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Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues of
its adjacency matrix. We prove that the energy of a tree on n vertices with a
perfect matching and maximum degree at most 3 is greater than 1.21n−3.23. This
improves some known bounds on the energy of trees.

1 Introduction

1.1 Basics

Let G be a graph. Throughout this paper the order of G is the number of vertices of G.

All the graphs that we consider are finite, undirected and simple. If {v1, . . . , vn} is the

set of vertices of G, then the adjacency matrix of G, A(G) = [aij], is an n × n matrix,

where aij = 1 if vi and vj are adjacent and aij = 0 otherwise. Thus A(G) is a symmetric

matrix with zeros on the diagonal, and all eigenvalues of A(G) are real. By eigenvalues

of G we mean those of A(G). We denote the path and the star graphs of order n by Pn

and Sn, respectively. A matching of G is a set of mutually non-incident edges. A perfect

matching of G is a matching which covers all vertices of G. The maximum degree of the

vertices of G is denoted by ∆(G).

The Hückel molecular orbital, HMO theory, is nowadays on of the most important

field of theoretical chemistry where graph eigenvalues occur. HMO theory deals with

unsaturated conjugated molecules. The vertices of the graph associated with a given

molecule are in one to one correspondence with the carbon atoms of the hydrocarbon

system. Hückel theory in quantum chemistry insures that the total π-electron energy of a
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conjugated hydrocarbon is simply the energy of the corresponding molecular graph. The

energy of a graph G (first introduced by Gutman [4]) is defined the sum of the absolute

values of all eigenvalues of G and denoted by E(G). For a survey on the energy of graphs,

we refer the reader to the book [8] and the article [6].

1.2 Energy of Trees

Among n-vertex trees, the star Sn and the path Pn have, respectively, the minimum and

maximum energy [3].

For integers n ≥ 3 and 2 ≤ k ≤ n− 1, we denote by Pn,k the comet of order n with k

pendent vertices which is the tree formed by identifying an end vertex of the path Pn−k+1

with the central vertex of the star Sk. In [11] it is proved that for any tree T of order

n with k pendent vertices, E(T ) ≥ E(Pn,k), with equality holding if and only if T is

isomorphic to Pn,k.

For chemical trees (i.e., trees with ∆(T ) ≤ 3) Nikiforov [9] conjectured that there is a

constant c such that for any ε > 0, if T is a tree with large enough order n and ∆(T ) ≤ 3,

then E(T ) ≥ (c− ε)n. Li and Liu [7] proved this conjecture.

A graph on n vertices, whose energy is less than n is called hypoenergetic. Graphs

for which E(G) ≥ n are said to be non-hypoenergetic. It is known that (see [1] and [8,

Theorem 9.1]) if the graph G is nonsingular (i.e., no eigenvalue of G is equal to zero),

then G is non-hypoenergetic.

From the Sachs Theorem on the determinant of the adjacency matrices of graphs ( [2,

Theorem 1.3]) it follows that trees with a perfect matching are nonsingular. Therefore,

trees having a perfect matching are non-hypoenergetic. As the main result of this paper,

we improve this result by the following theorem.

Theorem 1. Let T be tree on n vertices with a perfect matching and maximum degree at

most 3. Then E(T ) > 1.21n− 3.23.

2 Proof of Theorem 1

For even n, the comb graph of order n, denoted by P̂n/2, is a tree obtained by adding a

pendent edge to each vertex of the path Pn/2 (see Figure 1).

We will need the following result of Zhang and Li [12] who confirmed a conjecture by

Gutman [5].
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7.1 Trees with extremal energies 109

In fact, from Theorems 7.2 and 7.3, we have that for any T ∈ Tn,d , E (T ) ≥
E (T ∗n,d) = αd ·n+O(logn). Therefore, we obtain:

Theorem 7.5. Let ε > 0. If T is a sufficiently large tree with ∆(T ) = d + 1, then
E (T )≥ (αd − ε)|T |, where αd is given by Eq. (7.4).

