_G(v_1) = 3$. Since $G \in BU_3 \setminus A_n$, we have $G - C_6 \neq P_{n-6}$. We distinguish the following two subcases.

Subcase 2.1. $G - C_6 \neq P_{n-6}(2,2,n-11)$. From Lemma 4.1, we can get the following
two equations:

\[b_{2k}(G) = m(G, k) + 2m(G - C_6, k - 3); \]
\[b_{2k}(Z_n) = m(Z_n, k) + 2m(P_{n-6}(2, 4, n - 13), k - 3). \]

Since \(G - C_6 \neq P_{n-6}, P_{n-6}(2, 2, n - 11) \), by Lemma 5.7, we have \(m(G - C_6, k - 3) \leq m(P_{n-6}(2, 4, n - 13), k - 3) \). Then \(m(P_4 \cup (G - C_6), k - 1) \leq m(P_4 \cup P_{n-6}(2, 4, n - 13), k - 1) \). Moreover, from Lemma 4.4,

\[m(G, k) = m(G - v_1v_2, k) + m(P_4 \cup (G - C_6), k - 1); \]
\[m(Z_n, k) = m(P_n(2, 4, n - 7), k) + m(P_4 \cup P_{n-6}(2, 4, n - 13), k - 1). \]

Since \(G \not\in \mathcal{A}_n, G \neq Y_n \), we get \(G - v_1v_2 \neq P_n, P_n(2, 2, n - 5) \). From Lemma 5.7, we have \(m(G - v_1v_2, k) \leq m(P_n(2, 4, n - 7), k) \), the equality holds if and only if \(G - v_1v_2 = P_n(2, 4, n - 7) \). Hence \(b_{2k}(G) \leq b_{2k}(Z_n) \). Since \(G \neq Z_n \), we have \(G - v_1v_2 \neq P_n(2, 4, n - 7). \) Then \(G \prec Z_n. \)

Subcase 2.2. \(G - C_6 = P_{n-6}(2, 2, n - 11) \). Then \(G = C_6 \ast (P_{n-6}(2, 2, n - 11), i) \). Note that \(G = Y_n \) when \(i = 1 \); \(G = C_6(2, n - 11) \) when \(i = n - 8 \). By Lemmas 4.1 we have \(C_6 \ast (P_{n-6}(2, 2, n - 11), i) \preceq C_6 \ast (P_{n-6}(2, 2, n - 11), 3) \) for \(2 \leq i \leq n - 9 \). Then by Lemma 5.10, we can get \(C_6 \ast (P_{n-6}(2, 2, n - 11), i) \prec Z_n \) when \(2 \leq i \leq n - 9 \). So we have \(G \prec Z_n. \) We complete the proof.

References