Corollary 7.2. Let ε > 0. If T is a sufficiently large tree with ∆(T ) = 3, then E (T )≥
(α2− ε)|T |, where α2 is given by Eq. (7.4).

Remark 7.1. From Theorem 7.3 and Table 7.1, one can see that there does not exist
either strongly hypoenergetic trees or hypoenergetic trees (see Chapter 9 for defini-
tion) of order n and maximum degree ∆ for ∆ ≤ 3 and any sufficiently large n.

Remark 7.2. From Theorem 7.3 and Table 7.1, one can also see that there exist both
hypoenergetic trees and strongly hypoenergetic trees of order n and maximum de-
gree ∆ for ∆ ≥ 4 and any sufficiently large n.

7.1.2 Minimal energy of acyclic conjugated graphs

From a chemical point of view, a more interesting problem seems to be to determine
extremal–energy acyclic conjugated hydrocarbons (in the language of graph theory,
trees with a perfect matching). In this case, the path has also the maximal energy,
see Section 4.3. As for the the case of minimal energy, one of the present authors
put forward two conjectures [155] and checked all the trees with a perfect matching
with up to 16 vertices. Let Fn be a graph obtained by adding a pendent edge to each
vertex of the star K1,(n/2−1), and Mn the comb obtained by adding a pendent edge to
each vertex of the path Pn/2 (see Figure 7.9). Given two positive integers n and d,
denote by Φn the class of trees with n vertices which have perfect matchings and by
Ωn,d the subclass of Φn whose vertex degrees do not exceed d +1.
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Fig. 7.9 Fn and Mn.

Conjecture 7.3. Among trees with n vertices which have a perfect matching, the
energy is minimal for the tree Fn.

Figure 1. The comb graph P̂n/2

Lemma 1. Among trees on n vertices with a perfect matching and maximum degree at

most 3, the energy is minimized by the comb graph P̂n/2.

Proof of Theorem 1. Let T be tree on n vertices with a perfect matching and ∆(T ) ≤ 3.

Since T has a perfect matching, it has an even number of vertices. So let n = 2k. By

Lemma 1, E(T ) ≥ E(P̂k). So it is enough to prove the assertion for P̂k. For the adjacency

matrix of P̂k, we have

A(P̂k) =

[
A(Pk) I

I O

]
.

By using the Schur complement (see [2, Lemma 2.2]),

det(xI − A(P̂k)) = det(xI − A(Pk)) det(xI − (xI − A(Pk))
−1)

= det(x(xI − A(Pk))− I) = xk det(x
2−1
x

I − A(Pk)).

It follows that if λ is an eigenvalue of Pk, then 1
2
(λ±

√
λ2 + 4) is an eigenvalue of P̂k. We

know that the eigenvalues of Pk are

2 cos

(
πr

k + 1

)
, r = 1, . . . , k.

Therefore, the eigenvalues of P̂k are

cos

(
πr

k + 1

)
±

√
1 + cos2

(
πr

k + 1

)
, r = 1, . . . , k.

It turns out that

E(P̂k) =
k∑

r=1

2

√
1 + cos2

(
πr

k + 1

)
= 4

bk/2c∑
r=1

√
1 + cos2

(
πr

k + 1

)
.

By considering the upper Riemann sum (see [10, Section 3.2]) and since the cosine function

is decreasing on the interval [0, π/2], we have

π

k + 1

bk/2c∑
r=0

√
1 + cos2

(
πr

k + 1

)
>

∫ π/2

0

√
1 + cos2(x)dx > 1.91.

It follows that
bk/2c∑
r=1

√
1 + cos2

(
πr

k + 1

)
>

1.91(k + 1)

π
−

√
2 .

-441-



Therefore

E(P̂k) >
4 · 1.91(k + 1)

π
− 4

√
2 =

2 · 1.91
π

n+ 4

(
1.91

π
−

√
2

)
> 1.21n− 3.23 ,

which completes the proof of Theorem 1. �
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